mirror of
https://github.com/Unidata/python-awips.git
synced 2025-02-23 14:57:56 -05:00
commit
c434243dcb
3 changed files with 37 additions and 110 deletions
2
.github/workflows/sphinx_build_deploy.yml
vendored
2
.github/workflows/sphinx_build_deploy.yml
vendored
|
@ -3,7 +3,7 @@ name: Publish Sphinx Built Webpages to Github Pages
|
|||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
- main
|
||||
paths:
|
||||
- 'docs/**'
|
||||
- 'examples/**'
|
||||
|
|
|
@ -2,24 +2,48 @@
|
|||
Python AWIPS Data Access Framework
|
||||
==================================
|
||||
|
||||
The python-awips package provides a data access framework for requesting meteorological and geometry datasets from an `EDEX <http://unidata.github.io/awips2/#edex>`_ server.
|
||||
The python-awips package provides a data access framework for requesting meteorological and geographic datasets from an `EDEX <http://unidata.github.io/awips2/#edex>`_ server.
|
||||
|
||||
`AWIPS <http://unidata.github.io/awips2>`_ is a weather display and analysis package developed by the National Weather Service for operational forecasting. UCAR's `Unidata Program Center <http://www.unidata.ucar.edu/software/awips2/>`_ supports a non-operational open-source release of the AWIPS software (`EDEX <http://unidata.github.io/awips2/#edex>`_, `CAVE <http://unidata.github.io/awips2/#cave>`_, and `python-awips <https://github.com/Unidata/python-awips>`_).
|
||||
|
||||
.. _Jupyter Notebook: http://nbviewer.jupyter.org/github/Unidata/python-awips/tree/master/examples/notebooks
|
||||
|
||||
|
||||
Pre-requisite Software
|
||||
----------------------
|
||||
|
||||
In order to effictively use python-awips you'll need to have these installed already:
|
||||
- python3
|
||||
- conda
|
||||
- git *(for the source code and examples installation)*
|
||||
|
||||
Package-Only Install
|
||||
--------------------
|
||||
|
||||
If you already work with Python, you might just be interested in how to install the python-awips pacakge.
|
||||
The package can be installed with either of the two well known package managers: **pip** and **conda**.
|
||||
|
||||
Pip Install
|
||||
-----------
|
||||
~~~~~~~~~~~
|
||||
|
||||
::
|
||||
|
||||
pip install python-awips
|
||||
|
||||
|
||||
Conda Environment Install
|
||||
-------------------------
|
||||
Conda Install
|
||||
~~~~~~~~~~~~~
|
||||
|
||||
To install the latest version of python-awips, with all required and optional packages:
|
||||
::
|
||||
|
||||
conda install -c conda-forge python-awips
|
||||
|
||||
|
||||
|
||||
Source Code with Examples Install
|
||||
---------------------------------
|
||||
|
||||
Below are instructions on how to install the source code of python-awips, with all included example notebooks. This will create a new conda environment called ``python3-awips`` and start up a browser for the jupyter notebook examples.
|
||||
|
||||
::
|
||||
|
||||
|
@ -33,113 +57,16 @@ To install the latest version of python-awips, with all required and optional pa
|
|||
**If you are experiencing issues, and have previously setup the conda environment, you may need to run:**
|
||||
::
|
||||
conda update --all
|
||||
|
||||
|
||||
Questions -- Contact Us!
|
||||
------------------------
|
||||
|
||||
|
||||
Requirements
|
||||
------------
|
||||
|
||||
These are specified in the environment.yml file that is used to create the 'python3-awips' conda environment:
|
||||
|
||||
- python 3
|
||||
- numpy
|
||||
- nomkl
|
||||
- matplotlib
|
||||
- cartopy
|
||||
- jupyter
|
||||
- netcdf4
|
||||
- owslib
|
||||
- metpy
|
||||
- pint
|
||||
- h5py
|
||||
- nbconvert 4.1+
|
||||
- siphon
|
||||
- xarray
|
||||
- ffmpeg
|
||||
- pytest
|
||||
- shapely
|
||||
- six
|
||||
- pip
|
||||
|
||||
|
||||
Quick Example
|
||||
~~~~~~~~~~~~~
|
||||
|
||||
::
|
||||
|
||||
from awips.dataaccess import DataAccessLayer
|
||||
DataAccessLayer.changeEDEXHost("edex-cloud.unidata.ucar.edu")
|
||||
dataTypes = DataAccessLayer.getSupportedDatatypes()
|
||||
list(dataTypes)
|
||||
|
||||
['acars',
|
||||
'binlightning',
|
||||
'bufrmosavn',
|
||||
'bufrmoseta',
|
||||
'bufrmosgfs',
|
||||
'bufrmoshpc',
|
||||
'bufrmoslamp',
|
||||
'bufrmosmrf',
|
||||
'bufrua',
|
||||
'climate',
|
||||
'common_obs_spatial',
|
||||
'gfe',
|
||||
'gfeeditarea',
|
||||
'grid',
|
||||
'maps',
|
||||
'modelsounding',
|
||||
'obs',
|
||||
'practicewarning',
|
||||
'profiler',
|
||||
'radar',
|
||||
'radar_spatial',
|
||||
'satellite',
|
||||
'sfcobs',
|
||||
'topo',
|
||||
'warning']
|
||||
|
||||
|
||||
request = DataAccessLayer.newDataRequest()
|
||||
request.setDatatype("satellite")
|
||||
availableSectors = DataAccessLayer.getAvailableLocationNames(request)
|
||||
availableSectors.sort()
|
||||
for sector in availableSectors:
|
||||
print sector
|
||||
request.setLocationNames(sector)
|
||||
availableProducts = DataAccessLayer.getAvailableParameters(request)
|
||||
availableProducts.sort()
|
||||
for product in availableProducts:
|
||||
print " - " + product
|
||||
|
||||
ECONUS
|
||||
- ACTP
|
||||
- ADP
|
||||
- AOD
|
||||
- CAPE
|
||||
- CH-01-0.47um
|
||||
- CH-02-0.64um
|
||||
- CH-03-0.87um
|
||||
- CH-04-1.38um
|
||||
...
|
||||
EFD
|
||||
- ACTP
|
||||
- ADP
|
||||
- AOD
|
||||
- CAPE
|
||||
- CH-01-0.47um
|
||||
- CH-02-0.64um
|
||||
- CH-03-0.87um
|
||||
- CH-04-1.38um
|
||||
...
|
||||
|
||||
|
||||
See the `API Documentation <api/DataAccessLayer.html>`_ for more information.
|
||||
|
||||
----------------------
|
||||
Read The Docs Contents
|
||||
----------------------
|
||||
Please feel free to reach out to us at our support email at **support-awips@unidata.ucar.edu**
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
:hidden:
|
||||
|
||||
api/index
|
||||
datatypes
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This example covers the callable methods of the Python AWIPS DAF when working with gridded data. We start with a connection to an EDEX server, then query data types, then grid names, parameters, levels, and other information. Finally the gridded data is plotted for its domain using Matplotlib and Cartopy."
|
||||
"This example covers the callable methods of python-awips when working with gridded data. We start with a connection to an EDEX server, then query data types, then grid names, parameters, levels, and other information. Finally the gridded data is plotted for its domain using Matplotlib and Cartopy."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
|
Loading…
Add table
Reference in a new issue