GOES Geostationary Lightning Mapper
Notebook The Geostationary Lightning Mapper, or GLM, on board GOES-R Series spacecraft, is the first operational lightning mapper flown in geostationary orbit. GLM detects the light emitted by lightning at the tops of clouds day and night and collects information such as the frequency, location and extent of lightning discharges. The instrument measures total lightning, both in-cloud and cloud-to-ground, to aid in forecasting developing severe storms and a wide range of high-impact environmental phenomena including hailstorms, microburst winds, tornadoes, hurricanes, flash floods, snowstorms and fires.
AWIPS GLM point data are available in three formats
GLMev
EventsGLMfl
FlashesGLMgr
Groups
and with seven attributes:
height
intensity
msgType
pulseCount
pulseIndex
sensorCount
strikeType
GLM Sources and Parameters
from awips.dataaccess import DataAccessLayer
import cartopy.crs as ccrs
import cartopy.feature as cfeat
import matplotlib.pyplot as plt
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
import numpy as np
import datetime
%matplotlib inline
# Create an EDEX data request
edexServer = "edex-cloud.unidata.ucar.edu"
datatype = "binlightning"
DataAccessLayer.changeEDEXHost(edexServer)
request = DataAccessLayer.newDataRequest(datatype)
# Show available sources
sources = DataAccessLayer.getIdentifierValues(request, "source")
print("available sources:")
print(list(sources))
print("")
availableParms = DataAccessLayer.getAvailableParameters(request)
availableParms.sort()
print("available parameters:")
print(list(availableParms))
available sources:
['GLMgr', 'GLMfl', 'GLMev']
available parameters:
['height', 'intensity', 'msgType', 'pulseCount', 'pulseIndex', 'sensorCount', 'strikeType']
request.addIdentifier("source", "GLMgr")
request.setParameters("intensity")
times = DataAccessLayer.getAvailableTimes(request)
response = DataAccessLayer.getGeometryData(request, [times[-1]])
glm_points = []
for data in response:
glm_points.append(data.getGeometry())
ob = response[0]
# Plot markers
fig, ax = plt.subplots(figsize=(16,16),subplot_kw=dict(projection=ccrs.Orthographic(central_longitude=-90.0)))
ax.coastlines(resolution='50m')
ax.gridlines()
ax.scatter([point.x for point in glm_points],
[point.y for point in glm_points],
transform=ccrs.PlateCarree(),marker="+",facecolor='red')
ax.set_title(str(response[-1].getDataTime().getRefTime()) + " | " + ob.getAttribute('source') + " | " + edexServer)
Text(0.5,1,'Oct 15 18 22:15:07 GMT | GLMgr | edex-cloud.unidata.ucar.edu')
