python-awips/_sources/examples/generated/Precip_Accumulation_Region_of_Interest.rst.txt
2025-02-13 20:06:03 +00:00

478 lines
16 KiB
ReStructuredText
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

======================================
Precip Accumulation Region of Interest
======================================
`Notebook <http://nbviewer.ipython.org/github/Unidata/python-awips/blob/master/examples/notebooks/Precip_Accumulation_Region_of_Interest.ipynb>`_
Python-AWIPS Tutorial Notebook
--------------
Objectives
==========
- Access the model data from an EDEX server and limit the data returned
by using model specific parameters
- Calculate the total precipitation over several model runs
- Create a colorized plot for the continental US of the accumulated
precipitation data
- Calculate and identify area of highest of precipitation
- Use higher resolution data to draw region of interest
--------------
Table of Contents
-----------------
| `1
Imports <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.html#imports>`__\
| `2 Initial
Setup <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.html#initial-setup>`__\
|     `2.1 Geographic
Filter <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.html#geographic-filter>`__\
|     `2.2 EDEX
Connnection <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.html#edex-connection>`__\
|     `2.3 Refine the
Request <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.html#refine-the-request>`__\
|     `2.4 Get
Times <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.html#get-times>`__\
| `3 Function:
calculate_accumulated_precip() <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.html#function-calculate-accumulated-precip>`__\
| `4 Function:
make_map() <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.htmlt#function-make-map>`__\
| `5 Get the
Data! <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.html#get-the-data>`__\
| `6 Plot the
Data! <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.html#plot-the-data>`__\
|     `6.1 Create CONUS
Image <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.html#create-conus-image>`__\
|     `6.2 Create Region of Interest
Image <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.html#create-region-of-interest-image>`__\
| `7 High Resolution
ROI <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.html#high-resolution-roi>`__\
|     `7.1 New Data
Request <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.html#new-data-request>`__\
|     `7.2 Calculate
Data <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.html#calculate-data>`__\
|     `7.3 Plot
ROI <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.html#plot-roi>`__\
| `8 See
Also <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest#see-also>`__\
|     `8.1 Related
Notebooks <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.html#related-notebooks>`__\
|     `8.2 Additional
Documentation <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.html#additional-documentation>`__\
1 Imports
---------
The imports below are used throughout the notebook. Note the first
import is coming directly from python-awips and allows us to connect to
an EDEX server. The subsequent imports are for data manipulation and
visualization.
.. code:: ipython3
from awips.dataaccess import DataAccessLayer
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from metpy.units import units
import numpy as np
from shapely.geometry import Point, Polygon
`Top <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.html>`__
--------------
2 Initial Setup
---------------
2.1 Geographic Filter
~~~~~~~~~~~~~~~~~~~~~
By defining a bounding box for the Continental US (CONUS), were able to
optimize the data request sent to the EDEX server.
.. code:: ipython3
conus=[-125, -65, 25, 55]
conus_envelope = Polygon([(conus[0],conus[2]),(conus[0],conus[3]),
(conus[1],conus[3]),(conus[1],conus[2]),
(conus[0],conus[2])])
2.2 EDEX Connection
~~~~~~~~~~~~~~~~~~~
First we establish a connection to Unidatas public EDEX server. With
that connection made, we can create a `new data request
object <http://unidata.github.io/python-awips/api/IDataRequest.html>`__
and set the data type to **grid**, and use the geographic envelope we
just created.
.. code:: ipython3
DataAccessLayer.changeEDEXHost("edex-cloud.unidata.ucar.edu")
request = DataAccessLayer.newDataRequest("grid", envelope=conus_envelope)
2.3 Refine the Request
~~~~~~~~~~~~~~~~~~~~~~
Here we specify which model were interested in by setting the
*LocationNames*, and the specific data were interested in by setting
the *Levels* and *Parameters*.
.. code:: ipython3
request.setLocationNames("GFS1p0")
request.setLevels("0.0SFC")
request.setParameters("TP")
2.4 Get Times
~~~~~~~~~~~~~
We need to get the available times and cycles for our model data
.. code:: ipython3
cycles = DataAccessLayer.getAvailableTimes(request, True)
times = DataAccessLayer.getAvailableTimes(request)
fcstRun = DataAccessLayer.getForecastRun(cycles[-1], times)
`Top <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.html>`__
--------------
3 Function: calculate_accumulated_precip()
------------------------------------------
Since well want to calculate the accumulated precipitation of our data
more than once, it makes sense to create a function that we can call
instead of duplicating the logic.
This function cycles through all the grid data responses and adds up all
of the rainfall to produce a numpy array with the total ammount of
rainfall for the given data request. It also finds the maximum rainfall
point in x and y coordinates.
.. code:: ipython3
def calculate_accumulated_precip(dataRequest, forecastRun):
for i, tt in enumerate(forecastRun):
response = DataAccessLayer.getGridData(dataRequest, [tt])
grid = response[0]
if i>0:
data += grid.getRawData()
else:
data = grid.getRawData()
data[data <= -9999] = 0
print(data.min(), data.max(), grid.getDataTime().getFcstTime()/3600)
# Convert from mm to inches
result = (data * units.mm).to(units.inch)
ii,jj = np.where(result==result.max())
i=ii[0]
j=jj[0]
return result, i, j
`Top <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.html>`__
--------------
4 Fuction: make_map()
---------------------
This function creates the basics of the map were going to plot our data
on. It takes in a bounding box to determine the extent and then adds
coastlines for easy frame of reference.
.. code:: ipython3
def make_map(bbox, projection=ccrs.PlateCarree()):
fig, ax = plt.subplots(figsize=(20, 14),
subplot_kw=dict(projection=projection))
ax.set_extent(bbox)
ax.coastlines(resolution='50m')
return fig, ax
`Top <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.html>`__
--------------
5 Get the Data!
---------------
Access the data from the DataAccessLayer interface using the
*getGridData* function. Use that data to calculate the accumulated
rainfall, the maximum rainfall point, and the region of interest
bounding box.
.. code:: ipython3
## get the grid response from edex
response = DataAccessLayer.getGridData(request, [fcstRun[-1]])
## take the first result to get the location information from
grid = response[0]
## get the location coordinates and create a bounding box for our map
lons, lats = grid.getLatLonCoords()
bbox = [lons.min(), lons.max(), lats.min(), lats.max()]
fcstHr = int(grid.getDataTime().getFcstTime()/3600)
## calculate the total precipitation
tp_inch, i, j = calculate_accumulated_precip(request, fcstRun)
print(tp_inch.min(), tp_inch.max())
## use the max points coordinates to get the max point in lat/lon coords
maxPoint = Point(lons[i][j], lats[i][j])
inc = 3.5
## create a region of interest bounding box
roi_box=[maxPoint.x-inc, maxPoint.x+inc, maxPoint.y-inc, maxPoint.y+inc]
roi_polygon = Polygon([(roi_box[0],roi_box[2]),(roi_box[0],roi_box[3]),
(roi_box[1],roi_box[3]),(roi_box[1],roi_box[2]),(roi_box[0],roi_box[2])])
print(maxPoint)
.. parsed-literal::
0.0 10.0625 6.0
0.0 21.75 12.0
0.0 35.1875 18.0
0.0 43.5 24.0
0.0 45.5625 42.0
0.0 47.9375 48.0
0.0 52.0625 54.0
0.0 56.375 60.0
0.0 86.625 66.0
0.0 92.4375 72.0
0.0 94.375 78.0
0.0 95.375 84.0
0.0 98.3125 90.0
0.0 100.125 96.0
0.0 101.6875 102.0
0.0 104.0 108.0
0.0 107.1875 114.0
0.0 115.25 120.0
0.0 129.0 126.0
0.0 136.375 132.0
0.0 141.125 138.0
0.0 145.25 144.0
0.0 147.375 150.0
0.0 5.802169
POINT (-124 42)
`Top <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.html>`__
--------------
6 Plot the Data!
----------------
6.1 Create CONUS Image
~~~~~~~~~~~~~~~~~~~~~~
Plot our data on our CONUS map.
.. code:: ipython3
cmap = plt.get_cmap('rainbow')
fig, ax = make_map(bbox=bbox)
cs = ax.pcolormesh(lons, lats, tp_inch, cmap=cmap)
cbar = fig.colorbar(cs, shrink=0.7, orientation='horizontal')
cbar.set_label(grid.getLocationName() + " Total accumulated precipitation in inches, " \
+ str(fcstHr) + "-hr fcst valid " + str(grid.getDataTime().getRefTime()))
ax.scatter(maxPoint.x, maxPoint.y, s=300,
transform=ccrs.PlateCarree(),marker="+",facecolor='black')
ax.add_geometries([roi_polygon], ccrs.PlateCarree(), facecolor='none', edgecolor='white', linewidth=2)
.. parsed-literal::
<cartopy.mpl.feature_artist.FeatureArtist at 0x13eb32340>
.. image:: Precip_Accumulation_Region_of_Interest_files/Precip_Accumulation_Region_of_Interest_27_1.png
6.2 Create Region of Interest Image
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Now crop the data and zoom in on the region of interest (ROI) to create
a new plot.
.. code:: ipython3
# cmap = plt.get_cmap('rainbow')
fig, ax = make_map(bbox=roi_box)
cs = ax.pcolormesh(lons, lats, tp_inch, cmap=cmap)
cbar = fig.colorbar(cs, shrink=0.7, orientation='horizontal')
cbar.set_label(grid.getLocationName() + " Total accumulated precipitation in inches, " \
+ str(fcstHr) + "-hr fcst valid " + str(grid.getDataTime().getRefTime()))
ax.scatter(maxPoint.x, maxPoint.y, s=300,
transform=ccrs.PlateCarree(),marker="+",facecolor='black')
.. parsed-literal::
<matplotlib.collections.PathCollection at 0x13ed521c0>
.. image:: Precip_Accumulation_Region_of_Interest_files/Precip_Accumulation_Region_of_Interest_29_1.png
`Top <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.html>`__
--------------
7 High Resolution ROI
---------------------
7.1 New Data Request
~~~~~~~~~~~~~~~~~~~~
To see the region of interest more clearly, we can redo the process with
a higher resolution model (GFS20 vs. GFS1.0).
.. code:: ipython3
roiRequest = DataAccessLayer.newDataRequest("grid", envelope=conus_envelope)
roiRequest.setLocationNames("GFS20")
roiRequest.setLevels("0.0SFC")
roiRequest.setParameters("TP")
roiCycles = DataAccessLayer.getAvailableTimes(roiRequest, True)
roiTimes = DataAccessLayer.getAvailableTimes(roiRequest)
roiFcstRun = DataAccessLayer.getForecastRun(roiCycles[-1], roiTimes)
7.2 Calculate Data
~~~~~~~~~~~~~~~~~~
.. code:: ipython3
roiResponse = DataAccessLayer.getGridData(roiRequest, [roiFcstRun[-1]])
print(roiResponse)
roiGrid = roiResponse[0]
roiLons, roiLats = roiGrid.getLatLonCoords()
roi_data, i, j = calculate_accumulated_precip(roiRequest, roiFcstRun)
roiFcstHr = int(roiGrid.getDataTime().getFcstTime()/3600)
.. parsed-literal::
[<awips.dataaccess.PyGridData.PyGridData object at 0x13ecb4eb0>]
0.0 22.5625 3.0
0.0 35.375 6.0
0.0 38.375 9.0
0.0 38.375 12.0
0.0 41.375 15.0
0.0 48.625 18.0
0.0 73.0625 30.0
0.0 94.9375 33.0
0.0 96.125 36.0
0.0 97.0 39.0
0.0 99.375 45.0
0.0 100.0625 48.0
0.0 100.25 51.0
0.0 100.4375 57.0
0.0 100.4375 63.0
0.0 118.25 66.0
0.0 127.625 69.0
0.0 131.125 75.0
0.0 131.375 78.0
0.0 131.5 81.0
0.0 131.875 84.0
0.0 132.875 90.0
0.0 133.375 96.0
0.0 139.1875 102.0
0.0 141.625 120.0
0.0 141.75 126.0
0.0 142.1875 132.0
0.0 143.375 138.0
0.0 148.6875 144.0
0.0 156.25 150.0
7.3 Plot ROI
~~~~~~~~~~~~
.. code:: ipython3
# cmap = plt.get_cmap('rainbow')
fig, ax = make_map(bbox=roi_box)
cs = ax.pcolormesh(roiLons, roiLats, roi_data, cmap=cmap)
cbar = fig.colorbar(cs, shrink=0.7, orientation='horizontal')
cbar.set_label(roiGrid.getLocationName() + " Total accumulated precipitation in inches, " \
+ str(roiFcstHr) + "-hr fcst valid " + str(roiGrid.getDataTime().getRefTime()))
ax.scatter(maxPoint.x, maxPoint.y, s=300,
transform=ccrs.PlateCarree(),marker="+",facecolor='black')
.. parsed-literal::
/Users/scarter/opt/miniconda3/envs/python3-awips/lib/python3.9/site-packages/cartopy/mpl/geoaxes.py:1702: UserWarning: The input coordinates to pcolormesh are interpreted as cell centers, but are not monotonically increasing or decreasing. This may lead to incorrectly calculated cell edges, in which case, please supply explicit cell edges to pcolormesh.
X, Y, C, shading = self._pcolorargs('pcolormesh', *args,
.. parsed-literal::
<matplotlib.collections.PathCollection at 0x13edc39a0>
.. image:: Precip_Accumulation_Region_of_Interest_files/Precip_Accumulation_Region_of_Interest_37_2.png
`Top <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.html>`__
--------------
8 See Also
----------
8.1 Related Notebooks
~~~~~~~~~~~~~~~~~~~~~
- `Colorized Grid
Data <https://unidata.github.io/python-awips/examples/generated/Colorized_Grid_Data.html>`__
- `Grid Levels and
Parameters <https://unidata.github.io/python-awips/examples/generated/Grid_Levels_and_Parameters.html>`__
8.2 Additional Documentation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**python-awips:**
- `awips.DataAccessLayer <http://unidata.github.io/python-awips/api/DataAccessLayer.html>`__
- `awips.PyGridData <http://unidata.github.io/python-awips/api/PyGridData.html>`__
**matplotlib:**
- `matplotlib.pyplot <https://matplotlib.org/3.3.3/api/_as_gen/matplotlib.pyplot.html>`__
- `matplotlib.pyplot.subplot <https://matplotlib.org/3.3.3/api/_as_gen/matplotlib.pyplot.subplot.html>`__
- `matplotlib.pyplot.pcolormesh <https://matplotlib.org/3.3.3/api/_as_gen/matplotlib.pyplot.pcolormesh.html>`__
`Top <https://unidata.github.io/python-awips/examples/generated/Precip_Accumulation_Region_of_Interest.html>`__
--------------