python-awips/_sources/examples/generated/Forecast_Model_Vertical_Sounding.rst.txt
2025-02-13 18:28:48 +00:00

446 lines
16 KiB
ReStructuredText
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

================================
Forecast Model Vertical Sounding
================================
`Notebook <http://nbviewer.ipython.org/github/Unidata/python-awips/blob/master/examples/notebooks/Forecast_Model_Vertical_Sounding.ipynb>`_
Python-AWIPS Tutorial Notebook
--------------
Objectives
==========
- Use python-awips to connect to an edex server
- Request data using the `ModelSounding
class <http://unidata.github.io/python-awips/api/ModelSounding.html>`__
in addition to using the normal `DataAccess
class <http://unidata.github.io/python-awips/api/DataAccessLayer.html>`__
- Create and compare vertical sounding from different AWIPS model data
with isobaric levels
- Use `Shapely Point
geometry <https://shapely.readthedocs.io/en/stable/reference/shapely.Point.html>`__
to define a point
- Convert between units when necessary
- Use MetPy to create
`SkewT <https://unidata.github.io/MetPy/latest/api/generated/metpy.plots.SkewT.html>`__
and
`Hodograph <https://unidata.github.io/MetPy/latest/api/generated/metpy.plots.Hodograph.html>`__
plots
--------------
Table of Contents
-----------------
| `1
Imports <https://unidata.github.io/python-awips/examples/generated/Forecast_Model_Vertical_Sounding.html#imports>`__\
| `2 EDEX
Connection <http://unidata.github.io/python-awips/examples/generated/Forecast_Model_Vertical_Sounding.html#edex-connection>`__\
| `3 Define Useful
Variables <https://unidata.github.io/python-awips/examples/generated/Forecast_Model_Vertical_Sounding.html#define-useful-variables>`__\
| `4 Function:
get_surface_data() <https://unidata.github.io/python-awips/examples/generated/Forecast_Model_Vertical_Sounding.html#function-get-surface-data>`__\
| `5 Function:
get_levels_data() <https://unidata.github.io/python-awips/examples/generated/Forecast_Model_Vertical_Sounding.html#function-get-levels-data>`__\
| `6 Function:
plot_skewT() <https://unidata.github.io/python-awips/examples/generated/Forecast_Model_Vertical_Sounding.html#function-plot-skewt>`__\
| `7 Retrieve Necessary Plotting
Data <https://unidata.github.io/python-awips/examples/generated/Forecast_Model_Vertical_Sounding.html#retrieve-necessary-plotting-data>`__\
| `8
Skew-T/Log-P <https://unidata.github.io/python-awips/examples/generated/Forecast_Model_Vertical_Sounding.html#skew-t-log-p>`__\
| `9 Model Sounding
Comparison <https://unidata.github.io/python-awips/examples/generated/Forecast_Model_Vertical_Sounding.html#model-sounding-comparison>`__\
| `10 See
Also <https://unidata.github.io/python-awips/examples/generated/Forecast_Model_Vertical_Sounding.html#see-also>`__\
|     `10.1 Related
Notebooks <https://unidata.github.io/python-awips/examples/generated/Forecast_Model_Vertical_Sounding.html#related-notebooks>`__\
|     `10.2 Additional
Documentation <https://unidata.github.io/python-awips/examples/generated/Forecast_Model_Vertical_Sounding.html#additional-documentation>`__\
1 Imports
---------
The imports below are used throughout the notebook. Note the first
import is coming directly from python-awips and allows us to connect to
an EDEX server. The subsequent imports are for data manipulation and
visualization.
.. code:: ipython3
from awips.dataaccess import DataAccessLayer, ModelSounding
import matplotlib.pyplot as plt
import numpy as np
from metpy.plots import SkewT, Hodograph
from metpy.units import units
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
from math import sqrt
from shapely.geometry import Point
`Top <https://unidata.github.io/python-awips/examples/generated/Forecast_Model_Vertical_Sounding.html>`__
--------------
2 EDEX Connection
-----------------
First we establish a connection to Unidatas public EDEX server. This
sets the proper server on the **DataAccessLayer**, which we will use
numerous times throughout the notebook.
.. code:: ipython3
server = 'edex-beta.unidata.ucar.edu'
DataAccessLayer.changeEDEXHost(server)
`Top <https://unidata.github.io/python-awips/examples/generated/Forecast_Model_Vertical_Sounding.html>`__
--------------
3 Define Useful Variables
-------------------------
The plotting in this notebook needs a model name, a location point
(defined by latitude and longitude), and the most recent time range with
the initial forecast run.
.. code:: ipython3
# Note the order is Lon,Lat and not Lat,Lon
point = Point(-104.67,39.87)
model="NAM40"
# Get latest forecast cycle run
timeReq = DataAccessLayer.newDataRequest("grid")
timeReq.setLocationNames(model)
cycles = DataAccessLayer.getAvailableTimes(timeReq, True)
times = DataAccessLayer.getAvailableTimes(timeReq)
fcstRun = DataAccessLayer.getForecastRun(cycles[-2], times)
timeRange = [fcstRun[0]]
print("Using " + model + " forecast time " + str(timeRange))
.. parsed-literal::
Using NAM40 forecast time [<DataTime instance: 2023-07-25 12:00:00 >]
`Top <https://unidata.github.io/python-awips/examples/generated/Forecast_Model_Vertical_Sounding.html>`__
--------------
4 Function: get_surface_data()
------------------------------
This function is used to get the initial forecast model data for surface
height. This is done separately from the rest of the heights to
determine the surface pressure. It uses the
`ModelSounding <http://unidata.github.io/python-awips/api/ModelSounding.html>`__
data object from python-awips to retrieve all the relevant information.
This function takes the model name, location, and time as attributes,
and returns arrays for pressure, temperature, dewpoint, and the u and v
wind components.
.. code:: ipython3
def get_surface_data(modelName, location, time):
""" model name, location, and timeRange desire """
# request data and sort response
pressure,temp,dpt,ucomp,vcomp = [],[],[],[],[]
use_parms = ['T','DpT','uW','vW','P']
use_level = "0.0FHAG"
sndObject = ModelSounding.getSounding(modelName, use_parms, [use_level], location, time)
if len(sndObject) > 0:
for time in sndObject._dataDict:
pressure.append(float(sndObject._dataDict[time][use_level]['P']))
temp.append(float(sndObject._dataDict[time][use_level]['T']))
dpt.append(float(sndObject._dataDict[time][use_level]['DpT']))
ucomp.append(float(sndObject._dataDict[time][use_level]['uW']))
vcomp.append(float(sndObject._dataDict[time][use_level]['vW']))
print("Found surface record at " + "%.1f" % pressure[0] + "MB")
else:
raise ValueError("sndObject returned empty for query ["
+ ', '.join(str(x) for x in (modelName, use_parms, point, use_level)) +"]")
# return information for plotting
return pressure,temp,dpt,ucomp,vcomp
`Top <https://unidata.github.io/python-awips/examples/generated/Forecast_Model_Vertical_Sounding.html>`__
--------------
5 Function: get_levels_data()
-----------------------------
This function is similar to *get_surface_data()*, except it gets data
values for presure heights above the surface. It uses the
`ModelSounding <http://unidata.github.io/python-awips/api/ModelSounding.html>`__
data object from python-awips to retrieve all the relevant information.
It takes the model name, location, and time (similar to the other
function), and also takes the instantiated pressure, temperature,
dewpoint, and wind vector arrays.
It returns the fully populated pressure, temperature, dewpoint,
u-component, v-component, and computed wind arrays.
.. code:: ipython3
def get_levels_data(modelName, location, time, pressure, temp, dpt, ucomp, vcomp):
# Get isobaric levels with our requested parameters
parms = ['T','DpT','uW','vW']
levelReq = DataAccessLayer.newDataRequest("grid", envelope=point)
levelReq.setLocationNames(model)
levelReq.setParameters(*(parms))
availableLevels = DataAccessLayer.getAvailableLevels(levelReq)
# Clean levels list of unit string (MB, FHAG, etc.)
levels = []
for lvl in availableLevels:
name=str(lvl)
if 'MB' in name and '_' not in name:
# If this level is above (less than in mb) our 0.0FHAG record
if float(name.replace('MB','')) < pressure[0]:
levels.append(lvl)
# Get Sounding
sndObject = ModelSounding.getSounding(modelName, parms, levels, location, time)
if not len(sndObject) > 0:
raise ValueError("sndObject returned empty for query ["
+ ', '.join(str(x) for x in (model, parms, point, levels)) +"]")
for time in sndObject._dataDict:
for lvl in sndObject._dataDict[time].levels():
for parm in sndObject._dataDict[time][lvl].parameters():
if parm == "T":
temp.append(float(sndObject._dataDict[time][lvl][parm]))
elif parm == "DpT":
dpt.append(float(sndObject._dataDict[time][lvl][parm]))
elif parm == 'uW':
ucomp.append(float(sndObject._dataDict[time][lvl][parm]))
elif parm == 'vW':
vcomp.append(float(sndObject._dataDict[time][lvl][parm]))
else:
print("WHAT IS THIS")
print(sndObject._dataDict[time][lvl][parm])
# Pressure is our requested level rather than a returned parameter
pressure.append(float(lvl.replace('MB','')))
# convert to numpy.array()
pressure = np.array(pressure, dtype=float)
temp = (np.array(temp, dtype=float) - 273.15) * units.degC
dpt = (np.array(dpt, dtype=float) - 273.15) * units.degC
ucomp = (np.array(ucomp, dtype=float) * units('m/s')).to('knots')
vcomp = (np.array(vcomp, dtype=float) * units('m/s')).to('knots')
wind = np.sqrt(ucomp**2 + vcomp**2)
print("Using " + str(len(levels)) + " levels between " +
str("%.1f" % max(pressure)) + " and " + str("%.1f" % min(pressure)) + "MB")
return pressure,temp,dpt,ucomp,vcomp,wind
`Top <https://unidata.github.io/python-awips/examples/generated/Forecast_Model_Vertical_Sounding.html>`__
--------------
6 Function: plot_skewT()
------------------------
Since were plotting many different models for comparison, all that code
was used to create this function.
The function takes the model name, reference time, and the pressure,
temperature, dewpoint, u-component, v-component, and wind arrays. It
plots a skewT and hodograph using metpy.
.. code:: ipython3
def plot_skewT(modelName, pressure, temp, dpt, ucomp, vcomp, wind, refTime):
plt.rcParams['figure.figsize'] = (12, 14)
# Skew-T
skew = SkewT(rotation=45)
skew.plot(pressure, temp, 'r', linewidth=2)
skew.plot(pressure, dpt, 'g', linewidth=2)
skew.plot_barbs(pressure, ucomp, vcomp)
skew.plot_dry_adiabats()
skew.plot_moist_adiabats()
skew.plot_mixing_lines(linestyle=':')
skew.ax.set_ylim(1000, np.min(pressure))
skew.ax.set_xlim(-50, 40)
# Title
plt.title(modelName + " (" + str(point) + ") " + str(refTime))
# Hodograph
ax_hod = inset_axes(skew.ax, '40%', '40%', loc=2)
h = Hodograph(ax_hod, component_range=max(wind.magnitude))
h.add_grid(increment=20)
h.plot_colormapped(ucomp, vcomp, wind)
# Dotted line at 0C isotherm
l = skew.ax.axvline(0, color='c', linestyle='-', linewidth=1)
plt.show()
`Top <https://unidata.github.io/python-awips/examples/generated/Forecast_Model_Vertical_Sounding.html>`__
--------------
7 Retrieve Necessary Plotting Data
----------------------------------
First we get the initial data at surface level using the
get_surface_data function, and then pass those initial data arrays onto
the get_levels_data request to finish populating for additional heights
needed for Skew-T plots. We want to keep track of the pressure,
temeperature, dewpoint, u-component, v-component, and wind arrays so we
store them in variables to use later on.
.. code:: ipython3
p,t,d,u,v = get_surface_data(model,point,timeRange)
p,t,d,u,v,w = get_levels_data(model,point,timeRange,p,t,d,u,v)
.. parsed-literal::
Found surface record at 833.2MB
Using 32 levels between 833.2 and 50.0MB
`Top <https://unidata.github.io/python-awips/examples/generated/Forecast_Model_Vertical_Sounding.html>`__
--------------
8 Skew-T/Log-P
--------------
Here we use our plot_skewT function to generate our skewT & hodograph
charts for the data we retreived so far. This is where the pressure,
temperature, dewpoint, and wind data is needed.
.. code:: ipython3
plot_skewT(model, p, t, d, u, v, w, timeRange[0])
.. image:: Forecast_Model_Vertical_Sounding_files/Forecast_Model_Vertical_Sounding_25_0.png
`Top <https://unidata.github.io/python-awips/examples/generated/Forecast_Model_Vertical_Sounding.html>`__
--------------
9 Model Sounding Comparison
---------------------------
Now that we know how to retreive and plot the data for one model, we can
run a loop to retreive data for various models and plot them for
comparison. In this example well also plot RAP13 and GFS20 data to
compare with NAM40.
This is also where our functions become so important, because we can
easily recall all that logic and keep this for-loop fairly simple.
.. code:: ipython3
models = ["RAP13", "GFS20", "NAM40"]
for modelName in models:
timeReq = DataAccessLayer.newDataRequest("grid")
timeReq.setLocationNames(modelName)
cycles = DataAccessLayer.getAvailableTimes(timeReq, True)
times = DataAccessLayer.getAvailableTimes(timeReq)
fr = DataAccessLayer.getForecastRun(cycles[-1], times)
print("Using " + modelName + " forecast time " + str(fr[0]))
tr = [fr[0]]
p,t,d,u,v = get_surface_data(modelName,point,tr)
p,t,d,u,v,w = get_levels_data(modelName,point,tr,p,t,d,u,v)
# Skew-T
plot_skewT(modelName,p,t,d,u,v,w,tr[0])
.. parsed-literal::
Using RAP13 forecast time 2023-07-25 19:00:00
Found surface record at 839.4MB
Using 32 levels between 839.4 and 100.0MB
.. image:: Forecast_Model_Vertical_Sounding_files/Forecast_Model_Vertical_Sounding_28_1.png
.. parsed-literal::
Using GFS20 forecast time 2023-07-25 12:00:00
Found surface record at 842.5MB
Using 32 levels between 842.5 and 100.0MB
.. image:: Forecast_Model_Vertical_Sounding_files/Forecast_Model_Vertical_Sounding_28_3.png
.. parsed-literal::
Using NAM40 forecast time 2023-07-25 18:00:00
Found surface record at 833.8MB
Using 32 levels between 833.8 and 50.0MB
.. image:: Forecast_Model_Vertical_Sounding_files/Forecast_Model_Vertical_Sounding_28_5.png
`Top <https://unidata.github.io/python-awips/examples/generated/Forecast_Model_Vertical_Sounding.html>`__
--------------
10 See Also
-----------
10.1 Related Notebooks
~~~~~~~~~~~~~~~~~~~~~~
- `Grid Levels and
Parameters <https://unidata.github.io/python-awips/examples/generated/Grid_Levels_and_Parameters.html>`__
- `Upper Air BUFR
Soundings <http://unidata.github.io/python-awips/examples/generated/Upper_Air_BUFR_Soundings.html>`__
- `Model Sounding
Data <http://unidata.github.io/python-awips/examples/generated/Model_Sounding_Data.html>`__
10.2 Additional Documentation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**python-awips:**
- `awips.DataAccessLayer <http://unidata.github.io/python-awips/api/DataAccessLayer.html>`__
- `awips.ModelSounding <https://unidata.github.io/python-awips/api/ModelSounding.html>`__
**matplotlib:**
- `matplotlib.pyplot <https://matplotlib.org/3.3.3/api/_as_gen/matplotlib.pyplot.html>`__
**MetPy**
- `metpy.wind_speed <https://unidata.github.io/MetPy/latest/api/generated/metpy.calc.wind_speed.html>`__
- `metpy.wind_direction <https://unidata.github.io/MetPy/latest/api/generated/metpy.calc.wind_direction.html>`__
- `metpy.vapor_pressure <https://unidata.github.io/MetPy/latest/api/generated/metpy.calc.vapor_pressure.html>`__
- `metpy.dewpoint <https://unidata.github.io/MetPy/latest/api/generated/metpy.calc.dewpoint.html>`__
- `metpy.skewt <https://unidata.github.io/MetPy/latest/api/generated/metpy.plots.SkewT.html>`__
- `metpy.hodograph <https://unidata.github.io/MetPy/latest/api/generated/metpy.plots.Hodograph.html>`__
`Top <https://unidata.github.io/python-awips/examples/generated/Forecast_Model_Vertical_Sounding.html>`__
--------------