Package Scientific :: Package Signals :: Module Models :: Class AveragedAutoRegressiveModel
[frames] | no frames]

Class AveragedAutoRegressiveModel

AutoRegressiveModel --+
                      |
                     AveragedAutoRegressiveModel

Averaged auto-regressive model for stochastic process

An averaged model is constructed by averaging the model coefficients of several auto-regressive models of the same order. An averaged model is created empty, then individual models are added.

Instance Methods
 
__init__(self, order, delta_t)
 
add(self, model, weight=1)
Adds the coefficients of an autoregressive model to the average.

Inherited from AutoRegressiveModel: correlation, frictionConstant, memoryFunction, memoryFunctionZ, memoryFunctionZapprox, poles, predictStep, spectrum

Method Details

__init__(self, order, delta_t)
(Constructor)

 
Parameters:
  • order (int) - the order of the model
  • delta_t (float) - the sampling interval for the time series
Overrides: AutoRegressiveModel.__init__

add(self, model, weight=1)

 

Adds the coefficients of an autoregressive model to the average.

Parameters:
  • model (AutoRegressiveModel) - an autoregressive model
  • weight (float) - the weight of the model in the average
Raises:
  • ValueError - if the order of the model does not match the order of the average model