=========================== Surface Obs Plot with MetPy =========================== `Notebook `_ Based on the MetPy example `"Station Plot with Layout" `_ .. code:: python import matplotlib.pyplot as plt import numpy as np from metpy.calc import get_wind_components from metpy.cbook import get_test_data from metpy.plots import StationPlot, StationPlotLayout, simple_layout from metpy.units import units # Initialize data,latitude,longitude,stationName,temperature,dewpoint,seaLevelPress,windDir,windSpeed = [],[],[],[],[],[],[],[],[] request = DataAccessLayer.newDataRequest() request.setDatatype("obs") # # we need to set one station to query latest time. this is hack-y and should be fixed # because when you DON'T set a location name, you tend to get a single observation # that came in a second ago, so your "latest data for the last time for all stations" # data array consists of one village in Peru and time-matching is suspect right now. # # So here take a known US station (OKC) and hope/assume that a lot of other stations # are also reporting (and that this is a 00/20/40 ob). # request.setLocationNames("KOKC") datatimes = DataAccessLayer.getAvailableTimes(request) # Get most recent time for location time = datatimes[-1].validPeriod # "presWeather","skyCover","skyLayerBase" # are multi-dimensional(??) and returned seperately (not sure why yet)... deal with those later request.setParameters("presWeather","skyCover", "skyLayerBase","stationName","temperature","dewpoint","windDir","windSpeed", "seaLevelPress","longitude","latitude") request.setLocationNames() response = DataAccessLayer.getGeometryData(request,times=time) print time PRES_PARAMS = set(["presWeather"]) SKY_PARAMS = set(["skyCover", "skyLayerBase"]) # Build ordered arrays wx,cvr,bas=[],[],[] for ob in response: #print ob.getParameters() if set(ob.getParameters()) & PRES_PARAMS : wx.append(ob.getString("presWeather")) continue if set(ob.getParameters()) & SKY_PARAMS : cvr.append(ob.getString("skyCover")) bas.append(ob.getNumber("skyLayerBase")) continue latitude.append(float(ob.getString("latitude"))) longitude.append(float(ob.getString("longitude"))) #stationName.append(ob.getString("stationName")) temperature.append(float(ob.getString("temperature"))) dewpoint.append(float(ob.getString("dewpoint"))) seaLevelPress.append(float(ob.getString("seaLevelPress"))) windDir.append(float(ob.getString("windDir"))) windSpeed.append(float(ob.getString("windSpeed"))) print len(wx) print len(temperature) # Convert data = dict() data['latitude'] = np.array(latitude) data['longitude'] = np.array(longitude) data['air_temperature'] = np.array(temperature)* units.degC data['dew_point_temperature'] = np.array(dewpoint)* units.degC #data['air_pressure_at_sea_level'] = np.array(seaLevelPress)* units('mbar') u, v = get_wind_components(np.array(windSpeed) * units('knots'), np.array(windDir) * units.degree) data['eastward_wind'], data['northward_wind'] = u, v # Convert the fraction value into a code of 0-8, which can be used to pull out # the appropriate symbol #data['cloud_coverage'] = (8 * data_arr['cloud_fraction']).astype(int) # Map weather strings to WMO codes, which we can use to convert to symbols # Only use the first symbol if there are multiple #wx_text = make_string_list(data_arr['weather']) #wx_codes = {'':0, 'HZ':5, 'BR':10, '-DZ':51, 'DZ':53, '+DZ':55, # '-RA':61, 'RA':63, '+RA':65, '-SN':71, 'SN':73, '+SN':75} #data['present_weather'] = [wx_codes[s.split()[0] if ' ' in s else s] for s in wx] # Set up the map projection import cartopy.crs as ccrs import cartopy.feature as feat from matplotlib import rcParams rcParams['savefig.dpi'] = 255 proj = ccrs.LambertConformal(central_longitude=-95, central_latitude=35, standard_parallels=[35]) state_boundaries = feat.NaturalEarthFeature(category='cultural', name='admin_1_states_provinces_lines', scale='110m', facecolor='none') # Create the figure fig = plt.figure(figsize=(20, 10)) ax = fig.add_subplot(1, 1, 1, projection=proj) # Add map elements ax.add_feature(feat.LAND, zorder=-1) ax.add_feature(feat.OCEAN, zorder=-1) ax.add_feature(feat.LAKES, zorder=-1) ax.coastlines(resolution='110m', zorder=2, color='black') ax.add_feature(state_boundaries) ax.add_feature(feat.BORDERS, linewidth='2', edgecolor='black') ax.set_extent((-118, -73, 23, 50)) # Start the station plot by specifying the axes to draw on, as well as the # lon/lat of the stations (with transform). We also the fontsize to 12 pt. stationplot = StationPlot(ax, data['longitude'], data['latitude'], transform=ccrs.PlateCarree(), fontsize=12) # The layout knows where everything should go, and things are standardized using # the names of variables. So the layout pulls arrays out of `data` and plots them # using `stationplot`. simple_layout.plot(stationplot, data) .. parsed-literal:: (Mar 15 16 22:52:00 , Mar 15 16 22:52:00 ) 430 86 .. image:: Surface_Obs_Plot_with_MetPy_files/Surface_Obs_Plot_with_MetPy_1_1.png