python-awips/examples/notebooks/Precip_Accumulation_Region_of_Interest.ipynb
ucar-tmeyer b90d7ed5e2 Updates to notebooks for python 3.12
- Fixed datetime deprecation issue with datetime.utcnow() to datetime.now(UTC)
- Fixed deprecations related to numpy 2.0
- Fixed deprecations related to shapely 2.0
- Updated text products that had been consolidated/added

Reference: https://github.com/Unidata/awips-unidata-builds/issues/167
2025-01-23 14:31:31 -07:00

543 lines
19 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a name=\"top\"></a>\n",
"<div style=\"width:1000 px\">\n",
"\n",
"<div style=\"float:right; width:98 px; height:98px;\">\n",
"<img src=\"https://docs.unidata.ucar.edu/images/logos/unidata_logo_vertical_150x150.png\" alt=\"Unidata Logo\" style=\"height: 98px;\">\n",
"</div>\n",
"\n",
"# Precipitation Accumulation Region of Interest\n",
"**Python-AWIPS Tutorial Notebook**\n",
"\n",
"<div style=\"clear:both\"></div>\n",
"</div>\n",
"\n",
"---\n",
"\n",
"<div style=\"float:right; width:250 px\"><img src=\"../images/precip_roi_preview.png\" alt=\"Colorized Precipation Accumulation with Identified Region of Interest\" style=\"height: 300px;\"></div>\n",
"\n",
"\n",
"# Objectives\n",
"\n",
"* Access the model data from an EDEX server and limit the data returned by using model specific parameters\n",
"* Calculate the total precipitation over several model runs\n",
"* Create a colorized plot for the continental US of the accumulated precipitation data\n",
"* Calculate and identify area of highest of precipitation\n",
"* Use higher resolution data to draw region of interest\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {
"toc": true
},
"source": [
"<h1>Table of Contents<span class=\"tocSkip\"></span></h1>\n",
"<div class=\"toc\"><ul class=\"toc-item\"><li><span><a href=\"#Imports\" data-toc-modified-id=\"Imports-1\"><span class=\"toc-item-num\">1&nbsp;&nbsp;</span>Imports</a></span></li><li><span><a href=\"#Initial-Setup\" data-toc-modified-id=\"Initial-Setup-2\"><span class=\"toc-item-num\">2&nbsp;&nbsp;</span>Initial Setup</a></span><ul class=\"toc-item\"><li><span><a href=\"#Geographic-Filter\" data-toc-modified-id=\"Geographic-Filter-2.1\"><span class=\"toc-item-num\">2.1&nbsp;&nbsp;</span>Geographic Filter</a></span></li><li><span><a href=\"#EDEX-Connection\" data-toc-modified-id=\"EDEX-Connection-2.2\"><span class=\"toc-item-num\">2.2&nbsp;&nbsp;</span>EDEX Connection</a></span></li><li><span><a href=\"#Refine-the-Request\" data-toc-modified-id=\"Refine-the-Request-2.3\"><span class=\"toc-item-num\">2.3&nbsp;&nbsp;</span>Refine the Request</a></span></li><li><span><a href=\"#Get-Times\" data-toc-modified-id=\"Get-Times-2.4\"><span class=\"toc-item-num\">2.4&nbsp;&nbsp;</span>Get Times</a></span></li></ul></li><li><span><a href=\"#Function:-calculate_accumulated_precip()\" data-toc-modified-id=\"Function:-calculate_accumulated_precip()-3\"><span class=\"toc-item-num\">3&nbsp;&nbsp;</span>Function: calculate_accumulated_precip()</a></span></li><li><span><a href=\"#Fuction:-make_map()\" data-toc-modified-id=\"Fuction:-make_map()-4\"><span class=\"toc-item-num\">4&nbsp;&nbsp;</span>Fuction: make_map()</a></span></li><li><span><a href=\"#Get-the-Data!\" data-toc-modified-id=\"Get-the-Data!-5\"><span class=\"toc-item-num\">5&nbsp;&nbsp;</span>Get the Data!</a></span></li><li><span><a href=\"#Plot-the-Data!\" data-toc-modified-id=\"Plot-the-Data!-6\"><span class=\"toc-item-num\">6&nbsp;&nbsp;</span>Plot the Data!</a></span><ul class=\"toc-item\"><li><span><a href=\"#Create-CONUS-Image\" data-toc-modified-id=\"Create-CONUS-Image-6.1\"><span class=\"toc-item-num\">6.1&nbsp;&nbsp;</span>Create CONUS Image</a></span></li><li><span><a href=\"#Create-Region-of-Interest-Image\" data-toc-modified-id=\"Create-Region-of-Interest-Image-6.2\"><span class=\"toc-item-num\">6.2&nbsp;&nbsp;</span>Create Region of Interest Image</a></span></li></ul></li><li><span><a href=\"#High-Resolution-ROI\" data-toc-modified-id=\"High-Resolution-ROI-7\"><span class=\"toc-item-num\">7&nbsp;&nbsp;</span>High Resolution ROI</a></span><ul class=\"toc-item\"><li><span><a href=\"#New-Data-Request\" data-toc-modified-id=\"New-Data-Request-7.1\"><span class=\"toc-item-num\">7.1&nbsp;&nbsp;</span>New Data Request</a></span></li><li><span><a href=\"#Calculate-Data\" data-toc-modified-id=\"Calculate-Data-7.2\"><span class=\"toc-item-num\">7.2&nbsp;&nbsp;</span>Calculate Data</a></span></li><li><span><a href=\"#Plot-ROI\" data-toc-modified-id=\"Plot-ROI-7.3\"><span class=\"toc-item-num\">7.3&nbsp;&nbsp;</span>Plot ROI</a></span></li></ul></li><li><span><a href=\"#See-Also\" data-toc-modified-id=\"See-Also-8\"><span class=\"toc-item-num\">8&nbsp;&nbsp;</span>See Also</a></span><ul class=\"toc-item\"><li><span><a href=\"#Related-Notebooks\" data-toc-modified-id=\"Related-Notebooks-8.1\"><span class=\"toc-item-num\">8.1&nbsp;&nbsp;</span>Related Notebooks</a></span></li><li><span><a href=\"#Additional-Documentation\" data-toc-modified-id=\"Additional-Documentation-8.2\"><span class=\"toc-item-num\">8.2&nbsp;&nbsp;</span>Additional Documentation</a></span></li></ul></li></ul></div>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Imports\n",
"\n",
"The imports below are used throughout the notebook. Note the first import is coming directly from python-awips and allows us to connect to an EDEX server. The subsequent imports are for data manipulation and visualization."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from awips.dataaccess import DataAccessLayer\n",
"import cartopy.crs as ccrs\n",
"import matplotlib.pyplot as plt\n",
"from metpy.units import units\n",
"import numpy as np\n",
"from shapely.geometry import Point, Polygon"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a href=\"#top\">Top</a>\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initial Setup"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Geographic Filter\n",
"\n",
"By defining a bounding box for the Continental US (CONUS), were able to optimize the data request sent to the EDEX server."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"conus=[-125, -65, 25, 55]\n",
"conus_envelope = Polygon([(conus[0],conus[2]),(conus[0],conus[3]),\n",
" (conus[1],conus[3]),(conus[1],conus[2]),\n",
" (conus[0],conus[2])])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### EDEX Connection\n",
"\n",
"First we establish a connection to Unidatas public EDEX server. With that connection made, we can create a [new data request object](http://unidata.github.io/python-awips/api/IDataRequest.html) and set the data type to **grid**, and use the geographic envelope we just created."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"DataAccessLayer.changeEDEXHost(\"edex-beta.unidata.ucar.edu\")\n",
"request = DataAccessLayer.newDataRequest(\"grid\", envelope=conus_envelope)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Refine the Request\n",
"\n",
"Here we specify which model we're interested in by setting the *LocationNames*, and the specific data we're interested in by setting the *Levels* and *Parameters*."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"request.setLocationNames(\"GFS1p0\")\n",
"request.setLevels(\"0.0SFC\")\n",
"request.setParameters(\"TP\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get Times\n",
"\n",
"We need to get the available times and cycles for our model data"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"ename": "IndexError",
"evalue": "list index out of range",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[5], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m cycles \u001b[38;5;241m=\u001b[39m DataAccessLayer\u001b[38;5;241m.\u001b[39mgetAvailableTimes(request, \u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[1;32m 2\u001b[0m times \u001b[38;5;241m=\u001b[39m DataAccessLayer\u001b[38;5;241m.\u001b[39mgetAvailableTimes(request)\n\u001b[0;32m----> 3\u001b[0m fcstRun \u001b[38;5;241m=\u001b[39m DataAccessLayer\u001b[38;5;241m.\u001b[39mgetForecastRun(\u001b[43mcycles\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m]\u001b[49m, times)\n",
"\u001b[0;31mIndexError\u001b[0m: list index out of range"
]
}
],
"source": [
"cycles = DataAccessLayer.getAvailableTimes(request, True)\n",
"times = DataAccessLayer.getAvailableTimes(request)\n",
"fcstRun = DataAccessLayer.getForecastRun(cycles[-1], times)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a href=\"#top\">Top</a>\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Function: calculate_accumulated_precip()\n",
"\n",
"Since we'll want to calculate the accumulated precipitation of our data more than once, it makes sense to create a function that we can call instead of duplicating the logic.\n",
"\n",
"This function cycles through all the grid data responses and adds up all of the rainfall to produce a numpy array with the total ammount of rainfall for the given data request. It also finds the maximum rainfall point in x and y coordinates."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def calculate_accumulated_precip(dataRequest, forecastRun):\n",
"\n",
" for i, tt in enumerate(forecastRun):\n",
" response = DataAccessLayer.getGridData(dataRequest, [tt])\n",
" grid = response[0]\n",
" if i>0:\n",
" data += grid.getRawData()\n",
" else:\n",
" data = grid.getRawData()\n",
" data[data <= -9999] = 0\n",
" print(data.min(), data.max(), grid.getDataTime().getFcstTime()/3600)\n",
"\n",
" # Convert from mm to inches\n",
" result = (data * units.mm).to(units.inch)\n",
" \n",
" ii,jj = np.where(result==result.max())\n",
" i=ii[0]\n",
" j=jj[0]\n",
"\n",
" return result, i, j"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a href=\"#top\">Top</a>\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Fuction: make_map()\n",
"\n",
"This function creates the basics of the map we're going to plot our data on. It takes in a bounding box to determine the extent and then adds coastlines for easy frame of reference."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def make_map(bbox, projection=ccrs.PlateCarree()):\n",
" fig, ax = plt.subplots(figsize=(20, 14),\n",
" subplot_kw=dict(projection=projection))\n",
" ax.set_extent(bbox)\n",
" ax.coastlines(resolution='50m')\n",
" return fig, ax"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a href=\"#top\">Top</a>\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Get the Data!\n",
"\n",
"Access the data from the DataAccessLayer interface using the *getGridData* function. Use that data to calculate the accumulated rainfall, the maximum rainfall point, and the region of interest bounding box."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"## get the grid response from edex\n",
"response = DataAccessLayer.getGridData(request, [fcstRun[-1]]) \n",
"## take the first result to get the location information from\n",
"grid = response[0]\n",
"\n",
"## get the location coordinates and create a bounding box for our map\n",
"lons, lats = grid.getLatLonCoords()\n",
"bbox = [lons.min(), lons.max(), lats.min(), lats.max()]\n",
"fcstHr = int(grid.getDataTime().getFcstTime()/3600)\n",
"\n",
"## calculate the total precipitation\n",
"tp_inch, i, j = calculate_accumulated_precip(request, fcstRun)\n",
"print(tp_inch.min(), tp_inch.max())\n",
"\n",
"## use the max points coordinates to get the max point in lat/lon coords\n",
"maxPoint = Point(lons[i][j], lats[i][j])\n",
"inc = 3.5\n",
"## create a region of interest bounding box\n",
"roi_box=[maxPoint.x-inc, maxPoint.x+inc, maxPoint.y-inc, maxPoint.y+inc]\n",
"roi_polygon = Polygon([(roi_box[0],roi_box[2]),(roi_box[0],roi_box[3]), \n",
" (roi_box[1],roi_box[3]),(roi_box[1],roi_box[2]),(roi_box[0],roi_box[2])])\n",
"\n",
"print(maxPoint)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a href=\"#top\">Top</a>\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Plot the Data!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create CONUS Image\n",
"\n",
"Plot our data on our CONUS map."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cmap = plt.get_cmap('rainbow')\n",
"fig, ax = make_map(bbox=bbox)\n",
"cs = ax.pcolormesh(lons, lats, tp_inch, cmap=cmap)\n",
"cbar = fig.colorbar(cs, shrink=0.7, orientation='horizontal')\n",
"cbar.set_label(grid.getLocationName() + \" Total accumulated precipitation in inches, \" \\\n",
" + str(fcstHr) + \"-hr fcst valid \" + str(grid.getDataTime().getRefTime()))\n",
"\n",
"ax.scatter(maxPoint.x, maxPoint.y, s=300,\n",
" transform=ccrs.PlateCarree(),marker=\"+\",facecolor='black')\n",
"\n",
"ax.add_geometries([roi_polygon], ccrs.PlateCarree(), facecolor='none', edgecolor='white', linewidth=2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create Region of Interest Image\n",
"\n",
"Now crop the data and zoom in on the region of interest (ROI) to create a new plot."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# cmap = plt.get_cmap('rainbow')\n",
"fig, ax = make_map(bbox=roi_box)\n",
"\n",
"cs = ax.pcolormesh(lons, lats, tp_inch, cmap=cmap)\n",
"cbar = fig.colorbar(cs, shrink=0.7, orientation='horizontal')\n",
"cbar.set_label(grid.getLocationName() + \" Total accumulated precipitation in inches, \" \\\n",
" + str(fcstHr) + \"-hr fcst valid \" + str(grid.getDataTime().getRefTime()))\n",
"\n",
"ax.scatter(maxPoint.x, maxPoint.y, s=300,\n",
" transform=ccrs.PlateCarree(),marker=\"+\",facecolor='black')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a href=\"#top\">Top</a>\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## High Resolution ROI"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### New Data Request\n",
"\n",
"To see the region of interest more clearly, we can redo the process with a higher resolution model (GFS20 vs. GFS1.0)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"roiRequest = DataAccessLayer.newDataRequest(\"grid\", envelope=conus_envelope)\n",
"roiRequest.setLocationNames(\"GFS20\")\n",
"roiRequest.setLevels(\"0.0SFC\")\n",
"roiRequest.setParameters(\"TP\")\n",
"\n",
"roiCycles = DataAccessLayer.getAvailableTimes(roiRequest, True)\n",
"roiTimes = DataAccessLayer.getAvailableTimes(roiRequest)\n",
"roiFcstRun = DataAccessLayer.getForecastRun(roiCycles[-1], roiTimes)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculate Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"roiResponse = DataAccessLayer.getGridData(roiRequest, [roiFcstRun[-1]]) \n",
"print(roiResponse)\n",
"roiGrid = roiResponse[0]\n",
"\n",
"roiLons, roiLats = roiGrid.getLatLonCoords()\n",
"\n",
"roi_data, i, j = calculate_accumulated_precip(roiRequest, roiFcstRun)\n",
"\n",
"roiFcstHr = int(roiGrid.getDataTime().getFcstTime()/3600)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Plot ROI"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# cmap = plt.get_cmap('rainbow')\n",
"fig, ax = make_map(bbox=roi_box)\n",
"\n",
"cs = ax.pcolormesh(roiLons, roiLats, roi_data, cmap=cmap)\n",
"cbar = fig.colorbar(cs, shrink=0.7, orientation='horizontal')\n",
"cbar.set_label(roiGrid.getLocationName() + \" Total accumulated precipitation in inches, \" \\\n",
" + str(roiFcstHr) + \"-hr fcst valid \" + str(roiGrid.getDataTime().getRefTime()))\n",
"\n",
"ax.scatter(maxPoint.x, maxPoint.y, s=300,\n",
" transform=ccrs.PlateCarree(),marker=\"+\",facecolor='black')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a href=\"#top\">Top</a>\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## See Also\n",
"\n",
"### Related Notebooks\n",
"\n",
"* [Colorized Grid Data](https://unidata.github.io/python-awips/examples/generated/Colorized_Grid_Data.html)\n",
"* [Grid Levels and Parameters](https://unidata.github.io/python-awips/examples/generated/Grid_Levels_and_Parameters.html)\n",
"\n",
"### Additional Documentation\n",
"\n",
"**python-awips:**\n",
"* [awips.DataAccessLayer](http://unidata.github.io/python-awips/api/DataAccessLayer.html)\n",
"* [awips.PyGridData](http://unidata.github.io/python-awips/api/PyGridData.html)\n",
"\n",
"**matplotlib:**\n",
"* [matplotlib.pyplot](https://matplotlib.org/3.3.3/api/_as_gen/matplotlib.pyplot.html)\n",
"* [matplotlib.pyplot.subplot](https://matplotlib.org/3.3.3/api/_as_gen/matplotlib.pyplot.subplot.html)\n",
"* [matplotlib.pyplot.pcolormesh](https://matplotlib.org/3.3.3/api/_as_gen/matplotlib.pyplot.pcolormesh.html)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a href=\"#top\">Top</a>\n",
"\n",
"---"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": true,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": true,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": true
}
},
"nbformat": 4,
"nbformat_minor": 4
}