diff --git a/_images/GOES_Geostationary_Lightning_Mapper_3_1.png b/_images/GOES_Geostationary_Lightning_Mapper_3_1.png
deleted file mode 100644
index 0ba95b8..0000000
Binary files a/_images/GOES_Geostationary_Lightning_Mapper_3_1.png and /dev/null differ
diff --git a/_sources/examples/generated/GOES_Geostationary_Lightning_Mapper.rst.txt b/_sources/examples/generated/GOES_Geostationary_Lightning_Mapper.rst.txt
deleted file mode 100644
index 3673826..0000000
--- a/_sources/examples/generated/GOES_Geostationary_Lightning_Mapper.rst.txt
+++ /dev/null
@@ -1,106 +0,0 @@
-===================================
-GOES Geostationary Lightning Mapper
-===================================
-`Notebook `_
-The Geostationary Lightning Mapper, or GLM, on board GOES-R Series
-spacecraft, is the first operational lightning mapper flown in
-geostationary orbit. GLM detects the light emitted by lightning at the
-tops of clouds day and night and collects information such as the
-frequency, location and extent of lightning discharges. The instrument
-measures total lightning, both in-cloud and cloud-to-ground, to aid in
-forecasting developing severe storms and a wide range of high-impact
-environmental phenomena including hailstorms, microburst winds,
-tornadoes, hurricanes, flash floods, snowstorms and fires.
-
-AWIPS GLM point data are available in three formats
-
-- ``GLMev`` Events
-- ``GLMfl`` Flashes
-- ``GLMgr`` Groups
-
-and with seven attributes:
-
-- height
-- intensity
-- msgType
-- pulseCount
-- pulseIndex
-- sensorCount
-- strikeType
-
-GLM Sources and Parameters
---------------------------
-
-.. code:: ipython3
-
- from awips.dataaccess import DataAccessLayer
- import cartopy.crs as ccrs
- import cartopy.feature as cfeat
- import matplotlib.pyplot as plt
- from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
- import numpy as np
- import datetime
-
- %matplotlib inline
-
- # Create an EDEX data request
- edexServer = "edex-cloud.unidata.ucar.edu"
- datatype = "binlightning"
- DataAccessLayer.changeEDEXHost(edexServer)
- request = DataAccessLayer.newDataRequest(datatype)
-
- # Show available sources
- sources = DataAccessLayer.getIdentifierValues(request, "source")
- print("available sources:")
- print(list(sources))
- print("")
- availableParms = DataAccessLayer.getAvailableParameters(request)
- availableParms.sort()
- print("available parameters:")
- print(list(availableParms))
-
-
-.. parsed-literal::
-
- available sources:
- ['GLMgr', 'GLMfl', 'GLMev']
-
- available parameters:
- ['height', 'intensity', 'msgType', 'pulseCount', 'pulseIndex', 'sensorCount', 'strikeType']
-
-
-.. code:: ipython3
-
- request.addIdentifier("source", "GLMgr")
- request.setParameters("intensity")
- times = DataAccessLayer.getAvailableTimes(request)
- response = DataAccessLayer.getGeometryData(request, [times[-1]])
- glm_points = []
- for data in response:
- glm_points.append(data.getGeometry())
- ob = response[0]
-
-.. code:: ipython3
-
- # Plot markers
- fig, ax = plt.subplots(figsize=(16,16),subplot_kw=dict(projection=ccrs.Orthographic(central_longitude=-90.0)))
- ax.coastlines(resolution='50m')
- ax.gridlines()
- ax.scatter([point.x for point in glm_points],
- [point.y for point in glm_points],
- transform=ccrs.PlateCarree(),marker="+",facecolor='red')
- ax.set_title(str(response[-1].getDataTime().getRefTime()) + " | " + ob.getAttribute('source') + " | " + edexServer)
-
-
-
-
-
-.. parsed-literal::
-
- Text(0.5,1,'Oct 15 18 22:15:07 GMT | GLMgr | edex-cloud.unidata.ucar.edu')
-
-
-
-
-.. image:: GOES_Geostationary_Lightning_Mapper_files/GOES_Geostationary_Lightning_Mapper_3_1.png
-
diff --git a/examples/generated/Colored_Surface_Temperature_Plot.html b/examples/generated/Colored_Surface_Temperature_Plot.html
index 3eb3a02..eac3c57 100644
--- a/examples/generated/Colored_Surface_Temperature_Plot.html
+++ b/examples/generated/Colored_Surface_Temperature_Plot.html
@@ -65,7 +65,6 @@
Colorized Grid Data
Forecast Model Vertical Sounding
GOES CIRA Product Writer
-GOES Geostationary Lightning Mapper
Grid Levels and Parameters
METAR Station Plot with MetPy
Map Resources and Topography
diff --git a/examples/generated/Colorized_Grid_Data.html b/examples/generated/Colorized_Grid_Data.html
index ff4cea7..9d9f77c 100644
--- a/examples/generated/Colorized_Grid_Data.html
+++ b/examples/generated/Colorized_Grid_Data.html
@@ -64,7 +64,6 @@
Forecast Model Vertical Sounding
GOES CIRA Product Writer
-GOES Geostationary Lightning Mapper
Grid Levels and Parameters
METAR Station Plot with MetPy
Map Resources and Topography
diff --git a/examples/generated/Forecast_Model_Vertical_Sounding.html b/examples/generated/Forecast_Model_Vertical_Sounding.html
index 008ca62..6ef5647 100644
--- a/examples/generated/Forecast_Model_Vertical_Sounding.html
+++ b/examples/generated/Forecast_Model_Vertical_Sounding.html
@@ -56,7 +56,6 @@
GOES CIRA Product Writer
-GOES Geostationary Lightning Mapper
Grid Levels and Parameters
METAR Station Plot with MetPy
Map Resources and Topography
diff --git a/examples/generated/GOES_CIRA_Product_Writer.html b/examples/generated/GOES_CIRA_Product_Writer.html
index d077bc1..84163f7 100644
--- a/examples/generated/GOES_CIRA_Product_Writer.html
+++ b/examples/generated/GOES_CIRA_Product_Writer.html
@@ -18,7 +18,7 @@
-
+
@@ -64,7 +64,6 @@
-GOES Geostationary Lightning Mapper
Grid Levels and Parameters
METAR Station Plot with MetPy
Map Resources and Topography
@@ -523,7 +522,7 @@ Imagery