xmet/lib/xmet/thermo.py

184 lines
5 KiB
Python

import math
from typing import Callable
from xmet.series import Series
LAPSE_RATE_DRY = 9.8 / 1000 # degrees C per km
LAPSE_RATE_MOIST = 4.0 / 1000
PRESSURE_MAX = 1050 # millibar
PRESSURE_MSL = 1013.25
PRESSURE_MIN = 100
PRESSURE_STEP = 50
def kelvin(c: float) -> float:
return 273.15 + c
def celsius(k: float) -> float:
return k - 273.15
def vapor_pressure(dewpoint: float) -> float:
"""
Return the pressure, in millibar, of vapor in a parcel of a given
dewpoint.
"""
return 6.11 * 10 ** ((7.5 * dewpoint) / (237.3 + dewpoint))
def mixing_ratio(dewpoint: float, pressure: float) -> float:
"""
Return the amount, in kilograms, of water vapor versus dry air in a parcel
of a given dewpoint and pressure.
"""
e = vapor_pressure(dewpoint)
return (0.62197 * e) / (pressure - e)
def saturated_mixing_ratio(temp: float, pressure: float) -> float:
"""
Return the maximum amount, in kilograms, of water vapor a parcel of a
given temperature and pressure can hold.
"""
es = vapor_pressure(temp)
return (0.62197 * es) / (pressure - es)
def mixing_ratio_temp(ratio: float, pressure: float) -> float:
"""
Return the temperature, in degrees celsius, of a given mixing ratio of
kilograms of moisture to kilograms of air, at a specified pressure, in
millibar.
"""
c1 = 0.0498646455
c2 = 2.4082965
c3 = 7.07475
c4 = 38.9114
c5 = 0.0915
c6 = 1.2035
w = ratio * 1000.0
x = math.log10(w * pressure / (622.0 + w))
return celsius(math.pow(10.0, ((c1 * x) + c2)) - c3 + \
(c4 * math.pow((math.pow(10, (c5 * x)) - c6), 2)))
def lcl(temp: float, dewpoint: float) -> float:
"""
Return the height, in meters, at which a parcel of the given temperature
is cooled to the given dewpoint.
"""
return (temp - dewpoint) / 0.008
def pressure_height(pressure: float, surface: float=PRESSURE_MSL) -> float:
"""
Return the approximate altitude, in meters, for a given pressure in
millibar.
"""
return (1 - (pressure / surface) ** 0.190284) * 145366.45 * 0.3048
def lapse(temp: float, delta: float, rate=LAPSE_RATE_DRY) -> float:
"""
Return the temperature of a parcel cooled at the dry lapse rate for a
given increase in height (in meters).
"""
return temp - (rate * delta)
def moist_lapse_rate(temp: float, pressure: float) -> float:
g = 9.8076
Hv = 2501000
Rsd = 287
Rsw = 461.5
Cpd = 1003.5
r = saturated_mixing_ratio(temp, pressure)
T = kelvin(temp)
return g * (1 + (Hv * r) / (Rsd * T)) \
/ (Cpd + (((Hv**2) * r) / (Rsw * (T**2))))
def loft_parcel(start_temp: float,
start_pressure: float,
lapse_rate: Callable,
step: float=1.0):
"""
Loft a parcel of air from a given pressure, at a given temperature,
yielding a Tuple containing the temperature and pressure of that parcel
at each increment of elevation. A Callable which, given a temperature,
dewpoint, pressure value, will be dispatched to obtain the lapse rate
for each height.
"""
last_height = None
temp = start_temp
pressure = start_pressure
yield temp, pressure
while pressure >= PRESSURE_MIN:
height = pressure_height(pressure)
if last_height is not None:
try:
rate = lapse_rate(temp, pressure-step/2)
except OverflowError:
break
temp = lapse(temp, height - last_height, rate)
yield temp, pressure
if pressure == PRESSURE_MIN:
break
elif pressure - step < PRESSURE_MIN:
pressure = PRESSURE_MIN
else:
pressure -= step
last_height = height
def follow_dry_adiabat(temp: float, pressure: float) -> Series:
"""
Follow a dry adiabat starting at a given temp and pressure level, returning
a Series object depicting the data points in descending pressure order.
"""
series = Series()
for level in loft_parcel(temp, pressure, lambda t, p: LAPSE_RATE_DRY):
t2, p2 = level
series[p2] = t2
return series
def follow_moist_adiabat(temp: float, pressure: float) -> Series:
"""
Follow a moist adiabat starting at a given temp and pressure level,
returning a Series object depicting the data points in descending pressure
order.
"""
series = Series()
for level in loft_parcel(temp, pressure, moist_lapse_rate):
t2, p2 = level
series[p2] = t2
return series
def follow_saturated_mixing_ratio(temp: float, pressure: float, step: float=1.0) -> Series:
"""
Follow a line of constant saturated mixing ratio calculated from a given
temp and pressure level, returning a Series object depicting the data
points in descending pressure order.
"""
series = dict()
ratio = saturated_mixing_ratio(temp, pressure)
p2 = pressure
while p2 >= PRESSURE_MIN:
series[p2] = mixing_ratio_temp(ratio, p2)
p2 -= step
return series