diff --git a/examples/Grid Display.ipynb b/examples/Grid Display.ipynb index 493176f..0e3aa65 100644 --- a/examples/Grid Display.ipynb +++ b/examples/Grid Display.ipynb @@ -367,47 +367,16 @@ }, { "cell_type": "code", - "execution_count": 121, + "execution_count": 123, "metadata": { "collapsed": false }, "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxMAAAIjCAYAAAB4V0ZJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8FGX+B/DP7G56I5RQQuhFaQKCoKinhwX7Wc5yZwFF\n1POwcJ7lbKiAAirFQu+IIASk914ChCRAQgKBQOqm9022z/P7g/KjBLK7M7vPzOT7fr18Hdmdnfk8\nt5nsfnef5zsCYwyEEEIIIYQQ4i4d7wCEEEIIIYQQdaJighBCCCGEEOIRKiYIIYQQQgghHqFighBC\nCCGEEOIRKiYIIYQQQgghHqFighBCCCGEEIURBGGQIAihF/79tSAI9/HOVBeBWsMSQgghhBCiLIIg\nMABVjLEIQRDyALRijAm8c12NvpkghBBCCCFEed4EEC4Igh+AewFAEIQufCNdi76ZIIQQQgghRIEu\nfDvxK2Ps7Qv/LmCMteSd63L0zQQhDYAgCHMEQSgUBOH4ZbdFCoKwRRCEY4IgbBIEIeKy+6YIgnBC\nEIQEQRD68ElNCCGENHh7Afzrwr/fB9BCEAQ9xzzXoGKCkIZhHoAHr7rtKwAbGGO3ANgE4GsAEATh\nKQBtGGPdAQy/8FhCCCGE+N6TACAIwl8ATLlw2wR+ca5FxQQhDQBjbB+A8qtufgTAogv/Xgzg4ctu\nX3zhcUkA9IIgRPsiJyGEEEL+H2Os9MI/d7HzaxOOABjFMdI1qJggpOFqevGPFGOsBEDUhdtbA8i5\nbLu8C7cRQgghxPceBwBBEMIAPHrh37dzTXQZKiYIIYQQQghRKMbY2gv/XMwYK7zw7wOuPl4QBD9B\nEHoIgvCCIAjjBEFYIwjCOUEQWB3/fe9uPoO7DyCEaEaxIAhNGGOlgiA0BVB04fZcADEADl/4ufWF\n265xobMEIYQQQrzv8ctfd730GvwfAB+48wAqJghpOIQL/120AcBLACZf+N+Nl93+TwCxgiD0BeBk\njOVdb6dKai9dWVmJzp07o7i4GD16PIyRI9fzjuSWSmcBRhffjG+jshEghEIQBKxdOxqPPTaadzSP\nMcZoHDIRrDUY+n4j6E3V0AUGerSPi+erIAgYPXo0Ro8eLWNC37r4nNA4lEFr4wCgqLGYzWYEBwfX\nu110dDR69uyJnj17okePHujVqxdWrFiBMWPGuHSci2N3B01zIqQBEARhCc5/JdpFEIRsQRCGAfgS\nwCMX2sU+BOALAGCMxQIwCoJwAsBsAEP5pHZfdnY2XnnlFQBAWto2VFbmc07knjjzfPQJfBo6hwFb\ntkzkHUcW69d/wzuCLLZtmwSLpZprhsCsBFQ3a+5xIQEAGzduREJCgoyp+DAajZg9ezbvGJKJoujy\nmzylGzNmDJxOJ+8Yks2ZMwd5edf9/IyboKAgJCcnY/369cjKyoIoimCMXfNfbm4uNm7ciOeffx6R\nkZHo3bs3DAbvfndA30wQ0gAwxv5xnbvuv872//ZiHK/p0aMHxo8fj+TkZGzevBm///5vvPlmLO9Y\nLhGZiH21s/FaoyXw9w/C/fe79S2zYj388Ge8I8hi8OD3oNPx/fwtNOsIzO07SNrHkCFDuI9DDq1a\ntcJrr73GO4ZkOp0On376Ke8Ysvj000818bv16quvKnYcPXr0QI8ePVzatk+fPujTxzeXiVLm/1uE\nEOIBQRCg0+kwY8YM+Pn5ISlpJZKTN/CO5ZJTtp0IEELQzq8/AFx6MevS5R6OqaSjccgn0pgMdL9J\n0j4uf5N0zz33SEzE18Wx0DiUQWvjANQ9FkEQLk1Z8vY4qJgghKieyWTCwYMHL/3ctm1bjBs3DgCw\nePEIWK01vKK5bF/tLAwKGo6TJ7dfcXvXrvfwCSRRWtq2K35W6zjOnj14xfQmnuNoXnIKhlt6efTY\nvLw8pKWlXXGbGt8oORwO7Nq164rb1DgOANi27cpzRK3j2LFjxxXTm9Q6jpSUFBQUFFxxmxrHUlVV\nhcOHD19xGxUThBBSj6KiIsTExFxx23vvvYcePXqgoiIPq1d/zimZa0xiCU5YN6GP4WkEBTXiHUcW\nBkMA7wiycDrtCAgI5R0DANCs+BwCb73Vo8fWdY6oUVlZGVq2bMk7hmSiKCJQwtoXJfHz84Ner+cd\nQ7Kqqio0a9aMdwzJCgsLfX6uC0rqxEIIURdBEJiS/4bEx8dj4MCBYEzAp58eQUxMb96R6rTV9CNy\nHccwrNEC3lGIUpmrMeyDJuc7OQVoo1AjhCiPIAhgjLnV0om+mSCEqJrdbr/uff3798dbb70FxpxY\nsGAYRFF5nUYYY9hbOxN3BAzjHUUWTuf1nw81Udo4grMOoyqqhduFhCiKmuiwA9z4XFcTGoeyOBwO\nRbU4l4LXc0LFBCFEtY4fP4716298LYlx48ahefPmyMk5il27fvVRMtedse+D4AAy98TzjiKLTZu+\n4x1BFjt3/sy9FezlQrMSYenQ0e3Hbdy4EceOHfNCIt8yGo1YuHAh7xiSiaKI8ePH844hiwkTJmii\nUF2wYAGMRiPvGJIlJCRgy5YtXI5N05wIIR5T+jSni/788088+eST8PcPwddfn0JkZDTvSJfMq3gZ\nMYY+uC/0fd5RiIJ1nf8KOt0SjOhp03hHIYRoGE1zIoSQOvztb3/DI488AputBkuW/It3nEtqxHIc\ns6zBwOCXeEchCte8+CQMvTzr5EQIId5ExQQhRHXKy8uxe/dutx4zbdo0BAcH4/jxNTh2bI2Xkrnn\nYO0iRGf0QqiuKe8okh09upp3BFmcPLlDUdObLooqOYegfv1c3v7s2bNITk72YiLfsFqt2LRpE+8Y\nsli9WhvnyNq1azUxvSk+Pl4T05tKS0uxb98+rhmomCCEqE51dTW6devm1mNiYmIwduxYAMDixW9w\nf8PIGMO+qpm4I3oo1xxyiYxszTuCLIKCIhAYGMY7xhWE2kqEmSoQesstLj/GbDajc+fOXkzlG9XV\n1bjpJmkX6lMCURTRpk0b3jFk0apVK020gtXr9ZpoM1xdXY2bb76ZawZaM0EI8Zha1kxc5HQ60bdv\nXxw/fhz33jsSzz8/lVuWc7ZDmFvxIr5qdgo6gT7XIdcXnLoVQ1a8jqa5mbyjEEI0jtZMEEI0r6bG\n86tZ6/V6zJs3DzqdDrt2/YKsrAQZk7lnV8UvGBQ8XPWFhBquLu4Km61Wse0hw7ITYenoWicnh8MB\ni8Xi5US+IeVcVxIah7JYLBZNTNNijCnmOVH3qxghpEE5fvw49uzZI2kfffv2xciRI8GYiAULhsHp\ndMiUznWVlkIkHFiBO4KG+vzYctu16xfeEWSxf/88xRZGjfOToevp2jSGrVu3Ij093cuJvM9oNGLl\nypW8Y0gmiiJ+/VV5Lak9MW3aNIiiyDuGZH/88QeKi4t5x5AsKSkJBw4c4B0DAE1zIoRIoLZpTheZ\nTCZ07doVRqMRzzzzI+6/37dtWffUzECqbQvejIz16XGJOt0zoT8iPnwdzUeM4B2FEKJxNM2JEEJc\nEBoaihkzZgAAVq/+FGVl2T49/l7zLNwVTG8MiWuiis8huH9/3jEIIaROVEwQQhSvqKgI27Ztk3Wf\njz76KJ544gnY7WYsXvymT+bLi6KITQe/Q41Ygpv97/f68bzp8OHfeUeQxbFja2GxmHjHuC5dTRlC\naqsR2rPnDbdLTU3F0aNHfZTKe2pqajTTQvX337VxjixbtkwT05t2796NvLw83jEky8/Px86dO3nH\nuAIVE4QQxRNFEf3c6LHvql9//RUhISE4cWIjkpJWyb7/qzmdduQ2T8agoNdUv/C6TZs+vCPIonnz\nzggMDOUd47oCzx1CRctoCAbDDbcLCAhA9+7dfZTKe+x2OwYMGMA7hmSiKOLWW2/lHUMWt9xyC3Q6\ndf+9AoDmzZujVatWvGNIxhhT3O8WrZkghHhMrWsmLvfzzz9j5MiRCAtrjm++SUdQULjXjmUVa/Bx\nUQy+aJaMSH20145DtKPFhnHoW7UTrXds5R2FENIA0JoJQoimMMZQUlLi1WO89dZb6Nu3L6qrC7Fy\n5cdeO47JVIIjlmXo5H+nqgsJk8m7z4ev1NSUc+nk5a7GBSnQ9bh+JyebzYbKykofJvIeb5/rvqKl\ncaj9wyLg/EXdtNAumTGG0tJS3jHqRMUEIUSxUlJSkJKS4tVj/P+1J/TYs2c6zp07LPsxbDYzjh79\nE3trZ+HO4Ndl378vaWWtRFJSLJxOO+8Y9WpefAqGG1z5eteuXSgoKPBhIu8wGo3YvXs37xiSiaKI\nZcuW8Y4hi2XLlmmimFi3bh1MJuWui3LV0aNHcfLkSd4x6kTTnAghHtPCNKeLPvjgA/zwww9o2bIb\nPv/8KPR6P1n3n2dPwdSyIRgXlQm9cOP574Rc9NwHjaHfv7veBdiEECIHmuZECCEe+uqrr9C6dWvk\n56di27ZJsu9/X+0sDAp+lQoJ4jJdVRGCLLUI6daNdxRCCLkuKiYIIYqTm5uLjRs3+vSYISEhmDlz\nJgBg7dovUVKSKXmfTqcDBw7Mh42Zccj8GwYFvSZ5n7zs2zebdwRZxMcvhcVSzTuGS4IzD6OyVWsI\nev019yUmJiIhIYFDKnlVVlbijz/+4B1DMsYYZs/Wxjkyd+5cOJ1O3jEk27hxoyZawWZlZWHLli28\nY9wQFROEEMUJDg7G3Xff7fPjPvTQQ3j66adht1vw229vyDBfmKF79yFINMeirX8/NDG0lSUnD926\nPcg7giw6dhyEwMAw3jFcEpadCGvnTnXe17x5c/Tu3dvHieSn1+tx33338Y4hGWMMQ4YM4R1DFvff\nfz/0dRSwatOjRw9ER6u32cVFISEhuPPOO3nHuCFaM0EI8ZiW1kxcVFBQgM6du8Bkqsbrry9Dv37P\nSt7n96V/wV+D30HfoKdlSEgaiu6zn0X7QdFoNUn+aXeEEFIXWjNBCFE1URSRnZ3NNUOLFi0wceIE\nAMDvv/8btbUVHu2ntDQLAFDgOIlCxyncEvi4bBl96eI41K6ysgB2u5V3DLc0Lzl9TSen2tpaFBUV\ncUokr6wsbfxuaWUc2dnZmrjSdWlpKaqr1TGV8UacTidycnJ4x3AJFROEEMVITU1VRJvLESNGoH//\n/jCZihEb+6Hbj7fZzMjIOAAA2Fc7G7cHDYVekLc7lK+cPLmddwRZpKVthSC49WEbd1HFmQi57bYr\nbouLi4PZbOaUSD5GoxFpaWm8Y0gmiiJ27NjBO4Ystm3bprpzpC47d+7UREvb5ORkFBcX847hEprm\nRAjxmBanOV2UkpKC3r17w+l04sMPD6Bjx9vd3oedWfFJUQw+bHIAUYa6574TUhddRT5e+rw9Aixm\nQANv8Agh6kDTnAghRCY9evTABx98AABYuPBVjy5wdsyyGq0MPamQIG4LzjyEyui2VEgQQhSPiglC\nCHdnz57FunXreMe4xpdffom2bduioOAktmyZWO/2drsVu3dPv/Tz3tqZuEulV7zesWMq7wiy2L9/\nrmpawV4uPDsJtss6Oe3fvx9HjhzhmEgeJSUl+O2333jHkEwURfz000+8Y8ji559/1kQr2NjYWE20\ngk1PT/d5a3SpaJoTIcRjck1zMplMMBgMCAwMlCGVvLZu3YoHHngABkMARo8+gWbNOl53W1F0wmyu\nQkhIJIodGfiudCC+i8qFnxDgw8TyMJlKERrahHcMydQ6jp4zn0Hbe9qh1fffAwDKysoQGRmp+jnt\nVqsVNpsNYWHqaM97PYwxlJeXo3HjxryjSFZaWoomTdR3jlxNK+Oorq5GQEAA/P39uRyfpjkRQlQp\nNDRUkYUEcL7n+nPPPQeHw4pFi0bccGGfTqdHSEgkAGBf7RwMCHpJlYUEAFW+Aa+LWsfRvOQ0/C67\njkTjxo1VX0gAQEBAgOoLCeD8Gy4tFBIANPEGHNDOOMLCwrgVEp6iYoIQwo3D4UB6ejrvGPWaOnUq\nwsPDcerUDhw+vKTObYzG1Ev/djI7Dpjn4a4g9U1xunwcalZSkgmbrZZ3DI9FlZzv5FRVVYXc3Fze\ncSRjjCE1VRu/W1oZx8mTJzXRCjY/Px/l5eW8Y0hmt9tx+vRp3jE8QsUEIYSb9PR0WCwW3jHqFRUV\nhR9++AEAsGzZu6ipKbvifpvNjKKi/38ROG5dhyh9J7T0u9mnOeWQl3ecdwRZZGXFw2BQ57dC+vJc\nGJx2BHfujKSkJE1cjTg/Px8lJSW8Y0gmiiJSUlJ4x5DF0aNHodOp/21gfHw8AgLUea5fLi0tDXa7\n+40+lIDWTBBCPKbl1rBXY4xh0KBBiIuLw+23D8XQofOuu+1PZQ+jX+DzuD34ZR8mJFoRlrgSf932\nPzQ/c5J3FEJIA0NrJgghxEsEQcCcOXNgMBgQFzcfp0/vrXO7Mmc2ztkO4dagZ3yckGhFeE4S7F2o\nnTAhRB2omCCE+FxaWhpWr17NO4bbbr75Znz88ccAgIULX0NNTQW2b59yxTb7auegf9A/4C8E84jo\nsU2bxvOOIIudO39RZSvYyzUtSMGB8FDEx8fzjiJZQUEB5s+fzzuGZKIoYsKECbxjyGLixImaaAW7\naNEiTbSCTUlJwfr163nHkISmORFCPObpNCebzQZBEODn5+eFVN5lsVjQvXt3nD17Fo8+OhoPPvgh\n/P2DAAAic+J/Re3w78br0dqvF+ek7rHZauHvr64CqC5aGMf9Y3tA//V/EfPyy6rv4OR0OmG32xXb\nrc0dtbW1CA5W9+8WQONQGpvNBp1OB4PBwDsKAJrmRAhRCX9/f1UWEgAQGBiI2bNnAwA2bhyH8vKc\nS/edsG5ChL6V6goJAKp/A36R6sfBGKKKs9D0zjtVX0gAgF6v10QhAUATb1wBGofS+Pv7K6aQ8BQV\nE4QQn7FarTh+XP3dgu69914MGTIETqcNixYNv3Ttib21s3BX8AjO6dyTman+qTTA+Za2VmsN7xiS\nmXOOIkt0IrhDB95RJBFFURNX7AagielmAJCQkKCJVrCZmZkoLi7mHUMyi8WC5ORk3jFkQcUEIcRn\nzp07p4lPKc1mM4YPH45GjRrh9Om9OHhwESqcRpy27UG/wOd4x3NLZWUB7wiyKCk5Cz+/IN4xJKtM\nXgchOgZQ+bcShYWFvCPIQhRFFBUV8Y4hC6PRqIlWsOnp6QgPD+cdQ7KMjAyEhITwjiELWjNBCPFY\nQ2oNW5f58+dj2LBhCA6OxN0fvYmaoFK8GDGDdyyiYq1XfYJe+lS0Xqe+BgWEEPWjNROEEMXSStFx\n+TheeeUV3HnnnaitLceOP6fiThVd8VqLz4eaMcbAGEPTwlToenbjHUcSLT0nWkDjUB4tjQWgYoIQ\n4gMpKSlYtWoV7xiSmc1mfP/995d+vnTtCT8DbEk1sJxVT0vSDRvG8I4gi+3bJ6u+FSwAnDixCVlZ\nRxBVcgb+ffrwjuMxo9GIOXPm8I4hmSiKGDt2LO8Yshg3bpwmWsHOnTtXE61gk5KSsG7dOt4xZEXT\nnAghHnN1mtPFRX9amK/rcDiu6bzR/dnuSF2eiqZNO2D06FT4+QVwSuc6p9MBvV7dHUQAjY1Dp8dL\n74UCJ1MR1LYt70geYYzB6XSqvjsNUPe5rkY0DmVR+ushTXMihCiSTqdT7B9Od139YlZUU4S8W/LQ\noWMHlJScxYYN6vg0UwtvwAFtjcOv5CyYTq/aQgI4/0ZEC2/4gGvPdbWicSiLll4PL9LWaAghilJb\nW6uZtoq7d++u8/YFRxfgyR5PYt7ceQCAzZu/Q0HBSV9Gc0t6et3jUJusrARYLCbeMSSrrCxAQcEp\nAEDwuUOoaqPOQsLpdGLfvn28Y8jieue62uzdu1cT05tOnjyJggL1d50zmUyaaZd8NSomCCFeYzQa\nERUVxTuGZGazuc6L7DHGMCtxFkb0HYG7774br7zyCpxOOxYufE2xC+xEUf1vLgDAbK5EQID62yqW\nl+ciIqIlACA85ygcXTpzTuSZkpISNGrUiHcMyURR1MS1GADAbrdDr9fzjiFZYWEhmjZtyjuGZHl5\neWjRogXvGF5BayYIIR5r6K1hd2Xuwr83/BvJbyVDEASUlZWhS5cuKC0txcsvz8GgQa/yjkhUpO+0\nRxH9aB+0/OYb3lEIIQ0UrZkghCiGFr5eB248jlmJs/B639chXLjAWOPGjTFlyhQAwPLlo1BdrZyr\ntGrlGwmtjIMxds0n4Grt5NQQznU10dI4tPJhlVaek+uhYoIQIrvjx49jzZo1vGNIZjab8cMPP9R5\nX2ltKdanr8dLt7x0xe3/+Mc/cO+998JsrsSyZe/6IqZL1q+nVrBKkpKyAdnZif9/A2OIKs5GyG23\n8QvlAaPRiLlz5/KOIZkoihg3bhzvGLLQSivYefPmwWg08o4hWUJCAjZs2MA7hlfRNCdCiMeuN83p\n4m0XP7FXM8ZYneOYfHAyjhiPYPFTi6+5LyMjA926dYfNZsV7723FzTff54uoN3S9caiNVsfhV3AK\nz068DSHVlRxTeUarz4la0TiURW2vhzTNiRCiCIIgqOYPZ33qGsfFhdev9637itcdO3bEF198DgBY\ntOh12Gxmr2Z0hZafDzW6ehwhmYdR1aYdnzASafU5USsah7Jo6fXweqiYIITIpqqqShPtIRlj2Lhx\n43Xvj8uNg0N04O62d193mw8//BBdu3ZFaWkm1q//2hsxXZKScv1xqMnp03s10Qq2tDQLRuOJa24P\nzzkK501dOCTyjM1mw7Zt23jHkMWNznU12bRpkyY6USUlJSE/P593DMnKy8sRFxfHO4ZPUDFBCJFN\nWVkZOnXqxDuGZBaLBa1atbru/TMTZl6x8Loufn5+l+aSb9nyfZ1vIH0hJKQxl+PKzWDwR2BgKO8Y\nkpnNlWjatP01tzcrSoO+Z3cOiTxTWVmJ9u2vHYfaiKKIJk2a8I4hi8jISE1cDM1ut6N58+a8Y0hW\nXl6Ojh078o7hE7RmghDisYbYGrbCUoF2k9vh9MjTaBbSrN7tR4wYgVmzZqFdu9vw0UdxmnixJ/J7\n6KsuCP51Ipo88QTvKISQBozWTBBCuLFYLLwjyKK+cSxJXoIHOj7gUiEBABMmTECzZs2QmXkY+/bN\nkiOiS+x2bTwfdrtFE+0hRdEJh8NW952MIaokG6EDBvg2lIcayrmuFloZh81m08Q0LcaYZp4TV1Ex\nQQiR7Pjx45qYP202mzFt2rTr3s8Yw8yEmRhx6wiX99moUSP8/PPPAIDY2P+isrJAck5XbN36o0+O\n4217986E1ar+tRInTmxGfn5qnff55afBHhCEABVcHddoNGLp0qW8Y0gmiiImT57MO4YsJk+erIk3\n4UuWLEFBgW/+PnpTUlISdu3axTuGT9E0J0KIxxraNKf4vHg8t+I5nHnnDHSC65/FMMbwwAMPYNu2\nbejb9+94440/vJiSqE2jA/NxV8IUtExO4h2FENLA0TQnQgjxolmJszC873C3Cgng/B/nWbNmISAg\nAImJy5GSsslLCYkaReQchfOmzrxjEEKIR6iYIIRIsmPHDt4RJBNFEbGxsTfcptpajeWpyzGs9zCP\njtGuXTt89dVXAIDFi0fAZqv1aD/1SUhY4ZX9+lpKyiZNXOm6sDAdOTnHbrhNVHEa9L16+iiRZ8xm\nM9atW8c7hixWrNDGORIbG6uJ6U0HDhxAXl4e7xiSFRUVYffu3bxjcEHFBCFEkt69e/OOIJnNZkOv\nXr1uuM3SlKW4p909aBnW0uPjjBo1Ct26dUN5eQ7WrPnS4/3cSIsWXb2yX1+LjIxGYGAY7xiSMcbQ\nsuXNN9wmqjgDAX37+iiRZ8xmsybOdVEUcfPNN34+1KJLly6a6A4XHh5+w1bcamG1WnHLLbfwjsEF\nrZkghHisIa2ZuG3WbRh9z2g83PlhSfs5fPgwBg4cCEHQ4bPPkhAdrexPpIl3MacTw94NBvJy4d/M\ntQ5hhBDiLbRmghBC3FRRUVHvNscKjqHAVIAHOz4o+Xi33XYb3njjDYiiEwsWDJNtmkJtbf3jUAOz\nuUoTUzecTjus1pp6t/M3psASHKroQsKVc0QNtDQOLXyIU1NTA5vtOu2SVYQxhsrKSt4xZOHpOULF\nBCGkwTKbzfj999/r3W5W4iy82udV6HV6WY47fvx4REVFISsrAbt3X78VrTv2758ry354i4//HXa7\nmXcMydLStqO0NKve7UKzjqCmbTvvB/KQ0WjEpk3qbxggiiLmz5/PO4Ys5s+fr4liYtWqVZoo8JKS\nkpCUpP5ObDU1NVi2bJlHj6VpToQQjzWEaU619lrETIpB0htJaBPRRrb9rly5Ek8//TQCAkLx9den\n0KiR+ucME/e1W/oOukeVIHrpEt5RCCENFGMMgnB+ZhNNcyKEEJktP7EcA1sPlLWQAIAnn3wSDz30\nEKxWE37//d+y7puoR1RxGnS9evCOQQhpoE7W1OD2xETsk/AtERUThJAGx+l0YvHixS5tOytxFl7v\n+7rsGQRBwPTp0xEUFISjR1chOXm9R/uJi1sgczI+EhNjNdEKNjf3OLKzE13evnlxBgL69PFiIs9U\nV1fX2y5ZDRhjWLBAG+fIokWL4HQ6eceQbNu2bZpoBZubm4vt27fzjiHZe6dO4dDKlVhUWOjxPqiY\nIIQ0OE6nE/fcc0+926UWp+Js+Vk80vkRr+Ro06YNxowZAwBYtGiESwt2r9ap051yx+IiJqa3JlrB\nBgVFIDr6xm2GL3E60KQ0D2EDBng3lAcYY7j77rt5x5BMK+MAgDvuuAN6vTzrtnjq0KGDJlrB+vn5\nYYACz113bCgtxeaSEoTdeivGtG/v8X5ozQQhxGNaXzPx/qb3EewXjLGDx3rtGA6HA3379kVycjIG\nD34Pzz47yWvHIsoSkJ2Iv/36ICLKinlHIYQ0MDZRRM/4eKSbzfixY0e8HxMDgNZMEEJIvYxGo0vb\nWRwWLE5ejNf6vubVPAaDAfPmzYNOp8OOHT8hO9u1riAVFa6NQ+mqq4vhcKi/PaTdboHJVOrWY0Iy\nj6CmneefBnqLq+eI0mllHPn5+Zpol1xRUYGaGve/fVUaURSRn5/PO4Zkv+TlIT0nB12CgvB2dLSk\nfVExQQh19RMYAAAgAElEQVRpMMxmM7Zt2+bStqvSVqF3i97oENnBy6mAW2+9FW+//TYYu3jtifrn\nRR8/vtbruXwhOXm9Jtpcnj69F2azewsYG+Udg3hzFy8l8ozRaMSRI0d4x5BMFEWsW7eOdwxZrF27\n9lKnHTXbvHmzJq4rcezYMWRnZ/OOIVm43Y7w48cxqVMn+Eu8kjpNcyKEeEzL05zuXXAv/tXvX/h7\n97/75HjV1dXo0qULCgoK8OyzUzB48Ds+OS7hZ8DUwWj+0gNo8dFHvKMQQhqgGqcTIVetw6FpToQQ\nIoPTpaeRWpyKJ256wmfHDAsLw4wZMwAAf/75CcrLc312bMJH8+IMBPTtyzsGIaSBurqQ8BQVE4QQ\nzbPZbJg9e7bL289OnI2Xe70Mf72/F1Nd6/HHH8djjz0Gm60WS5a8Vec2cl0xm7eDBxdpohXsuXOH\nkJWV4PbjmN2GJmVGhN12mxdSua+8vBxLly7lHUMyxhimTdPGOTJjxgxNrJVYvXq1JlrBZmRkYPPm\nzbxjSGa1WjFnzhxZ90nTnAghHlPLNCeHw4GKigo0bdq03m1tThvaTGqD3UN3o2vTrj5Id6W8vDx0\n7doVNTU1eOutP9G795XfjlRWFiAiooXPc8lNK+OoqipCaGhT6Nyccxxw7jD+NvNRRJQWeSmZe8xm\nM2w2GyIiInhHkYQxhqKiIjRv3px3FMkKCgrQooX6zxGtjKOiogKBgYEIDAzkHUUSu92OqqoqNGnS\npM77aZoTIYTUwWAwuFRIAMCaU2twU9ObuBQSABAdHY1x48YBAH777c1rPr3XwhtwQDvjCA+PcruQ\nAIDQrCOoae/9xf2uCgoKUn0hAZx/I6SFQgKAJt6AA9oZR6NGjVRdSJidTszJz4eg11+3kPAUFROE\nEE07ffq0W9t764rX7nj77bfRu3dvVFUVYNWq/wEACgvdG4dSlZXlwGYz844hmcViktSet1HecbBu\nfArWyzHG3D5HlEor48jIyNDE9KaioiJUVLjX4UyJHA4Hzp49yzuGZD/k5GD49u146eRJ2fdNxQQh\nRLPMZjOOHTvm8vbnys8hwZiAp7s97cVU9dPr9ReuPaHH7t2/IjPzCM6dO8Q1k1wyMvZDr/fjHUOy\nrKx4MOb5G76o4pPQ9+opYyLP5Ofna6LNpSiKOHz4MO8YsoiLi9NEK9j9+/fDYDDwjiHZiRMnYDKZ\neMeQJM9qxbhTp4CzZ/FGy5ay75/WTBBCPKaWNROu+mzHZzDZTJg8ZDLvKACAUaNGYdKkSWjVqgc+\n+ywJer36X5jJeU981gb+S+cj8q9/5R2FEKJxL6WlYXFhIZ5u2hQrevS44ba0ZoIQQjzkEB2Yd3Qe\n9ylOl/vmm28QHR0NozEFO3ZM5R2HyMVuRePyAoT17887CSFExT755JN6p8TFVVZicWEhAgQBEzt2\n9EoOKiYIIZpjNpvx888/u/WYDac3oG1EW3SP6u6lVO4LCQnBgw8+CABYvfozlJWpdzrKnj0zNNEK\nNj19NzIz4yXtIyA7ETWNmsAQFiZTKvcVFRVh4cKF3I4vF1EU8eOPP/KOIYsff/wRTqeTdwzJfv/9\nd020gk1NTcWGDRt4x7jG9OnTYbFYAADfffcdWrdufcPtZ587B/z5Jz6IiUH7oCCvZKJpToQQjyl1\nmhNjDCaTCWFuvFl77PfH8NRNT2FYn2FeTOa+qqoqDB06FKtWrUL37g9i5MiNqpxPbTZXISgonHcM\nySyWagQEhEp6Dprs/Bm3ZyxBq8MHZEzmHofDAZvNhuDgYG4Z5FJVVYXwcPX/btE4lMVsNsNgMMDP\nj/8arw0bNmDQoEGIiIi49LeHMYa9e/fi7rvvxnfffYePPvqozsc6nE4sysrC39u0QagLa1homhMh\nhOD8H0N3Com8qjzsz96PZ7s/68VUngkPD8cvv/yC0NBQnDixGfHx6rywmBYKCQAIDAyTXMxFKqCT\nk8Fg0EQhAUATb1wBGofSBAUFcS0kjh07hpKSEgDAI488gkaNGoExhrS0NADA8OHDcdddd+Htt9/G\nxx9/jBMnTtS5H4Nej2EdOtRbSNTW1uLNN9/0KCsVE4QQTXGne9NFxwuPo390f4T4h3ghkWcuH0fL\nli0xceJEAMDixSNQXJzBK5bbCgtPw2qt4R1DstraCpSUZMqyL73DCiHYO9MN6sMY8+gcUSKtjOP4\n8eOaaAWbk5OD0tJS3jEks1qtl96w83TfffehWbNmcDqdKCgoAADceeeduOmmm/Djjz9izpw52LFj\nx6UpvT169IDdbr9iH/WdI4wx/PrrrxAEASEhIZgxY4ZHWamYIIRohtlshtHofu//als1wgOU9Wla\nRsaVBcMbb7yBv/3tb7BaTZg+/SnY7VZOydyTn38Cfn583jjLKS8vGf7+8nySb2oUAzGbz5zy/Px8\n1NbWcjm2nERRxLlz53jHkMWZM2c8uvCh0iQnJyMkRDkfyHjq9OnT0Ov1vGMgKysLANC4cWM0b94c\nsbGxOHDgABYsWID3338f7du3x+DBg1FZWXlpDYW/v/+lx5tMpktFyNX27NmDkJAQ6HQ6vP322xAE\nAZs3b4an05ZpzQQhxGNKXTPhrrlJc7E3ey/mPTGPd5QbqqysRM+ePZGTk4N77nkbL7zg3iJzogyR\ne2ZiUOoctErUxrVDCCHecejQIQwcOBCjR4/Gl19+icceewzr1q1DVlYWYmJiLhWhjDEcPXoUffr0\nwahRo/DF+PGIuGpaU05ODp577jnExcVduu3777/H+++/f0UxS2smCCHEA9XWaoT58+us46qIiAjE\nxsbCYDBg165fkJS0inck4gFrVEf4FxfxjkEIUbgBAwbgv//9L0aPHo2kpCSsXbsWANC2bVswxpCT\nkwPg/JqK3r1746uvvsKPu3ah9b59+DUvD2azGW+99RYEQUCbNm0QFxeHl156CVVVVWCM4T//+Y8s\n34pRMUEIUT2z2SypPaTJZkKof6iMiTw3duzYG97fv39/TJgwAQAwf/4rss3jl9v27VM00Qo2NXWL\n5FawV7M264Tg0mJZ91mf/Px8zJ0716fH9AZRFPHtt9/yjiGLb7/9VhOtYOfPn6+JVrDHjh3DunXr\neMe4xoQJEyAIAvr27Qur1YrKykoAQPv27dG6dWssXLgQGzZsQGxsLP732WcQ3ngDphUr8PaHHyI4\nOBjTp09Hr169kJ6eDsYYFi5c6FaDElfQNCdCiMeUNM3JZrNdMV/UHR9v+xgRARH45K5PZE7lPlfG\nwRjDY489hvXr1yMmpi8+/jgOBoNnY/cWh8OmuEye8Mo4GMOwt/0hlJXC4KPON4wxOBwORbS5lErK\nua4kNA5lcTgcEARBEeslrma32y/9f8wYw86dO/HXv/4V33//Pf7zn//grrvuwr59+4AnngDeew/I\nzgaGD8fGNWswZMgQt45F05wIIQ2WlBezamu1Yr6ZcGUcgiBg4cKFaNWqFXJyEhEb+6EPkrlHC4UE\n4KVxCAKqwxrDfPq0/Pu+7iEFTRQSgLRzXUloHMpiMBgUWUgAgJ+f36XWr2+99RbuvfdejBgxAh98\n8AE6dux4vpAICwOGnb9O0vIhQ8BsNrcLCU9RMUEIUbUDB6Rf+MtkNyEsgO+aCXfH0bhxY8TGxkKv\n12PHjik4dmytl5K5Jzf3OCwWE+8YklVXF6Ow0Htv9ivDo2DN8H6LX1EUcfDgQa8fxxfkONeV4ODB\ng5qY3nTmzBkUFal/7U9tbS2OHj3KO0a9unXrhgkTJmD69Ol45JFHMHPmTADA2bNn8eKLL+LNuDgg\nJwf3NmqEp5s182k2KiYIIaplNpvhcDgk70cJC7Crq91fXzBw4ECMGzcOADBv3ksoK8uRO5bbqqoK\nEBCg/vaQJSVnERra1Gv7rwxvDntmptf2f1FRURGCgtTfmlcURZhM6i9SgfNd2ZT6Cbg7srOzERkZ\nyTuGZFlZWaoZx3//+1/06dMHGzZsQI8ePXDq1CkwxrBo0SK83KQJ+oaEYHKnTpIvrOkuWjNBCPGY\nktZMSPHAogfwn9v/gwc7Pcg7ittEUcTDDz+MzZs3o127/vjww/3Q67UxnUXLus5/BZ37hKLVL7/w\njkIIIZfQmglCSIMhZxFTbavmNs1J6jh0Oh1+++03tGjRApmZ8Vi16n8yJXOPFopK4Pw4fDEWX1y4\nTkvPiRbQOJRHK2PhPQ4qJgghqmM2mzFx4kTZ9sezNezXX38teR9NmjTB8uXLodPpsXXr90hJ2ShD\nMvds2zZJE61gU1I2ICsrwevHqW3cBrq8fK/t32g0Yvbs2V7bv6+IoogxY8bwjiGLMWPGaGKtxJw5\nczTRCjYxMVGRrWDdVVNTgx9++IFrBprmRAjxGM9pTqIoynKxHQBoN7kddr6yE+0j28uyP3fIOY6x\nY8fis88+Q3BwJL74IhmRkdGy7NcVco6DJ1+NI/jkdgxZPhxNc8557Rj0nCgLjUNZLr52+Xp9gTfI\n+ZzQNCdCSIMh54tZtY1fa1g5x/HJJ59g8ODBqK0tx8yZz8DplL443VVaeHMB+G4c1madEFxW4tVj\n0HOiLDQOZREEQdWFRKHNhtdPnYLRauX+nGjjN4IQ0iAwxrB161bZ92uy+b41rDfGodPpsGTJEkRF\nReHs2YNYs+Zz2Y9xtYyMOE1Mbyovz4XRmOqz4zkatYaf1QJHVZW8+3U4sHPnTln3yYs3zhEetm/f\nronpTcnJycjP997UPF+pqqrCoUOHeMeQ7H8ZGZi9di3ePXOGdxQqJggh6mGxWGRv4Wdz2iAyEQH6\nAFn3W5/AwECv7DcqKgp//PEHdDodNm0aj9RU774hY8yJgABlXPBPiurqYjRu3MZnxxP0+vMXrpP5\njUBZWRlatWol6z55EEURwcHBvGPIwt/fXxOtYKurqxEVFcU7hmSFhYVo27Yt7xiSJFZXY25mJgwR\nERjb3vfTc69GayYIIR7TQmvYMnMZOk7tiPKPynlHkdVXX32F0aNHIySkCb78MhkRES15RyJXuX9s\nD4RN/AJNn32WdxRCiEowxnD30aPYV1mJ/7Ruje87dZJ1/7RmghCiWXa73Sv79fUF67w1jqt99tln\n+Mtf/oKamlLMnPksRFHeaRZOp2/G4W2iKMr+/42rKsNbyHrhOl/9bnkbjUNZHA4H99ajctHCc/JH\ncTH2lZaimZ8fPm/XjnccAFRMEEJUwGw2Y8qUKV7Zt6/bwo4fP94nx9Hr9Vi6dCmaNm2KM2f2Yd06\n6S1oL7dz5y+aWCtx4sRG5OYe43LsyrBosOxsWfZlNBqxcOFCWfbFkyiKmDBhAu8Yspg4cSJEUeQd\nQ7KFCxfCaDTyjiFZYmIitmzZwjuGZGmlpRBWrsS49u0RYTDwjgOApjkRQiTQwjSng7kH8e6md3Fo\nuPoX5NVl+/btuP/++8EYMGrUdnTtei/vSOSC6D8/wy36FLRe+yfvKIQQFTlVW4tOQUHQe6EbFU1z\nIoQQN/G8YJ0vDB48GJ988gkAhpkzn0NVVSHvSOSC2sZtIBjV3x2HEOJbXYODvVJIeIqKCUKIYjHG\nsHr1aq8ew1drJrw9jhv5+uuvMWjQIJhMxZg16wVJUy/S0rZrYnpTcfFZ5OUlc81gbdYRAUVF0vZh\ntWLjRt9f8dwbeJ4jclq7dq0mWsHGx8drYnpTaWkp9u7dyzuGZKIoYs2aNbxj1ImKCUKIYlksFnTu\n3Nmrx/DVBetiYmK8fozr0ev1+OOPP9C4cWOkp+/Ehg1jPd5XSEgkAgN9e00Ob7DbLYiK8u7vVn2s\nUdIvXGcymdCtWzeZEvEjiiLatPFda15vio6O1kQrWIPBgJYt1d8Frrq6WhPniMViQZcuXXjHqBOt\nmSCEeEwLayZ+jf8VyYXJmPboNN5RvG7z5s0YMmQIBEGHUaN2okuXu3lHatCY04lXRwZCKC+DIUz9\nBRohRH4iYzhSXY3bwsN9cjxaM0EI0YyamhqfHKfaWu3Vq1/7ahyuePDBB/Hhhx+CMREzZz6L6upi\nlx9rtdZooj2k0+mA3W7hHQPAZReuO33ao8cr6XdLChqHspjNZk1M02KMaeI5mV9QgAH79+M9D/9O\n+AIVE4QQxTGbzZg7d65PjuXtBdi//PKL1/btibFjx2LgwIGori7EnDn/dHn9RFzcAlit6n9hTkvb\niqIi5bwoV4Y3gzUjw+3HGY1GrFq1yguJfEsURUybpo1vBadNm6aJVrDLly9HcbHrHzQoVVJSEuLi\n4njHkKTK4cAnJ04Amzb57JsJT9A0J0KIx7Qwzem9Te+hbURbvH/7+7yj+Exubi569uyJiooKPPnk\ntxgy5GPekRqsAVPvQ9TLD6Dlhx/yjkIIUZiPMjIwIScHd4SHY1+fPhB80MGJpjkRQoibtN4ati6t\nW7fG4sWLAQB//vkZMjIOcE7UcFWEy3fhOkKIdpyurcWk3FwAwJROnXxSSHiKiglCiGKIooilS5f6\n9JjVNu+smViyZIns+5TTI488gvfffx+MOTFjxjMwmUrr3O7YsTWaaAVrNKYiOzuJd4xr1DRqDTE7\nz/Xta2rw55/auMid0s8RVy1dulQTawx27dqFvDzXfxeVKj8/Hzt27OAdQ7Jvzp6Ffft2DGvRAv0U\nPMUJoGKCEKIgdrsdAwcO9OkxvfXNxK233ir7PuU2fvx43HrrraiszMfcuS/VucC6efOummgF6+cX\ngOjoHrxjXKOmcVsIea738udxjniDKIro168f7xiy6NOnjyZawbZs2RKtWrXiHUMyxpgmfrcmtm2L\nf91/P8a1b887Sr1ozQQhxGNaWDNx97y78c293+Av7f7COwoXWVlZ6NWrF6qqqvD00xPxwAMf8I7U\noASnbceQFcPRNOcc7yiEEEJrJggh6sWre4jc05zU1gWlbdu2WLhwIQBg1aqPce7cIQBATU0ZnE4H\nz2iysNutMJsrece4LncuXKe2363r0dI41P5hCgBUVVXBYlFGu2QpGGMoKZF2EUilUNs5QsUEIYQ7\ns9mMNWvWcDm23NOcli1bJtu+fOWJJ57AyJEjIYpOTJ/+NGpqypGUtBJOp513NMlOn96NqqpC3jGu\ny9GoNfytFjiqb7wuxWg0Yu/evT5K5T2iKGL58uW8Y8jijz/+0EQxsX79ek1cj+Ho0aM4deoU7xiS\n1dTUYN26dbxjuIWmORFCPKaFaU4tvm+BpDeS0DKsJe8oXNlsNgwYMABHjx5Fz56P4u231yi6e4iW\nPPNRFPx2bEZYnz68oxBCOGKMcf+7S9OcCCHETQ2xNWxd/P39ERsbi9DQUCQnr8OOHT/xjtRgVIVH\nwXrmDO8YhBCOkk0m9D5yBFvLynhHcRsVE4QQbux2O+bNm8ft+CITUWuvRYh/iOR9zZo1S4ZEfHXo\n0AHDhw8HAMTGfoCsrATOiTyXlZWgmvyVYS3gyMys+77KSvzxxx++DeQFjDHMnj2bdwxZzJkzRxOt\nYDds2KCJVrCZmZnYsmUL7xiSMMbwbloajsfGYk1p3W26lYyKCUIIVw899BC3Y9fYahDsFwydIP1P\n4ZAhQ2RIxN+oUaPw5ptvwum0Y/r0pxS9ePlGIiJaIiamN+8YLqkIj4aYlVXnfQaDAffdd5+PE8mP\nMcb1XJfTAw88oIlWsD179kR0dDTvGJKFhYXhzjvv5B1DkjWlpdhZUYGIO+7A6HbteMdxGxUThBBu\n/Pz80KJFC27Hl7OTU0xMjCz74S0mJgaTJk1Cz549UVaWjfnzh6lykWmjRq2g06njDd+NLlwXEhKC\nxo0b+ziR/HQ6nSbeuALaOte1oEmTJggODuYdw2NWUcSoM2cAPz+M6dsXTfz8eEdyGxUThBAuMq8z\nrcOXTDYTwvylFRNKGIcc8vPzYbVaAQCBgYFYuXIlQkJCcPToKuza9SvndK6z2WoV3b2pLrWN20Iw\n5l9zu1Z+t7QyjuzsbIiiyDuGZKWlpaiup3uYGjidTuTk5PCOIdnk3FyczcxE9+BgvKnSiwZSMUEI\n8Tmz2Yy4uDjeMVBtrZa8+HrHjh0ypeFr+/btV3QR6dSp06U57suXj0JOzlFe0dySkREHu11dPfMt\nzToioPDKAshoNOLkyZOcEslHFEXs2rWLdwxZXH2OqNXOnTtV+W3j1ZKTk1V3PYa6RDudiExPx6RO\nnWDQqfNtObWGJYR4TO2tYXdl7sKXu77E7qG7eUdRrNdffx2zZ89Gkybt8cUXxxAYKN8F/sh5+pJM\nvDC2F4JrqnhHIYRwYHE6EaiQdTjUGpYQQtxAbWHrN3XqVHTr1g2lpeewcOFrmvhEU2kckTHwt5rr\nvXAdIUSblFJIeIqKCUKIz1itVkyfPp13jEuqrdUer5mYMmWKzGn4mDNnDkwm03XvDwoKwsqVKxEU\nFISEhOXYu3emD9O57syZ/cjMPMI7hkcEvR5VYZEwnzmDkpIS/Pbbb7wjSSaKIqZOnco7hix++ukn\nTayVWLFihSZawZ46dQobN27kHUMys9mMmTOV+ffUXTTNiRDiMXenOYmiiKqqKjRq1MiLqVw3K2EW\nDuUdwuzH3e9/X1ZWpokuO66OY9GiRXj55ZdhMATgf/+LR3R0Tx+kc11NTTmCgxupdk77A2N7IPSH\n0Qh//HHYbDaEhqr7GzPGGCoqKhAZGck7imQN7VxXOpPJBH9/f/j7+/OOIonT6YTJZEJERATvKFeg\naU6EEEXT6XSKKSSAC61hPfxmQgsvyoDr43jppZfw8ssvw+GwYtq0p2CxXP/bDB5CQiJVW0gAFy5c\nd+4c/P39VV9IAOffkGihkAAa3rmudKGhoaouJGqcTvyUmwunICiukPAUFROEEJ84ceIE7wjXMNlM\nbl9nQonj8MS5c+dQW1vr1mOmTZuGrl27orj4DH777Q0vJXOP2VyFsjL1t4esCG2BtKQk3jFkoZVz\nJC0tTRPTm4xGI8rKynjHkMxutyM9PZ13DMkmZGfjna1b8WJaGu8osqFighDidWazGRkZGbxjXMOT\n1rApKSleSuNbCQkJCAgIcOsxwcHBWLlyJQIDA3H48BLs3z/PS+lcl5OTBL1efRd5ulp2cGOUZam/\nKBJFEampqbxjyOL48ePQqbRV5+USEhIQGBjIO4ZkJ0+ehNPp5B1DkiyLBePT04GCArzbujXvOLKh\nNROEEI+pvTXsm+vexC3Nb8Fb/d/iHUVV5s2bh1dffRV+foH43/8S0KpVN96RVK/xnpm4/eRcRB85\nyDsKIcRLnjtxAn8UF+OFqCgs6abMv5u0ZoIQQtxArWE9M2zYMPzjH/+A3W7B9OlPwWZzb7oUuZal\nWUf4FxXxjkEI8ZI9FRX4o7gYQTodxnfowDuOrKiYIIR4jdlsVnQL1WpbtctrJr777jsvp/GNn3/+\nGdUyXM9gxowZ6NSpEwoLT+G333z/zU5a2jZkZsb7/Lhyq6wswIED82Ft1hEhpSW843hMFEWMHz+e\ndwxZTJgwQfXTaYDzHdi00Ao2OTkZ69at4x1Dst8yM4GVK/FxmzaI0cC0s8vRNCdCiMfqm+bEGIPF\nYkFQUJAPU7lu8MLB+OTOT3Bfh/vq3dZsNit2HO6QcxzJycno168/bDYrhg1biIEDX5Jlv66w2czw\n8wtUdQcn4PybcKfTDoPOgFdHBkJXWQF9SAjvWB6hc0RZtDIOm80GnU4Hg8HAO4okoihiRV4eHm3V\nCsEKvkgdTXMihCiKIAiKfjFz56J1Sh6HO+QcR8+ePTF16vlvnhYvfgMFBSdl23d9/P2DVF9IAOfb\nJfv5BUDQ61EdFolaFXeroXNEWbQyDn9/f9UXEsD5c/3ZmBhFFxKeomKCEOIV8fHKn4LiypoJNYzD\nFampqaipqZF9vyNGjMDf//532O1mTJ/+NGw2s+zHuJzJVIriYuV1BnOXKIrXXLG7KqwZrArselYf\nrZwjCQkJmmgFe+7cORQXF/OOIZnFYkFycjLvGLLQyjlyPVRMEEJkZzabUVVVxTtGvVxZM1FYWOij\nNN517tw5BAcHy75fQRAwZ84ctG/fHvn5qVi69B3Zj3G5wsJTCApSzoUPPVVdfe3vVWV4SzgyM30f\nRgJRFDXxxhUA8vPzNdEK9vTp05q4GNrZs2cRotIpf5erqamByaSsi3zKjdZMEEI8pvbWsJHjI3H2\nnbOIDNLGlXp5Onr0KAYMGACbzYbhw39H//7P846kOjfNewmd+jVCq59+4h2FECKDEpsNTVV2tW5a\nM0EI4U4txQVj7IYXrVPLOOrjq3H07t0bP/74IwBg4cLhKCo6I+v+GWOaf05MkW0gZqun+47Wnw+1\n0co4AG2MZVNpKdrExWFSjvovRlkfKiYIIbIxm834/vvvecdwicVhgUFngN91rp78zTff+DiRd0ye\nPFmWVrCu+Ne//oUnn3wSNlsNpk17Ena7RbZ9nzixCVlZR+rfUOEqKozYv39OnffVNm4LIc/o40Se\nEUURY8eO5R1DFmPHjtXEWom5c+dqohVsUlKS6lvB2kUR76akwLxsGZwaKIzqQ9OcCCEeq2uak8Ph\nUEXnjeKaYtz8y80o+bDu3v5qGUd9fD2OyspK9OrVC9nZ2bj77jfwz39Ol2W/TqcDer36n4/z37CI\n0Omu7egSnLoVD658A82yz3JI5j46R5RFK+O4WNipef3KlNxcvHfmDDr5+eHE7bfDX0VjoWlOhJA6\nCYLQWhCE3YIgJAuCcFIQhA8v3B4pCMIWQRCOCYKwSRCEiMseM0UQhBOCICQIgtDH1WOp5cWsvsXX\nahlHfXw9joiICMTGxsJgMGDPnhlISFghy361UEgA51+o6yokAMAa1RnBZeq5cB2dI8qilXHodDpV\nFxLFNhu+PHcOADCpa1dVFRKe0v4ICSEAYAfwNmOsJ4B+AF4TBKEXgK8AbGCM3QJgE4CvAUAQhKcA\ntGGMdQcwHMC8+g6wa9cuL0X3juu1hVXbOK7nyJEj3DqI9OvX79J0twULhqG42PNP2isr8316/Qpv\nEeTmCAkAACAASURBVEUnTp/ee8NtHJEx8LeY4fRCC185aeUc2bNnjyamN6WlpaGgoIB3DMlMJhOO\nHFH/VMYvzp1DZUICHoyMxCNNmvCO4xNUTBDSADDGChljKRf+bQKQDKA1gEcALLqw2WIAD1/49yMX\nfgZjLAmAXhCE6Ovt32w2IzAw0EvpveN6F6zTytTP6upqrm0V33nnHTz22GOwWk2YPv1p2O1Wj/ZT\nXp6HiIhWMqfzPZOpBCEhjW+4zaUL150+7aNU7tPCm++LnE6nqj8Bv6i4uBhNmzblHUMyo9GIli1b\n8o4h2euRkRgUFYUfO3XyyoU1e/XqhdTUVNn3KwWtmSCkgREEoR2AXQB6AshjjIVfdl8lYyxCEITN\nAD5njB2+cPsmAF8yxg5dtS/VtobdfGYzfjz4Iza/uJl3FM0qLy9Hr169kJubi3vvHYnnn5/KO5Li\nPTCmO0J//ApNn3mGdxRCiEL885//xFtvvYU777zzUoFis9ng51d3AxEpaM0EIeSGBEEIBbAcwLuM\nsWoAkisBp9MpORcPJpsJIX7//8m9WsdxNSWNIzIyEitWrIBer8fOnT8hPn6py49ljGnmU3BRdP05\nMQeGwaHQVpJK+t2SQkvjUOuHOVfT0nMil3HjxmH9+vUAgMOHD+Ouu+5CVVUVLJbzXfLknA3AGMO8\nefM8/iaFiglCGghBEAwAVgD4jTG2+sLNxYIgNLlwf1MARRduzwUQc9nDW1+47RoxMTEYOnQoRo8e\njcmTJ18xn3rXrl2K/TnEPwTZx7Iv/Tx27FhF5fP055EjR15qBauEPGazGT/88AMAYO7cl7F378xL\n9586tQunTu2q8+eUlA3Yt2/Wde9Xy88JCSuwf/9cl7bP2vI9MnOS0ejCtxJKeP4u/iyKIl5//XXF\n5JHy87fffgun06mYPJ7+/PHHH2PFihUeP14pPycmJmLjxo2KyePpzxs3bsS///1v2fa3detWPPro\no8jNzcWpU6cAnG9wERAQgMTERIiiiBdeeOHS9t27d8eSJUvcOt6vv/6KiIgI6HQ6vPrqq/AUTXMi\npIEQBGEhgBLG2KjLbpsK4CxjbLIgCO8DaM8Ye0cQhKcB/JMx9pQgCH0BzLuwSPvqfTJRFL0yL9Tb\nEowJGL52OJLeSAJw/pMZNY7jakocB2MMr7zyChYtWoSIiJb47LMkhIc3r/cxShuHp1wai92KR7++\nCboP/oUW//2vb4K5SSvPCY1DWS6+D9XKWOQcx8V9iaKI7OxstGvXDo8//jhWr16N0aNH46uvvsLB\ngwcxYMCAS9s6HA7o9XV3jAOA/Px8vPjii9ixY8el28aMGYOPP/4Yer2epjkRQuomCMIgAP8E8FdB\nEJIEQUgUBGEIgNEAHhEE4TiAhwB8AQCMsVgARkEQTgCYDWDoDfbt5fTeERUSheKa4ks/q3UcV1Pi\nOARBwKxZs9C/f39UVubjl18eq3dBthLH4SlXxtJ+1YfQtWiMFh984INEntHKc0LjUBZBEFQ9FqPV\nihdTU5FpNss+joqKCgBA586d0bZtW8ybNw9r1qzBqlWrMHr0aISGhmLgwIGora291L2vefNrP6ix\nWq0YNWoUBEFAq1atsGPHDjzzzDMoKysDYwyffvrpDQuQ+lAxQUgDwBjbzxjTM8Z6M8b6MMb6MsY2\nMcbKGGP3M8Z6McYeYIxVXPaYfzPGul/YNolnfm9oFtIMxbXFqr/S6kV79uzx2ZWuPREQEIA1a9ag\nRYsWyMyMx+LFI+qc711amoW8vBQOCeXlcNiQmrrVpW39s5MwKG4uQhfPBxT4purivG2127hxoybm\n5icmJsJoNPKOIVl5eTkOHDjAO4ZkH2dk4Lc1a/DRWfkvNhkREYFt27YhIyMDU6ZMwdChQzFgwAA8\n9dRTKCoqulRshISEICQkBPv370dpaSnGjBkDxhgWLFgAQRAQGBiISZMmoXPnzjhx4gQYY1i+fDki\nIyOvOJ6n5zoVE4SQBinQEAh/vT+CwoN4R5FFQEAAwsKufxE+JWjRogXWr1+PgIAAHDy4ENu3X9vd\nyWKpQrNmHTikk5fZXIlmzTrWvyFjuGvRUJS/+QZCe/b0ei53iaKIqKgo3jFk0bhxY0mfviqF0+lE\nixYteMeQrLy8HJ07d+YdQ5JDVVVYlJUFQ/Pm+LaDd/5uDR48GK+99hree+89pKenIy4uDsD5byB0\nOh3S09MBAK+88gruuOMO3HXXXfj888+h0+kwdOhQAMCff/4JxhjS09PRrVu36x7L0xbDtGaCEOIx\nNbeGBYAOUzpgy0tb0KlxJ95RGpSlS5fihRdegCDo8e67m3DzzffxjsRNi43jcMfRuWh8KhU6f3/e\ncQghLhIZwx2JiThUXY1P2rTBOC8VExddnEJlt9tRUVGBZs2aoV+/foiPj8fnn3+OMWPGXLH9Bx98\ngO+++87tAprWTBBCiIssFss16ybUyGKxqK495PPPP4+PPvoIjDkxffrTKCo6A1F0wuGw8Y4mC7vd\n4tJ2hpKz+OuW72CYP0eRhcTFFpRqp5VxWK1WTbRLZoxp4jn5rbAQh0pL0dLfH5+0aeP149XW1gIA\nwsLC0LRpU6xYsQJHjhyBIAiXCol+/fpdWgcxceJElwsJqc8HFROEkAZp0qRJaBbSDEU1RfVvrGCz\nZs26tPBOTcaNG4eHHnoIFksVfvrpYSQlrUJ+vrKu6uqJigqjy9fT6Lf4VVQ89SQa/eUvXk7lPlEU\nMXnyZN4xZDFlyhRNrJX4/fffUVBQwDuGZElJSdi9ezfvGJLlVFRAv24dvu3QAWEGg9ePFxQUhPj4\neFgsFgiCgGcuu7BlSkoKGGOIj4+/Zh2EKyZNmiQpG01zIoR4TO3TnF5d/SruiLkDw/sO5x2lQaqq\nqsJtt92GU6dOoVu3BzFy5HrodOqf0+6KyH1zcP+mzxCakQ6Dwte6EELqlmk2o01gIHQ+bJwwdepU\nvPvuu4iNjcVTTz0l+/5pmhMhhLihWXAz1U9zUrPw8HCsX78eERERSE3djFWrPuEdySeE6hLcv/oj\nOH6ZSoUEISrWLijIp4UEALzzzjtgjHmlkPAUFROEkAZl+fLll/4dFRKF4lp1FhMbN278P/buOzyK\ncm0D+D3pFVJICCFAQhMOHEFQBEWqYEFQqgqC4KEoekTRAyoqRYoUIUhXepcWAkmoAlFagBACJEAI\nJCSwIY1N22TrzPcHgU9astmZ3XdneH7Xda5Dwu479zgz7L67z/uMXbeCNZfJZMLs2bPh4OCI/ftn\nIy5uA+tIFtHry5CYuNusx/570yhoXmqLGv37WzmVZf55jcjZ9u3bFVHedOzYMdy6dYt1DNFycnIU\nUd7E8zy2b9/OOoYkpLrWaTJBCHmqNG3a9P6f5bxmok6dOnbfCtZcH374IcLD79bsrl37H6Snn2Gc\nqOoMhjLUrduq0sd5nY9C85RDqLFquQ1SVR3P8xW2jpSTZ555RhGtYKtXr47g4GDWMUTT6XRo0aIF\n6xii6XQ6tGzZknUMSfzz9VAMWjNBCLGY3NdM7Lm6B+Fx4dj3wT7WUZ56giBg+PDhWLlyJapVq4nv\nv09A9eq1WMeSlq4Ub09uDEz6BjU/+4x1GkJIFZgEAX8XFKCTBQuc5YTWTBBCyBPcu1PoPwV4ym/N\nRFFRkSJKNwwGwwNdqDiOw5IlS9C2bVsUFWVj4cKeZrdYZa209NFz63EabvsSpvp1UPPTT62cyDKP\nu0bkqKCgQHbtkh9Ho9FAr5d/u2RBEBRxbi3PykLnY8fwSflN4uRM6uNBkwlCyFNh1apVj/xOjmsm\nNm3aBJ1OxzqGaIcOHUJGRsYDv3NxcUFkZCSCg4ORkRGPtWuH2/2bwoICFZKSKv9my/XaCbx4ZhN8\n1q8BbLxg0xw8z2PNmjWsY0hizZo1dn/emGPnzp2KeBOekJCAxMRE1jFEURsM+C4pCTh8GF19fFjH\nEe1xr4diUJkTIcRici9zKjOUwWemD7QTtPfvLkrYO3fuHNq1awetVou+fWeje/evWUcSRTCZ8Nq0\n5nAZ1g/BP/3EOg4hpIq+TE1F+M2b6Fi9Og63bKno1wsqcyKEkCpwd3aHs4MzivXy74qkJC1btsTa\ntWsBADt2jDfrk397Vid6Ejw8gFqTJrGOQgipoksaDRbeugUHAOENGyp6ImEpmkwQQhStstKNQM9A\nWayb2L59uyJawZ4/fx5nz56t9HH9+/fH999/D0HgsWxZf2Rn21edslZbjLNnK28P6XQ7BR0Pz4fr\nmpXg7LCzkCAIiilvWrt2rSLWEx04cEARrWBv3ryJgwcPso4h2oxr12Dcvx8jatVCS5l30LPWtU6T\nCUKIonXo0KHCvw/wDJDFuolWrVopohWsj48Pnn32WbMeO3nyZPTs2RM6XTEWLHjT7IXOttK4cceK\nHyAIaLtuCNQD30f1du1sE6qKBEFAx46V7IdMvPLKK4poBduwYUPUrl2bdQzRXFxc0M5Oz/uqmN+w\nIf7Xsyd+CgtjHUW0yl4PLUVrJgghFpP7mgkAeGvjWxjZeiR6PdOLdRTyGCUlJWjTpg0uXbqEJk1e\nxZgxe+HgII83jP6HF6Jz7ExUT70CRw8P1nEIIaRStGaCEELKmVsmYO/tYXNzcxXRHlKr1SI/P7/K\nz/Py8kJMTAx8fX1x+fJBbNv2Pyukqxq1uvJzy6HwNrpF/QD8vtRuJxJKKKUBAJVKBZ7nWccQraCg\nABqNhnUM0XieR1ZWFusYklDKNWLt/aDJBCFEkaKjo816XKCHfbeHjYmJUUSby6NHj6KwsNCi54aG\nhiIiIgKOjo748895OHGCXY1/QYEKmZkJlT6u5YbhKOraBX49etggVdXxPI89e/awjiGJ6OhoRSyK\n3b9/PwwGA+sYoiUmJiIzM5N1DNE0Gg2OHDnCOoYkzH09tBSVORFCLKaEMqc5x+cgqzgLv7z2C+so\npBKLFy/Gp59+CkdHF/zvf38hLOxF1pEeq1r8Vry55RO4Xb0Mlxo1WMchhFQRLwhwUMAE1RJU5kQI\nIVUU4BGAnNIc1jGIGUaPHo2RI0fCZNJj0aJeZpUb2VxZMV7d+jm0c2fTRIIQGTpXXIymp05hd14e\n6yiyQZMJQoiiLF68uEqPt9c1E2vXrlVEK9i4uDicOXNGsvEWLlyI9u3bo7g4B4sWvQW9vkyysSui\n0dzBqVObKn1cky2fQdfsGQQOG2aDVFUnCAKWLFnCOoYkli5dqohWsJGRkYqozb927Rr27ZP3PWEE\nQcB/k5ORsm0bDivg7uNVfT20FJU5EUIsZo9lTtnZ2ahZs6bZjz+jOoNRUaMQPzLeiqmqrqr7Ya9y\nc3Ph7+8PBwfpPrvKy8vDc889h5s3b+L559/F8OGbrF4zr9eXwWTSw929+hMf437lCPos6wWHi+fh\nHhpq1TyWEgQBubm5CAwMZB1FNKVcI0rZj4KCAri5ucHNzY11FIttzcnBgAsX4KfT4Vq3bvBxdmYd\nSRRLzi0qcyKEPPWq+g9ngId9fjOhhDcXABAQECDpRAIAatSogZiYGLi7u+PMmT+wb99MScd/HBcX\n9wonEoJBj04bh6Pou2/sdiIB3H2joISJBKCca0Qp++Hj4yPriUSZyYSvr10DHB0xo2VL2U8kANud\nWzSZIIQoQkqKZXdIvnfTOnv5hiUzMxNlZbYp3bGmkpISqFQqq43/73//Gxs2bAAARER8hwsXrNOt\nRBAEs+6+HbrrO7j4e6LWt99aJYcULL1G7E1qaqoiWsHm5OSgQAGlNEajEdevX2cdQ7RfMjORkZqK\nFp6e+E+tWqzjiGLra50mE4QQRTh16pRFz/Nw9oAD54ASfYnEiSxz7NgxOCvgE7HTp09bfYLWu3dv\nTJo0CYCA339/D1lZlyTfRmFhFtTqmxU+xuXWBbzy9zJ4rFsN2GkHGJ7nJV27wtLJkycV0Qr2+PHj\ncHJyYh1DtKSkJEXcH+MZjkPNW7cQ3rAhHGV+fln6emgpWjNBCLGYPa6ZsETY/DD8OeRP1PetzzoK\nqSJBENC3b19ERETA3z8UEyachaenry0DoNPM5+HRoz1CFsy33XYJIZIz8DycJS7LlBtaM0EIIRaw\n13UTpHIcx2HdunVo3rw58vPTsXRpX5hMRpttP3D/HPgZ7yB4ziybbZMQYh1P+0TCUvRfjRAia3Pm\nzBE9xr11EywtXbpUEa1gjxw5gtOnT9t0m56enoiOjoafnx9SUg5j69axoscsKsrGiRNrK3yM451M\nvLpvKhxXLYeDq6vobVoDz/P45Rdl3JBx7ty5imgFu2nTJkW0gk1OTkZMTAzrGKKVlpbarIWqtUnx\nemgJKnMihFjMHsqciouL4e3tLWqMoTuHokO9DvjouY8kSlV1UuyHPSguLoaXlxeTmvajR4+ic+fO\nMBqNGDx4Odq3/4/FY5lMRphMeri4eDzxMS/8+ioCmgciZPNGi7djC0o6t2g/7EdZWRmcnJxkv8ZL\nEARoNBp4eXmxjiKaFOcWlTkRQp46UrwoB3oGMi9zUsKbC+DufrBaHNu+fXssWrQIALBx4ye4du24\nxWM5OjpVOJHwObEW9W+fR9Ay+78BnJLOLSVQyn64u7vLeiJRbDRiZkYGynheERMJgN25RZMJQogs\nnTt3TrKxAjzYlTmlpKQoohOKWq1Geno66xgYOXIkRo8eDZPJgMWL38adO5lVer4gCMjMrPjc4jRq\ndNvxFfS/hsOp+pPvPcGalNcIS+fPn1dEeVNmZiby8/NZxxBNp9MhOTmZdQzRpmdk4Jv9+zHkkvRd\n4GyN9bVOkwlCiCylpaVJNhbLNROXLl2Cu7s7k21LKSkpCZ6enqxjAADmz5+Pjh07oqQkDwsXvgW9\nvtTs5xYV3YbBoK3wMf/a/AlKX2iFgIEDxUa1Gp7n7WJyJ4Vr167B0dGRdQzRLl68aDfXiBhXr16V\nfUvba2Vl+CUlBVCrMa5uXdZxRJPy9dAStGaCEGIxe1gzIYXolGgsPL0QewbtYR2FSCQ/Px+tW7fG\njRs30KpVX4wcuVWS8iuPi3vxzqr34HQ5CW61a0uQlBBia70vXsTOvDx8WLMmVjdtyjqOXaE1E4QQ\nYgF7WDNBpOXv74/o6Gh4eHjg7NntiImZJn5Qgw5dN49CyZSJNJEgRKb+VKuxMy8PXo6OmFGf7i0k\nBZpMEEJkZdo0Cd4UPoRFmdP8+fMV0Qp23759Nm8Fa65mzZph8+bN4DgOu3b9iMTEXU98bGFhFo4e\nXVHhePW3fwWEBCLoiy+kjioZnucxffp01jEkMWPGDEWslVi1apUiWsEmJiZi9+7drGOIFpGZCWzb\nhu/q1kUtO23pbC5rvB5agsqcCCEWY1HmpNfr4eLiIumYGr0GAbMDoPlOY7NORNbYDxbksB/Tpk3D\n999/DxcXD3z77SkEBzd75DGCIIDnjXB0fHx3Gtcb8egf3gnC6Th4/utf1o4sihyOiTloP+yL0WgE\nx3GKWL8Sc/s2ugQEwE3m+2KNc4vKnAghimeNF2VPF09wHAeNwXZdlZTw5gKQx35899136NevH/T6\nUixY8CZKSh7tqHP3TdLjJxKCyYRX1g2F+rPP7H4iAcjjmJiD9sO+ODk5KWIiAQBvBgXJfiIB2M+5\nRZMJQogsHDt2zKrjB3gE2GTdRGJiIkpKSqy+HWvLyclBSkoK6xhm4TgOa9asQYsWLXDnTgaWLOkN\nk8kA4G5Z0LVrJyp8fvCeafB21iN42k+2iGsxa18jtnLixAlFlDddvXoV2dnZrGOIVlpaioSEBNYx\nJKGUa8Te9oMmE4QQWbD2vRhstW4iOztbEe0h09LSEBgYyDqG2Tw8PBAVFYUaNWogNfVvbN48BgBQ\nXJxT4c3pnHKvocufc+CyZgU4O26HyfM8SkvNb4Frz4qLixXxCXhmZib8/PxYxxAtIyMD/v7+rGOI\npoT7+dxjb/tCayYIIRZTSmtYAHhzw5v49IVP0aNxD9ZRiBWdOHECHTt2hMFgwKBBS9Ghw6gKH99u\n7ivwbdcYIasqXpxNCLFPgiBApdejtswXW9sKrZkghCiOrSYrgZ6ByNHkWG18pUy6BEGQ9b60a9cO\nS5cuBQBs3Pgprl79+4mP9YtdhpCC66i18FdbxbOInI/HP9F+2B8l7EtUfj7CTpzAzzdusI4imr0e\nD5pMEELs2pQpU2yynQAP65Y5zZ07VxGtYGNiYhAfH886higfffQRPvroIwiCCUuWvIP8/EffZDgU\n56Lb7m/BL1kIRzsuS+N5Hj/9ZN9rOcw1depURayVWLFihSJawZ49exZRUVGsY4ii43l8cfEiDH/8\nAQ8FlM49/HrIcRw2btzIKM0/ctjrLIcQYv9sUebE8zwcHKz/ucesY7OQq8nF7O6zrTK+rfbD2pSy\nH0ajEd27d8fhw4dRq1YzfPttHFxd/3/S0GLZO6hdS0BIVCTDlOZRyjGh/bAv9/5tt1W7bGuYnZGB\ncdevo4mbG863aQNnmR8Xnufh6OiIqVOnYsKECXjttdewf/9+3Lx5E7UlupEmlTkRQhTHVi/K1v5m\nQglvLgDl7IeTkxO2b9+OsLAwZGUlYfny96HTlcJg0MLz7Hb869pfCFy1nHVMsyjlmNB+2BeO42Q9\nkcjW6/FTeWlTeOPGsp5IcByHESNGwMHBAWPGjMH333+P8+fPY9++fQCAkJAQSUqgLP1mUL7/ZQkh\ninbgwAGbbq+mV03cLrkt+bgnTpxQRHnTzZs3kZyczDqGaAaDAYcPHwYA+Pr6IiYmBl5eXjh/fjci\nIgaisHALWp2YDcOXY+ASEMA4bcVsfY1Yy8GDB8HzPOsYol24cAFZWVmsY4hWWFiIuLg41jFE++H6\ndRTHxeEtf3+8JsOuWs2aNUP37t0BAJ988gmWL1+OAwcOIDw8HADQokUL6PV6qNVqAECTJk0s3lZE\nRAQ4joOThR3raDJBCLFL7u7uNt1eqE8o0gvSJR/XZDLBy8tL8nFtLTc3F3Xr1mUdQzS1Wv1AOUCT\nJk2wdetWODg44PDhSISGOqHpwN7wu3OHYcrK8TyviBbDAODm5qaIT/OLi4tl1S75SXJzc1GvXj3W\nMUT7vEYNvBoail8aNGAdxSIzZszAgQMHsHLlSgwcOBANGzZE9+7dUVBQAJ1OBwBwdXWFj48PDhw4\ngJSUFCxYsMDs8ZOSktCoUSNwHIc+ffoAANauXWtRVlozQQixmJJaw5YaSuE30w+lE0rhwMn/jQ2p\nml9//RVjxoyBq6srDi9ahHbz5wPnz7OORQh5ivXp0wcRERFIT09H3bp170+6BUHAhQsX8Oyzz+Lz\nzz/H/PnzMWzYMKxevRpXrlxB48aNHzueWq3GiBEjsH379vu/++qrrzBt2jS4lrfOtWTNBE0mCCEW\ns8ZkwmAwwNnZWdIxzVXrl1o4M+IMalcTv5CN5X5Iied58Dxv8dff9qSiYyIIAkaPHo2lS5ciMDAQ\np8rKUC81FbDDT5qVcm4paT+cnJxkvb7gHiUdE6Xsh4uLC4C733JnZWUhJCQE3bp1w/79+zF9+nRM\nmDABR48excsvv3z/HLx3Tt573vTp0/Hjjz/eH/fVV1/FunXrEBQU9Mg2aQE2IUT2Zs6cyWzbYT5h\nSCtIk2SsRYsWKWKtxN69e3FeAZ/Qq1QqrFu37ol/z3Ecfv31V3Tt2hU5OTnoBaB4zx7bBTQTz/OY\nPds6Hcdsbfbs2YpYK7Fu3TpFrJU4e/asItbhaDQaLFy4kHUMScycORNFRUUAgLp166J27drYsGED\nDhw4gC1btuC7775DjRo10L59e5SUlKC0tBQAUL16dezatev+Oogff/wRAQEBiIuLgyAIOHDgwGMn\nEpaibyYIIRZTUpkTAAzaMQivN3gdg1sMZh2FMKJWq9G2bVukpKSgZ716iLh2DY4K6E9PCJGvv/76\nCx07dsTMmTMxbtw4dO7cGUeOHIFKpULNmjXv/xuVnJyMf/3rXw88d82aNRg8eLDZ35zRNxOEECJC\nmE8Yrquvs45BGPL19UVUVBR8q1XD7hs38M0337CORAgxQ4ZWiz4XL+JK+afzStKhQweMHj0a48eP\nR1JS0v2OdMHBwSgsLETr1q0B4P5E4uOPP4ZWq4UgCBgyZIjVS/BoMkEIsQs7d+5kHQH1feuLLnM6\nePAgSkpKJErEzrVr1xRR3qTVarGniuVKjRo1wo6ICDgBmDNnDlasWGGdcFVkD9eIFHbt2qWI8qa4\nuDioVCrWMUTLy8vD33//zTqGaONSUxGxcycmp6ezjiLa4671RYsWAQCaN28OrVaLsWPHAgD8/PwQ\nHx+PNm3a4MaNGxAEAUuWLLm/oNoWaDJBCLEL9tCKUIo1E/7+/opoBavT6Z7YEURONBoNmjVrVuXn\nderSBUtatQJw91O+2NhYqaNVCc/zCAsLY5pBKnXq1FFEK1hXV1fUqlWLdQzRLL1G7MnfBQX44+ZN\nuISG4uf69VnHEe1Jr4darRbA3dbpc+fOhbOzM/bt2wdBEBAXF8esfTetmSCEWExpaybSC9LxyqpX\nkPllJusoxB4sWoSxS5ZgXlIS/Pz8EBcXh4YNG7JORQj5B14Q8EJ8PM6WlGBivXqYpJBJ95NkZWXh\n6NGj6Nevn1XKl2jNBCFEduypJCikWghyNDnQGXVVfq5Go4ESJlZGoxFlZWWsY0hC9LnVpQtml5Sg\nR48euHPnDnr27ImCggJpwlWBPV0jYihlP8rKymA0GlnHEE0QBEUck9W3b+Nsbi5CXF0xTuY31jTn\neNSqVQv9+/e3q1bENJkghDC1ZMkS1hHuc3JwQm3v2sgozKjyc9esWQONRmOFVLZ14MABpKamso4h\nmkqlEr/GoEkTOOp02Dh9Opo3b47Lly9jwIABNn0jyfM8li5darPtWdOyZcsUsVZi69atyMvLYx1D\ntISEBMTFxbGOIdqd4mI479+PWfXrw0Pmndfs6fWwKqjMiRBiMaWVOQHAq2tfxbiXx6F7g+6sTyqu\n4QAAIABJREFUoxB7MHAg8OqrSO/SBW3atEFubi5Gjx59fzEkIYS9LJ0OQS4udvVpvVxRmRMhhIhE\n7WHJAzp3Bg4dQmhoKHbu3AkXFxcsXrxYMTfFIkQJarm60kSCIZpMEEKY2LBhA+sIjxXmG4Y0tfkd\nnSIjIxVxp+ukpCQkJCSwjiGaRqORtoVqly7AoUOAIOCll17CypUrAQBjxozBvn37pNvOY9jrNVJV\nmzZtgslkYh1DtCNHjuDWrVusY4imUqlw6NAh1jFEMxqN2Lx5M+sYkpD7tU6TCUIIE88//zzrCI9V\n1fawTZo0gbe3txUT2Ya7uzuaN2/OOoZoRqMRbdu2lW7A+vUBZ2cgJQUAMGjQIEyYMAE8z2PAgAFI\nTk6Wblv/wPM82rRpY5Wxba1Vq1aKuIt4cHAwgoODWccQjeM4vPDCC6xjiGY0GtGuXTvWMSRhr6+H\n5qI1E4QQiylxzUTczTh8tucznB5xmnUUYi+GDgVefBH45BMAd9/ov/vuu9i2bRvq16+PuLg41KhR\ng21GQp4SBp7HAbUab/j5UWmTFdCaCUKI3cvJyWEdoUJhvuatmbhz5w4MBoMNElmXTqdj0u7UGqx2\nbnXpAhw+fP9HBwcHrFmzBq1bt8b169fRp08f6HRVbyf8JPZ+jZgrNzdXEe2Si4qKFNEuWRAE5Obm\nso4h2lKVCj3++gsjrlxhHUU0pVzrNJkghNjU1q1bWUeoUIBHAHRGHYp0RRU+LiIiQhG95mNjYxXx\ngqZSqXD06FHrDN65893JxD/amnp4eCAyMhLBwcH4+++/8fHHH0vyxpnneWzbtk30OPZg69atiphM\nREdHo7S0lHUM0c6dO4eU8nI9ucrT6/HDpUvAyZPopYBvA+399dBcVOZECLGYEsucAKD54ubY0GcD\nWgS1YB2F2ItGjYDt24Fnn33g1/Hx8XjllVdQVlaGmTNnYty4cYwCEqJ8n6akYLFKhW6+vtj37LNU\n5mQFVOZECCESqO9bn9rDkgfd+3biIa1bt8b69esBAN988w0iIyNtnYyQp8KFkhIsVangCGBew4Y0\nkbAjNJkghNjE77//zjqC2Srq6LRp0yaUlJTYOJH04uPjER8fzzqGaAUFBdiyZYv1N3SvRexj9OnT\nB9OmTYMgCBg0aBDOnTtX5eEFQZDVNVKRFStWKOJO19HR0YpoBZueno79+/ezjiHa7OvXwe/di09q\n10YzT0/WcURRyrV+D5U5EUIsVpUyp5s3byIkJMTKiaQRfjIc1+5cw4I3Fzzyd3Laj4pkZWUhMDBQ\n9i07NRoN9Ho9fH19rbuh7GygSRMgLw94zH8zQRAwZMgQrF+/HnXq1MGpU6cQFBRk9vA8z+P27duK\naD2qlGtEKfuRn58PDw8PuLu7s44iSrFWi7mXLuG/zZvDz9mZdRxR7PncsqTMiSYThBCLKXXNROTl\nSPx+9ndEDYxiHYXYk2bNgDVrgCf0hNdqtejatSuOHz+ONm3a4MiRI7J/A0cIebrQmglCiN1JT09n\nHaHKHrdmIisrC1qtllEi6ZSWliI7O5t1DEnY/NyqoNQJANzc3BAREYF69erh1KlT+Oijj8zqZiTH\na+Rxbty4oYjypvz8fBQVVdzNTQ5MJhMyMjJYx5CEUq4RpezHw2gyQQixqiNHjrCOUGVhvmFIL0h/\n4I3gn3/+KfuSIAA4efKkpPdEYEWlUuGKrfvMP2ER9j8FBgZi9+7d8PLywubNmzFlypQKH8/zPGJj\nY6VMyczhw4cVsShWjv9mPc6FCxeQn5/POoZoGo0Gp06dYh1DEko5tx5GZU6EEIsptcwJAAJmB+DC\nJxcQ5GV+3TtRuPx8ICzs7v9XUrMdHR2NXr16ged5bN68Ge+++66NQhKiHAaeh7MDfe5tS1TmRAgh\nEgnzCUOa+vEdnchTyt8faNAAOH260of26NEDc+bMAQAMHTpUMZ+sEmIrp4uK0DAuDlsVcFNNpaPJ\nBCHEKsLDw1lHECXMNwzX1dexfPlyFBcXs44j2tGjR3HmzBnWMUTLzc29f18HJipZN/FPX3zxBUaM\nGAGtVotevXohMzPz/t/xPI/58+dbK6VN/frrrzCZTKxjiLZ161ZFtIK9cuUK9uzZwzqGKIIg4LOL\nF5GxdSviFfDvr9xfDytDZU6EEItVVOakVqut367Tir49+C08XTzx6b8/lfV+3KNWq+Hj4yP7mna9\nXg+9Xg8vLy82AaKigLlzzZ5QGAwGvPbaazh8+DBatGiBo0ePwsvLC4IgoKCgQDHnFu2H/SgpKYGL\niwtcXFxYR7HYxuxsDLp4EQFGI6517QpvJyfWkUSR07lFZU6EELshl384nyTM926Zk9z34x5fX1/Z\nTyQAwMXFhd1EAgA6dABOnQLM7Ozl7OyMbdu2oVGjRkhMTMQHH3wAnufBcZyizi0lUMp+eHl5yXoi\noTGZMO7aNcDRETOffVb2EwlAOefWk9BkghAiqaSkJNYRJOFW5IbU7FTWMUQrLCx8oLxGrgRBsI9z\nq1o1oHlz4MQJs5/i5+eHqKgo+Pj4IDIyEiNGjLBiQNtJTk5WRCtYlUqFO3fusI4hml6vR0pKCusY\nos3MyMCtK1fQ2ssLH1bhxo/2yC7+zbIBmkwQQiSllH88i24UIb0knXUM0RITE+Es87vFAnfv82E3\nb/jMaBH7sMaNG2Pbtm1wcHDAypUrsXr1autks6GLFy/CQQGdduLj4+Hm5sY6hmhXrlxRxNqV5x0d\nUUetxq+NGsFB5t+mKuX1sDK0ZoIQYjElt4bVm/TwnuGNkm9L4Owo/zfjREIHDgCTJwNHj1b5qcuW\nLcPHH38MZ2dnHDx4EB06dLBCQELkjRcE2U8k5IrWTBBCiERcHF0Q5BWEzCL5lwgRib38MnDuHFBS\nUuWnjho1CmPGjIHBYECfPn1w7do1KwQkRN5oImEee/kwjyYThDwFOI5z5TjuNMdxZzmOu8Jx3Nzy\n34dyHHec47jzHMdt4jjOqfz3LhzHbeY47gLHcUc5jqtb2TZ+/vlna++GTSxcuPB+K9gwn7vtYeXo\n4MGDOG3G/RDs3e3bt7Fq1SrWMR7k4QG0agUcO2b2U3iex8yZMwEAc+bMweuvv478/Hz07NkThYWF\n1kpqFbNmzVJEOc3atWsV0Qr2woULiIqKYh1DNI1GgwULFrCOIQlrvh6mpqbef41ycHBAkyZNrLYt\nc1GZEyFPCY7j3AVBKOM4zhHAMQDfAvgSwApBECI5jgsHkC4IQjjHcWMB1BUE4QuO494BMEwQhLcf\nM+b9MqeysjK4u7vbboes5J/7MSxyGF4KeQkjWstvwWxZWRnc3Nxk38GJ53kYDAa4urqyjvKgiRPv\ndnQqnyCY45/nVmFhIV566SUkJyeje/fuiI6OhpNMutYo8VqXM71eD0dHRzg6OrKOIoogCNBqtYo4\nJlKfW1u2bEHt2rXx8ssvw9PTE6WlpRAEAXv37sUbb7yBI0eOoGPHjpJsi8qcCCFPJAhCWfkfXXH3\n2s8G0FYQhMjy368H0KP8zz0ArCv/cySAdlwl70qV8AIAPLgf9X3qI61AnnfBdnd3l/1EArj7yZvd\nTSSAuzevq+Ii7H+eW9WrV0dUVBRq1KiB/fv3Y+zYsVIntBolXuty5uLiIuuJRIHBgIlpaSgxmRRz\nTKTYj8mTJ+PHH38EACxfvhzt27eHwWDA1atXAQA//PADXn/9dXh7e6NTp05MS55oMkHIU4LjOAeO\n4xIA3AZwBIAaQN4/HnITQEj5n0MAZAJA+VcP+QACHzfuqVOnrJTYtpKSklDyUA18mG+Y7CYT+fn5\niqjD53nevsu02rYFkpOBgoJKH/qkayQsLAwRERFwcXHBggULsGTJEqlTSurMmTOKKG9KS0tDbm4u\n6xiilZWV4fz586xjiPbTjRuYsncvhl6+zDqKaFK+Hnp7e+Onn35CWlra/TuaN2vWDMHBwRgxYgSm\nTp0KtVqN27dvAwB69+4t2bariiYThDwlBEHgBUF4DncnCq8A6FyFpz/xI24lvCgDwI0bN+Dp6fnA\n7+S4ZiIlJUURN0jKzs6277ajrq4wvfACsrduRXp6+hP/d/36dSQlJT3x70NCQjB9+nQAwH//+1/8\n+eefjHfsybKzs2X9Cfg9qampqF69OusYoqWlpcHb25t1DFGulJZifmoqoNPh+3r1WMcRTcrXw3vf\nVtavXx+Ojo7YsWMHrl69ihMnTuC3334DcPceNh4eHggPD0dkZCRSUy2/N5IgCNi6datFz6U1E4Q8\nhTiO+wGAAOBzQRACy3/3PIAZgiB04zjuTwDjBEGILy9vygYQJAgC/9A4QosWLdCyZUuEhobCx8cH\nLVu2RKdOnQAAR44cAQDZ/hy1PwofRnyILf/bgq71uzLPQz/b1887Bg+G4eBB+A4fDgBITE8HALQI\nDa3yzysPHcIfx4/Dy8sLycnJqFOnDvP9o5/pZ2v//M21a4hr0AAjatXCwKws5nns7efs7Gy89957\nmDZtGl566SV06dIFgiCA53ksX74cI0eOxMaNG/H+++/fL2u9977enPFTUlLw22+/IT4+Hv9U1TUT\nNJkg5CnAcZw/AJ0gCCUcx7kD2AdgJoBRAFYKgrCzfAF2hiAIczmO+wpAiCAIX3Ic1xt3F2D3esy4\nsr/PhCAIFa4tOJx2GAN3DETc8DjUrV5pUytm7h0HJayTqOyY2AtTaSnK6tSBrn9/+Ldq9cjfV2U/\nTDyP7uHhOHTlClq3bo3jx4/DxcVF6sgWkcvxqIxS9gNQxr7syc/Hm+fPo5qTE66++CIC7eR8t4Q1\nj8fgwYOxfv16FBYWguM4VKtWDe+99x42bdqE559/HvHx8dDr9cjJyUFISAgmTpyISZMmPXas7Oxs\nTJkyBYsXL37g9y1atMDMmTPRrVs3ODo60gJsQshjBQP4u3zNxFkABwRBiAYwBsB4juPOAwgCcK8v\n30IAtTmOuwDgfwA+Z5DZJsLDw++32XuczmGdMbbtWPTb0g86o86Gyapm7969OHPmDOsYoqlUKqxY\nsYJ1DLM4enig5LvvwO3aBTw0qeZ5HtNiYswfy8EBf4wciVrVqyM+Ph5jxoyROq7Fpk+fDp7nK3+g\nnVu5cqUiWsEmJCQoohXsfpUK2LoVP4aGynoiAQBTp0612tjr1t3theLj4wNvb2/8/PPP2Lx5M27c\nuIG4uDgAdycDtWvXxkcffYTJkyejoHwtl06nQ3h4OFxdXcFxHIKCgrB48WJ4eHhgwYIF0Ol0EAQB\n586dw2uvvYZ58+ZZlJG+mSCEWEwJ30yYTKZK68AFQUD/rf3h7+6PZT2X2ShZ1ZizH3Jw7yt8ueyL\nYDKhsH596F56CTU7P7gMycTzcHSo2md2p9LS8PKsWTDyPNatW4cPPvhAyrgWUcq5pZT9uDexs+s1\nRWaKzc9HO19fuMh8X6x9bsXFxaFt27bYsWMHevfu/UBJ044dO9C3b1+cPHkSbdq0eeJ58fnnn2PC\nhAkIDHxsLxUAd/fDycmJvpkghJCqMOcFgOM4rHp7Ff7K+AsrE1baIFXVKeFNEnD3v7Wc9oVzdIRx\n5kx47NsH3mB44O+qOpEAgDZhYQgfMAAAMGLECFy8eFGSnGLI6XhURCn74eDgoIiJBAB09PeX/UQC\nsP659eKLL6Jp06bo06cPTCYT0svXW/3888/3b1rXtm3bB86LN998E+fOnYMgCBAEAfPnz69wIgFY\nvh/yP4KEEGKB06dPP9IKtiLert7YMWAHvjn4DeJV8ZU/wUaysrJwWQEtFY1GI/766y/WMSxS4733\noK1TB9nlZU2Hr1wRNd7oTp3w/gsvQKvV4u2330ZRUZEUMassNjZWEa1gL126dL99ppwVFxfbd7tk\nMwmCgMNVvEeLvbLlfiQmJgIAnnnmGSxcuBAA8O2336JZs2b3H7Njxw7wPA9BEBAdHY0WLVqYNXZc\nXBxKS0stzkaTCULIU0mj0TzSCrYyTQOaYnGPxei3tR/yS/OtlKxqVCoVgoODWccQLT8/HzVq1GAd\nw2LO8+fDJzYWuuJiOIhciMlxHJYPGYKmQUG4fv06hgwZwuSGVHIqN6tIXl6erM+te7KyshRxrZeW\nllb5314CODs7Y+PGjbh27RrmzJkDAPjqq6/u3w1bEIQHSqCqoqysDB4eHhZnozUThBCLKWHNhCXG\nHRiHxOxExAyMgaOD/N9sEWnc7tIFvNGIYInWOVzNzkaradNQotNh9uzZ+PrrryUZlxAWBEFAulaL\nMIXc5ZoVa3fy4jiO1kwQQkhFpCjbmN51OgwmAyYemShBIsvcW6isBEoopQEA93nz4HfmDErz8ip/\nsBka1ayJtcOGAQC+GT/eZmVgSjkeJpOJyTc61qCEY7IjLw+NTpzA5PJ6fzljeTyknEhItR80mSCE\nPFXmz59fYStYczg5OGFzv81Ym7gWu67skihZ1cTExCAhIYHJtqWkUqmwatUq1jFE43keC3bvxp2e\nPVG4bZtk4/Z+7jmMffVVmHge/fr1Q1b5jb2sacaMGYqYqK5evRoqlYp1DNHOnj2LPXv2sI4hitZk\nwtiLF2Hatg2Bzs6s44g2bdo01hEkER4eLmqtxD1U5kQIsZgcy5yk/Ir45M2T6LWpF459dAyN/BtJ\nMqa5lHDTqnuUsi+CIECnUgGNG0M/Zgyqld/pWiyjyYROv/yCY9euoV27doiNjYWzFd+QKel4KGU/\nAHnfkHL6jRuYkJaG5h4eSHj+eTjJvIOTks6th/eDypwIIaQSUr4AtA1piymdp6DPlj7Q6DWSjWsO\nJbyQ3aOUfeE4Dm61a+PORx+hbPt2ycZ1cnTEtlGjEOjtjRMnTmD8+PGSjf04SjoeSsBxnKz35ZZO\nh+k3bgAA5jdqJPuJBKCsc0sK8j+ihBBihtjYWNHlTY8zqvUotK7VGiN2j7BJfXZ6erpd3HtALL1e\nj/3797OOIYno6OgHfg6cPh1e2dm4c/68ZNsIql4d2z/+GI4ch3nz5mHHjh2SjX3Pnj17FFGbf/bs\nWUWUN6nVahw7dox1DNF+uH4dmmPH0KdGDXTx9WUdR5SHr3W5Onz4sCTlTffQZIIQ8lRwd3eHt7e3\n5ONyHIclPZbgUt4lLDi1QPLxH1ZcXIz69etbfTvWVlRUhIYNG7KOIRrP84/cCMrJ2xtF48ZBiIwE\nJJxgtm/YEDP79gUADBkyBCkpKZKNDQD+/v6KaAVrMpkQFBTEOoZoarUajRs3Zh1DtG9r1kSvZs0w\nu0ED1lFECwgIYB1BEp6enqJawT6M1kwQQiwmxzUT1pKmTkPbFW2xfcB2tK/bnnUcwphgNKKoXj1o\nO3dGzQ4dpBtXENBn6VLsPHcOTZo0wZkzZ6hnPyFEMrRmghBCHqLVam1SfhTmG4bVb6/Gu9veRVax\n9B13TCYT9Hq95OOyoNVqWUeQREX7wTk5QTd1Ktz37gVvMEi2TY7jsHbYMDQICMDly5fx0UcfiT6/\nlXI8dDqdIrpQCYKgmGNC+2FfrPV6SJMJQoii/f7779BobLM4+o1Gb2BU61EYsG0ADCbp3kACwL59\n+5CcnCzpmCyoVCps3ryZdQzReJ5HeHh4hY8JHDoU+oAAZO/bJ+m2vd3csGv0aLg7O2PLli1YvHix\nqPHmz5+viDfhmzZtQnZ2NusYoiUkJCA2NpZ1DNE0Gg1+++031jEkMW/ePNYRJLFs2TKUlZVJPi6V\nORFCLEZlTo/iBR69NvVCQ7+GCH+94jebRPnu7N0Lt/794fLTT3CSsEYZADaeOoVBK1bAyckJR48e\nxYsvvijp+ISQpw+VORFCCGMOnAPW9V6HqJQobLqwiXUcwpjf66+juEUL5ERGSj72wDZtMLpjRxiN\nRrzzzjvIzc2VfBuEVNX1sjK8npiIxJIS1lGIjdBkghCiSHv27LFKK1hz+Lr7YvuA7fh87+e4kH1B\n1FhXrlxBYmKiRMnYKSsrw+7du1nHkMSWLVuq9HiPBQvgFxcH7Z07kmeZN2AAnq9XD7dv38aAAQOq\n1Np127ZtimgFe+zYMdy6dYt1DNGys7Nx5MgR1jFE+zolBft27sQvmZmso4hW1WvdXkVHR0vaCvZh\nNJkghChS3bp1rdIK1lwtglpg3mvz0GdLHxRoCyweh+M4NG3aVMJkbGi1WrRq1Yp1DNF4nkfz5s2r\n9Bzv556Dunt33JHwRnb3uDg5IeKTT+Dn6YkjR47ghx9+MPu5TZs2VUQrWB8fHwQHB7OOIZrBYEDL\nli1ZxxDlsFqNiNu34fbMM5ihgBbWzZo1Yx1BEqGhoZK2gn0YrZkghFiM1kxU7r8x/8WNwhvY+d5O\nOHD0+c3TquzGDXBNm8Lw1VfwrlNH8vH/vHQJ3efPBy8IiIqKQo8ePSTfBiEVMfI8WsfH47xGg6lh\nYZhQrx7rSMQCtGaCEPLUKywstKvSjV9e+wX5ZfmY8feMKj3PYDCgRCE1x2q1mnUESYjZD/d69XBn\n8GBorPDtBAB0bdoUU3r2BAC8//77SEtLe+Jj1Wq1TdolW1tJSYki2iULgqCIa2R5VhbO376NUDc3\njA0JYR1HFCUcD+Du66EtOrXRZIIQoih//PEHdDod6xj3uTi6YGv/rVh0ehH2X9tv9vMOHTqETAXU\nHKtUKuzfb/5+2yue57F27VpRYwTOmoVqN29CbaUWv9++8QbeaNYMxcXFePvtt5/YG3/dunWKmExE\nRkaisLCQdQzREhIScP78edYxRDOUlcHt778xp0EDuMu8fG7NmjWsI0hi06ZNNplwU5kTIcRiVOZk\nvtj0WLy77V2cHH4SoT6hrOMQRrImTYLz6tWo8e23AFelSgKzqDUatJw6FRl37mDo0KFYtWqV5Nsg\n5EnyDQb4OTmBs8K5TWyDypwIIcROdQztiPEvj0ffLX2hNSrjbqqk6mp+9x1ctFrknjxplfF9PT0R\nOXo0XJ2csHr1aixfvtwq2yHkcfydnWki8RSiyQQhRBG2bdvGrBWsub5o+wUa+TXCp9GfPrHMJDEx\nEWfPnrVxMukVFxdj27ZtrGOIJgiCpJ/uO7i4QDt5MpyjoyFYaW1Pyzp1sGTgQADAp59+ioSEBAB3\nSzfsaT2Rpfbv36+IVrCZmZk4ePAg6xiiGQwGrF+/nnUMSSjlm7wtW7ZYtRXsw6jMiRBiMXsqc0pL\nS0NYWBjrGJUq0Zeg7fK2GPPiGIxoPeKRv8/IyEBwcDCcnJwYpJNOcXExdDodatSowTqKKDzPIzMz\nE/Wk7EwjCMhv3Bj6Z59Frddek27ch/xnzRqsPH4cderUQWJiIgoKCmRxjVRGLtd6ZXJycuDp6QlP\nT0/WUUTR6XTIz89XRHtepZxbYvbDkjInmkwQQixmT5MJOUnJT0H7le0RNTAKbWq3YR2HMJC/axfc\nBg+G29SpcHR1tco2tAYDXpwxA+dv3cLrr7+O6OhoODhQQQKRhp7nsSsvD30DAqi0SUFozQQh5KmT\nk5Mju/aQjf0b47eev6H/1v7I1eQCuHuH6Ly8PMbJpHHz5k3WESRhzf3w79ULmiZNkG3Fu4K7OTtj\n5+jR8HJ1xd69ezF9+nSrbcsW1Gq1Itol8zwPlUrFOoZoC27dQv/YWAy9fJl1FNGU8m9WdnY2DAaD\nzbdLkwlCiKzt2bNHlm0u32nyDgb9exDe3/4+jLwRx44dQ1FREetYoqlUKpw7d451DNF4nsfevXut\nug23X3+F37Fj0BVYfof0yoTVqIFhL70EAJg4caKsa/QPHDgAo9HIOoZoiYmJsl/zkaPXY/KlS8C5\nc3g/MJB1HNFiYmJYR5DEnj17mGyXypwIIRajMidxTLwJr294Ha1rtcbPr/7MOg5hIOvNNyGo1Qge\nNsyq2/khMhJTY2Lg6+uLxMRE1LHCXbjJ02PklSv4PSsLb/r5IfrZZ1nHIRKiMidCCJERRwdHbOq7\nCZsubsKOSztYxyEM+CxYAL/ERGisXPYyqWdPdHnmGajVavTu3Vt2pYHEfiQUF2N5VhacOA5zGzZk\nHYfYAZpMEEJkac2aNXbfCtYcqedTMaXxFHwc9TEu58m39vjOnTvYtGkT6xiiCYKAxYsX22x77g0a\n4M6AASjeIf1kcklsLEw8DwBwdHDAHyNHolb16oiPj8cXX3wh+fasZefOnbIvCwKA1NRUq5fO2UL4\n9esQoqPxee3aeMbDg3UcURYtWsQ6giRWrVpl01awD6MyJ0KIxViWOeXk5CBQAbW6ubm58Pf3x8pz\nKzH3xFycGnEKXi5erGNVWVlZGQwGA6pVq8Y6iiiCICA3N9em55Y+Lw+msDDoRo2CT+PGko2bU1SE\nwIeOx6m0NLw8axaMPI/169dj0KBBkm3PWpRyrRcWFsLV1RVubm6so4ii1euxICUFI555Bj7Ozqzj\niKKUc0vK/aDWsIQQm6I1E9Iavms4inRF+KPfH9Rq8SmjGj8eztu2IWD8eKtva9Hhw/hs82a4ubnh\nzJkzaNasmdW3SQiRB1ozQQhRvIyMDJSVlbGOIVpJSckj7SEXvrkQ19XXMe/kPEapqk4QBKSkpLCO\nIQmW+xE0eTLcCwuRd+aM6LFSc3LAl5c3Pc7oTp3w/gsvQKvVolevXnbbRSw7OxsFVux0ZStGoxHX\nr19nHUMSdK3blxs3bkCr1bKOQZMJQoi8nDhxAs4y/2odAM6cOfNIS1s3JzdsH7Ads47NwpH0I2yC\nVVFWVpYi6tl5nkd8fDyz7Tu4uUHzww9w3L0bgskkaqxT6ekVfrPFcRyWDxmCpkFBuH79OoYMGWKX\n7ZVPnDgh+zvBA0BycjI0Gg3rGKJpNBokJyezjiGJ06dPs44gCXt5PaQyJ0KIxajMyToOXDuAD3d+\niNMjTqN2tdqs4xAbEUwmFDRoAP2LL6Jm165W397V7Gy0mjYNJTodZs+eja+//trq2yTypDWZ4Obo\nyDoGsQEqcyKEEAXo1qAbPmvzGfpt7Qe9iVp4Pi04R0eYZs2C5/794G3QurVRzZpYW341RsYlAAAg\nAElEQVR/i2/Gj8fff/9t9W0S+TleWIjQkyex7vZt1lGInaLJBCFEFpYuXaqIVrBHjhwx6yv2b9p/\ng5qeNTF231gbpKq67OxsrF27lnUM0Xiexy+//MI6xn01BgxAWWgobkdHV/m5vxw4cL8VrLl6P/cc\nxr76Kkw8j759++K2Hbxh3LhxoyJK55KSkmR/Z2VeEPDZhQvI3roVKQpYqzZnzhzWESSxePFipq1g\nH0ZlToQQi9myzKmkpAReXvJrmfqwkpISeHp6mtWtqVBbiBd+fwE/dPgBg1sMtkE68xmNRhgMBri7\nu7OOIpq9nVuFf/8Nl9dfh+OUKXDx9jb7eSVaLbwsaDtqNJnQ6ZdfcOzaNbz00kuIjY1lulbB3o6H\npbRaLRwdHe2ipt1Sq7OyMOzyZdTieVzt1AmeMi91Usq5Zc39oNawhBCbojUT1ncx5yI6r+mMA4MP\noGVQS9ZxiI3c7tYNfFkZgocMsc32CgvR4qefkFNcjC+//BJz5861yXaJ/SoyGtE4Lg7ZBgPWN22K\nQTVrso5EbIDWTBBCFCclJUURnVDUajXS0tKq/Lzmgc2x4I0F6LulL9RlaiskqxpBEHDu3DnWMSSR\nkJDAOsITef/6K/zOnkVZbm6lj03MzKxyedPDgqpXx/aPP4Yjx2HevHnYYYU7clcmIyMDeXl5Nt+u\n1HQ6HZKSkljHEG36jRvITk5Gu2rVMFDmN3az52u9Ki5fvmyXrdFpMkEIsWuXLl1SRClNUlKSxV9L\nv9f8PfRq3AsfRHwAXhD3plGs27dvQ6fTMc0gBZ7nkZGRwTrGE3k2bYo777yDgm3bKn1sWn4+HB3E\nv5y3b9gQM/v2BQAMGTLE5r34xVwj9uTq1atwcXFhHUO0Lm5uaKjXY37DhrK/ieaNGzdYR5DElStX\n7PIO6lTmRAixGJU52Y7BZEDXtV3RNawrJnaayDoOsQHd7dvgGzaE4b//RbWwMJtsUxAE9Fm6FDvP\nnUOTJk1w5swZeHp62mTbxP4IgiD7iQSpGipzIoQQhXJ2dMaW/lvw+9nfEXNV3h1iiHlcg4KgHjkS\n2u3bbbZNjuOwdtgwNAgIwOXLlzF8+HC7vKEdsQ2aSBBz0GSCEGKXwsPDFdEKdt++fZLdbTXIKwh/\n9PsDwyKH4br6uiRjmkulUmHFihU23aY18DyPadOmsY5htpo//QTPvDzkJyY+8nfTY2JEr5V4HG83\nN+waPRruzs7YvHkzFi9eLPk2/mnVqlWKaAV77tw57N69m3UM0TQaDebNm8c6hiSmTp3KOoIk5s2b\nZ1etYB9GZU6EEItZs8zJYDDIuqXiPdbYjwVxC7AiYQWO/+c4PJw9JB37SQRBgNFopGPCQNbMmXBd\nsAB+P/wA/OOTYoPJBGcrturceOoUBq1YAScnJxw9ehQvvviiVbYjt+PxJCaTCRzHwUGC9SusKeWY\n0H5UHbWGJYTYFK2ZYEMQBHwQ8QGcHJyw+u3VVIqgcILRiMKwMOg7dEBgx4423fanGzdicWwsgoKC\ncP78eQQEBNh0+8R27hgMmJGRgW/r1oWfAt6AE8vQmglCiOydO3cOJSUlrGOIlpOTY7VuOBzH4be3\nfkNCVgKWnllqlW3cYzKZcOLECatuw1aOHj3KOoJFOCcnGKZPh9veveANBhy/dg28FcqbHmfegAF4\nvl493L59G++++y5MJpNkY1+9ehXZ2dmSjceKRqNRROvRienpmBMTgxFXrrCOIppcr/WHnT171q7L\nm+6hyQQhxK7k5uYqontMeno6Aq3Ym93TxRM73t2BiUcm4kSm9d7sK+V48DwPrVbLOobFAj74APpa\ntZC9Zw9KdDqbldK4ODkh4pNP4OfpicOHD+PHH3+UbOybN2/Cz89PsvFYyczMhL+/P+sYoiRpNFic\nmgoOwOTQUNZxRJPDG3Bz5Ofny6I1OpU5EUIsRmVO7O2+shujY0bjzIgzqOlFd6hVMvWff8L1nXfg\nPGUKnG08wfvz0iV0nz8fvCAgKioKPXr0sOn2ifUIgoDXzp/HAbUao4ODsahxY9aRCENU5kQIkS1b\nlW1YmyAINm2l2fOZnhjaYije2/4ejLxR0rGVckyUsh/VO3dGUatWyI2MtPm2uzZtiik9ewIABg4c\naNHd3O9RyvEAlLEvu/PzcSA/H75OTphio/uZWIsSjgcA2bVjpskEIcQuKKUVbExMDOLj4226zUmd\nJsHV0RXfHPxGsjGpFaz9mTZtGtzmzYPfqVMoy8+3+fa/feMNvNGsGYqKivD2229bXDa2cuVKRbSC\nPXv2LKKjo1nHEO1YdjawdSsmh4bCX+YLr3/66SfWESTxyy+/yKpUi8qcCCEWk7LMSSl3WmW1H/ml\n+Xj+9+cx69VZ6N+svyRj0jGxL/f2Q9W3L7gbN1Br5EibZ1BrNGg5dSoy7tzB0KFDsWrVqiqPoaTj\nASjjxm5niorQwssLzjJva6ukc4vVflCZEyFEtpTwAgCw2w9/D39sH7Ado2NGIzk3WZIx6ZjYl3v7\n4RceDt9Ll1CckWHzDL6enogcPRquTk5YvXo1li9fXuUxlHQ8lLIvz1erJvuJBKCsc0tO5H/mEEJk\n7fjx44oob8rMzERysjRv4i3VqlYrzO42G33+6IMiXZFFYxgMBhw6dEjiZGzs37+fdQRJHDx48IGW\nrG516uDOhx+idPt2Jnla1qmDxQMHAgA++/RTs9uinj9/HllZWdaMZhOFhYU4efIk6xiiCYKgmGtE\nKftx9OhRWZU33UOTCUKeIhzHOXAcd5bjuF3lP4dyHHec47jzHMdt4jjOqfz3LhzHbeY47gLHcUc5\njqtrrUyCIMDLy8taw9tMfn4+6tWrxzoGhrYcik6hnTAscphFi/jUajVCQkKskMy2eJ6Ht7c36xiS\ncHd3h+NDd7oOnDED3ioV7ly8yCTTRy+/jI9eegk6vR7vvPMO1Gp1pc/RaDRWbZdsK7m5uQhVSPtU\nJRwPAIpoXw3c/UbCw8ODdYwqozUThDxFOI77EkBrANUEQehVPqlYIQhCJMdx4QDSBUEI5zhuLIC6\ngiB8wXHcOwCGCYLw9mPGo9awdkhn1KHD6g7o27Qvxr08jnUcYiVZU6bAefly1JgwAWBQFqE1GPDi\njBk4f+sWXn/9dURHR9vs/hfEcoIg4HJpKZoq5A04kRatmSCEPBHHcSEA3gSwvPxnRwDtBEG412dy\nPYB7zeN7AFhX/udIAO04iYs49Xq9lMMxw/M8jEZpW7KK5erkim39t2HeyXn48/qfZj9PKcfkadmP\nmt98Axe9HjmM7lDu5uyMnaNHo5qbG/bu3Yvp06c/9nEGg0F2rS6fRAnn1h85OfjX8eP47vp11lFE\nU8LxAKq2H+PHj0dBQYEV01QdTSYIeXrMA/A/APde1QMB5P7j728CuFffEgIgEwDKv3rIL3+8ZJYs\nWaKItRJ79uzBhQsXWMd4RJ3qdbChzwZ8EPEBMgszK328SqXC+vXrbZDMuniex5w5c1jHkMScOXMq\n7Jvv4OIC7dSpcI2JgfCPNRW2FFajBjYNHw4AmDhxIg4ePPjIY9atW6eItRJnz5597P7JSanJhK+S\nkoCdO9FABndWrsysWbNYR5DEokWLKlwrsWzZMqhUKgB399nX19dW0cxCZU6EPAU4jusB4A1BED7j\nOK4TgLEARgE4JAhC0/LHBAE4LAhCU47jrgB4RRCEnPK/uwygoyAI2Q+NS2VOdm7WsVnYfmk7jg47\nCmdHefeQJ48hCMhv0gT6Jk1Qi+Fdqb/fuRPT9uyBr68vrly5goCAAGZZyJNNSkvD5Bs30MrLC6da\nt4ajzLoGPU327duHRo0aoX79+ve7O5lMJmRlZSEkJATdunWTdOH5rVu3MGjQIMTGxla5zIkmE4Q8\nBTiOmw7gAwBGAO4AvAFEAHhNEITA8sc8D2CGIAjdOI77E8A4QRDiy8ubsgEECYLAPzSu0KJFC7Rs\n2RKhoaHw8fFBy5Yt0alTJwDAkSNHAIB+ZvizIAiYcXMGutXvhhcMLzDPQz9L/3NLAG49euBQnz7w\nCAxEp2eeufv3V67cfbwNfjbxPJ776SdcUKkwcOBAbNiwwW7++9DPd3/+Y/9+DL50CYYWLfB3y5Yw\nnjtnV/no5wd/DgkJwa1bt1BWVgaDwYBq1aqhRo0ayM3NxYYNG/DBBx/gxx9/xOTJkwEA//nPf9Cv\nXz+88cYbZm9Pr9dj6dKliIiIwD/RZIIQUiGO4zoC+OoJC7AzBEGYy3HcVwBCBEH4kuO43ri7ALvX\nY8aq8jcTBw4cQNu2bWXfaSc1NRWlpaV49tlnWUepVOqdVLRd3hbxI+NRz+fBjlNarRaHDh3Cm2++\nySiddCIiItC7d2/WMUSLjIzEW2+99UgHp4qovv4abhs3wmfCBDgwuotxak4Omk2aBL3JhEOHDsHD\nwwN16tRBcHAwkzxSycvLw6VLl/DKK6+wjiLK0ORkrNmxA+/16YNN//oX6ziiKOVa37dvH1555ZXH\ndnAyGo1wLr+WBUFAbGwsOnXqhFmzZuF///sfOnXqhNjYWGRlZSEoKOj+txeVvSYLgoCVK1dieHl5\nIgA0bdoUO3bsQJMmTWgBNiGkysYA+IbjuPMAggAsKP/9QgC1OY67gLvrLD6XaoMBAQGyn0gAdxeV\nNm7cmHUMszT0a4gv2n6B/+757yMvNBqNBs2bN2eUTDo8z6N+/fqsY0iiXr16VZpIAECtmTNhqlkT\ntzdtslKqyjUMDMSE8knp8OHDwXEcatWqxSyPVDQaDZo1a8Y6hmiTgoPx3vPPY6YCrpOwsDDWESRR\ns2bNJ7aCdXJywqVLlwAAo0aNQseOHfHxxx9j3LhxSE5Ovv9NQ61atSAIAq6XL6h/9913HzveyZMn\n4efnBwcHh/sTiV27dkEQBCQnJ6NJkyYW7wd9M0EIsRitmZAPnVGHlstaYnqX6ejdVP6f6JFHlaWn\nQ3j2WZS+/z5qtG7NJIPOYEDzyZORmpv7QAkGIcQy8+bNw9ixY3Ho0CF07tz5/jcQer0excXF8Pf3\nR/PmzXHhwgX89ttvGDVqFKKiotCjRw+oVCoMGjTo/sQDAKZNm4bx48c/8QMLS76ZoMkEIcRiVZlM\nlJSUwMPDQ/Z96I1GIwwGA9xl2AnlSPoRDI4YjOTRyfB29UZxcbEiviWi/fh/uevXw2P0aDhOmAA3\nRh1fDiQlofuvv8LZ2RkXLlzAM+VrLORGEASUlJTQuWVHlLIfJSUl8PT0hLkd18PCwpCeno7CwkK4\nurrCzc0NwN1zdM+ePXjzzTexZMkSfPzxx2jWrBmSk5MfeP6AAQOwbNky+Pj4VLotKnMihNitdevW\nVdj6Ti4OHjyI1NRU1jEs0im0E7qGdcXEIxOhUqmwa9cu1pFE43kev/32G+sYkvj9998rbAVrjoAP\nPkDhG2+gaMUKgNGHhbeLi9GvVSsYDAYMHz5ctveYSEhIwKlTp1jHEE2j0WDdunWVP1AGli5dyjqC\nJNasWQOtVmv24++VMFWvXh2urq5ISEgAAHz99dd444038P777+OTTz4Bx3H3JxJ+fn5ITk6GIAj4\n448/zJpIWIq+mSCEWIzKnOQnV5OL5kuaY++gvXiu1nOs4xArMJWWorhpU5T9+9+o1euRvgk2kV9S\ngkY//AB1aSlWr16NDz/8kEkOQpQiMzMTdevWxVtvvYXdu3dj8uTJmDRp0iOPi4yMRC8R1z19M0EI\nIaRCAZ4BmN5lOkZFjYKJZ3OjM2Jdjh4ecNi2Db6HD6OQ0bdo/l5emNu/PwDgyy+/RH5+PpMcT7Or\npaXokJCAuKIi1lGIBOrUqYO1a9ciKioKDRo0eGAiMXXqVBiNRgiCIGoiYSmaTBBCrCoyMlIRd7pO\nSkq6/9WynGk0Gvje8IWrkyuWxS9jHUeUDRs2sI4giU2bNokub3pYtRdegPq774BVq2AsK5N07Cc5\nfOUKbqnV93/+sF07tG/QAGq1GmPHjrVJBimoVCocOnSIdQzRvrxyBX9HROC38jsny5lSrvWIiAhR\n5b6DBw9Gnz59cP36dfTr1w937tyBIAiYMGFClTvASYnKnAghFjOnzOnq1ato1KiRjRJZT1paGkJC\nQu73/ZarwsJCaLVa5HF56LSmE/6PvfsOj6JaHzj+nWTTGy1ACEiCAoKUAFJEkCiCFFEEbFiwYMFr\n/6ko90q54lUBEb0ixSAdpPfeEkF6TQIJBEKA9N579vz+SOBSAiS7szu7m/N5njywszPnvJMt2TP7\nnveEjQqjoXtDrcOqNr1eT3R0NPfdd5/WoRjNZK8RIUh85BFEQQE+b7+tfvs3iUpK4r769W+YVHo2\nMZG2//43JWVlhISE8Mgjj5g8DmMlJCTg7u5u1RN9t6Wn0+/oUdyyszk/aBANnZy0DskotvJ3xBrO\nQ1ZzkiTJrOScCev21c6viMmKYelQ7dYmkEyrODmZ4vvvJ//JJ6nfo4cmMYxdt45vNm+mefPmhIeH\n4+joqEkcNUWJXk/7o0eJyM9nUrNmfH7PPVqHJFkROWdCkiSLkZ6eTklJidZhGK2oqIjMzEytw1BF\nUlLSDbe/7vU1B2MPsv3Cdo0iMszN52GtkpOTTV7pyLF+fYrmzcNj9WryTfR7yy4ooKC4+Lb3jxkw\nAP+6dYmKiuKHH34wSQxq0Ov1pKSkaB2G0WbExxMRG8t9Li582Lix1uEYxVZe62lpaZSWlmodhsnI\nwYQkSSaxdu1aysqsf4JvSEiITXzAiI+PZ//+/Tdsc3VwZfqA6by36T0KSsyTV28svV7P6tWrtQ5D\nFatWrTJLP3WfeoqM4cPJDwpCmOA1uTk8nII7XDhwdnAg6NVXgfKJopZaWvnUqVNERUVpHYbRnIuL\ncTt2jKn33ouTla/rY67XiKmtXbtW9XlRlkSmOUmSZDCZ5mQbnl3xLPfXvZ9vHvtG61AkExGlpaS3\naUORry+Nnn9ekxiGBwWx9MgRAgMD2b17d5UX7JKqL7u0FA97e/k7lqpNpjlJkiRJ1TbtiWnMODqD\niJQIrUORTETR6XBes4bahw6RHh6uSQw/P/88Xi4uBAcHs2TJEk1iqCk8dTo5kJDMRg4mJElS1ZIl\nS2yiFOzRo0c5duyY1mEYLTMzk2XLlt1xH19PX8b2GsuoTaMsdrViIYTNrHQdFBSkSQqgW6tWZE+a\nhOPChRSr8BrdFBZ2QynYu/H28GDKsGEAfPTRR2RU41hTunjxItu3W9e8ocoUFxczb948rcNQha28\n1hctWmRUKVhrIdOcJEkyWGVpTnFxcfj6+moUkXoSEhJo0KABdlaec5yXl0dxcTG1a9e+435l+jK6\nBnXlgy4fMCLA8lYr1uv1JCYm0qhRI61DMZrWr5GEgQNRLl2i4YcfGtVOXEYGvnd5Xt1Mr9fz8OTJ\nHIyO5s033yQoKMioGNSQnp6Oi4sLLi4uWodilOLiYjIzM6lfv77WoRhN69eIWqzxPGRpWEmSzErO\nmbAtx+KPMXDJQE6/d5q6rnW1DkcykdKsLPJbtiS/Rw8a9u1r9v7PxMfT/ptvKNXr+fvvv+nevbvZ\nY7AlhWVlrEhJYXiDBtjL1CbJSHLOhCRJmomPj6ewsFDrMIyWl5dHYmKi1mGoIjo6ulr7d2rUiece\neI7RO0ebKCLDVPc8LFVMTIxFVHTReXmhX7aMWlu2kHPlSrWPT83NJduIVbVbN2rEZxWDmDfffFOz\nEtJlZWVcunRJk77VNC02lld37+bVCOuf82Qrr/W4uDiKioq0DsNs5GBCkiRV7NmzB3t7e63DMNqh\nQ4covkPNfGsRHx9vUAnOiY9NZOv5rey9tNcEUVWfXq9n3759WoehiuDgYIuZFFurVy8y3n+fkjlz\n0Ffzw3zIuXNG9z924ECa1qlDZGQkU6ZMMbo9Q4SFhZGenq5J32qJLyrim8hIOHeON3x8tA7HaH/9\n9ZfWIajCVv4eVpVMc5IkyWAyzck2rTyzkvHB4zn+znEc7eVqxTZLCJIffJBSZ2cajTD/PJntZ87w\nxM8/4+TkREREBP7+/maPwdq9FhHB/KQkBterx5o2bbQOR7IBMs1JkiRJMtrQVkO5x+seph6YqnUo\nkikpCh6rV1MrPJzUI0fM3n3f1q15tlMnioqKeOuttyy2kpilOpydzfykJBwVhSn33qt1OFINJgcT\nkiQZJSgoyCZKwe7du5ejR49qHYbRUlJSWLRokVFtKIrC9AHTmbJ/ChczLqoUWfXo9Xp+/vlnTfpW\n2y+//GKxq8G7NG1K3owZuC5bRuFdUn6WHz1arVKwVfHL88/j4ezMrl27WLFihapt305kZCRbtmwx\nS1+mNPPiRVi/nk8aN+ZeK69ENW3aNK1DUMXs2bNrRCnYm8k0J0mSDKYoikhPT79r2VFrkJmZiZeX\nl8XktBuquLiYkpIS3NzcjG7r+33f89elv9g0fJPZfy9CCLKysqhVq5ZZ+zWFjIwMi3+NxA8fju7I\nEep/9hnc5rHOyMujtgrPq5vNDAlh1JIleHt7ExUVhZeXl+p9XC8vLw8HBwccHa07ha+ktJSg6Ghe\nbtYMD51O63CMYg2vkaqwhfOQpWElSTIrOWfCthWXFdNhVgcmBE5gWOthWocjmZC+sJCsVq0obNUK\nn8GDzdu3Xk+377/nyKVLvPPOO8ycOdOs/UuS9D9yzoQkSVI1ZWVlcfnyZa3DMJoQgvDwcFXbdLR3\nZObAmXy89WOyi7JVbftO1D4PrZw5c8Zi05tuZufsjG7VKmqHhJAVFXXDffGZmaTn5Zmubzs75owY\ngb2dHbNnz+bQoUMm6ae4uJizZ8+apG1zs5XXiK2cx/nz5ykwolyypTB0VXo5mJAkqUY7deqU1ac7\nQPmK3ZmZmaq327NpT5649wm+3v216m1XRq/XExkZaZa+TO306dNWVR7So2NHMr/+GubOpfS6D0bH\nL1/G2cHBpH239fXlk969EULwxhtvUFpaqnofZ8+etYh1PoyVl5dnE+tjAETYwNoYUP53xMnJSesw\njHby5EmDjpNpTpIkGUymOdUMaflpPPDbA2wavolOjTppHY5kSkKQ+OijiOxsfN5916xd5xcX03Ls\nWGIzMpg0aRKff/65Wfu3Brmlpbhb+fwIybLJNCdJkiRJdXVd6/LD4z/wzsZ3KNNbR9qOZCBFoc6K\nFXhcvkxySIhZu3Z1dGT2yy8DMHbsWJu5+q6WkMxMmh48yO/x8VqHIkk3kIMJSZJqpJ07d3JEg9r6\naktISGDu3Lkm7+fV9q/i7ujOb0d+M0n7er2eH374wSRtm9sPP/xgNXMlKuPo7U3xggWsX7mS8yqs\ndl0d/du04ZmAAAoLCxk1apQqa0+EhoayceNGFaLTTpkQvB8aSvqyZSQWF2sdjtG+++47rUNQxS+/\n/GITpWC3bNlicIoTyDQnSZKMYM1pToWFhTg5OVl9KVi9Xk9JSYlZ8nUjUyPpObcnJ985ia+nr+rt\nFxYW4uzsrHq75mYr5xH91lt4bttG3a++QjHj3I/4zExajh1LblERq1ev5plnnjGqvZKSEuzs7Kxq\n/srNZsfH887ZszRRFM727ImLFZ8L2M5rxBbPQ5aGlSTJrKx5MCEZ5uvdX3M27SzLn12udSiSiYnS\nUtLat6e4QQMavfCCWfv+dfduPli2jAYNGhAVFYWHh4dZ+7ckmSUlND98mNSSEpa3bs2z9etrHZJk\nw+ScCUmSpLtITU3l/PnzWodhNL1ez+HDh83e75ieYziecJwtUeqtIGyqUqDmduTIEatOb7oqOjqa\n5ORkFJ0O1zVrqH34MOmhoWaNYVRgIB2aNCEpKYkxY8YY1EZBQQGhZo7bFP596RKpp07xiJcXw7y9\ntQ7HKLbyWg8LC7OJ9Kbk5GQuXrxodDtyMCFJUo0SFRVFnTp1tA7DaElJSeg0qOri4uDCbwN/4x+b\n/0F+ifF/TPV6Penp6SpEpr2UlBSrTqW56sKFC9dWHndt0YKcqVNxXLSI4pwcs8Vgb2fHHyNGYK8o\n/Pbbbxw7dqzabVy8eNEmvtEY7OZGGwcHpt13n9WnZaalpWkdgiquXLmCi4uL1mEYLSoqSpUVu2Wa\nkyRJBpNpTjXXi6texL+WP//p/R+tQ5HMIGHQIJToaBp++CGY8QPtJ8uXM23XLtq2bcvx48c1GUBL\nUk0i05wkSZJuQwihSmUYS2AJ5zG171R+P/47p5NPG9yGJZyHGmrCeXgvXoxLRgaJ27aZMSL45qmn\n8PHyIiwsjF9//bXKx9WEx8SayPOwLGr/PZSDCUmSaoQtW7Zw9OhRrcMwWnx8PEFBQVqHgY+HDxMC\nJ/DupnfRi+qvKqzX65k4caIJIjO/iRMn2sRciTlz5hAXF1fpfTpPT1i+nFrbtpFz+bLZYnJ3dmbW\nSy8B8M9//pPY2Ni7HnPixAk2bNhg6tBMLi8vjx9//FHrMFTxzTffaB2CKn788UebmCuxfv16Tp06\npVp7Ms1JkiSDWVOaU1lZmU3kswsh0Ov1FnEuZfoyuv/RnXc6vcMbHd6o/vE28pjUpPNIGDMG5z/+\nwOtf/8LO0dFMkcFT06ezITSUJ5988q4DBb2+fHBrZ2f910tr0nPLGtSE85ClYSVJMitrGkxIpnEi\n4QT9FvcjfFQ43m7WXWlGqgIhSO7ShVKdjkavv262bmMzMmg5diz5xcWsW7eOp556ymx9m1tKcTHj\nY2IY6+dHAzMO2CQJ5JwJSZKkW8THxxMZGal1GEYrLS3lr7/+0jqMW3Tw6cBLbV/ii51fVPmYPXv2\nmDAi8wkJCbl2FdyanTlzhsTExKrtrCh4rllDrYgIUsxYmrhx7dp8+/TTALz77rvk5ubesk9OTo5N\nrGr/r+hoftu0iX+YefVxU7CV1/qhQ4dsIr3pypUrREVFqd6uHExIkmTTEhIS8PVVf7Vmc0tLS8Pb\nQmvMTwicwK7oXYTEhNx1X0tJ0VKDEMImUmnS0tKoV69elfd3btyY/FmzcFu2jC5fQvYAACAASURB\nVEIzlvX94LHHaNe4MQkJCXz99de33G8Lr/WTOTnMvngRe1dXvvH31zoco1l7KdurCgoKcHV11ToM\noyUmJtKoUSPV25VpTpIkGUymOUlXrYlYw5jdYzj17ikc7WVqRk0Q//LL6A4epP7nn5utXOyxS5fo\n8t13KIrC0WPHCAgIMEu/5iCE4NGTJwnJyuLjxo356b77tA5JqoFkmpMkSVIFvV5vEykogFVUChp8\n/2Ca12nO5L8n33YfaziPqrCl8zDmYkDDOXPQ6fXEr12rYlR31qlpU97r1YsyvZ433njj2mNhC4/J\nqpQUQtLTqefgwNimTbUOxyi28HiA5ZxHUVER24woy2zqv4dyMCFJkuoURdH8x97eHnt7e83jUONH\np9NpHsPdfuzs7NgwfAP/6vUvk5+H1r777juL+ZBhjHnz5hEfH2/w8XZOTjisXk2dv/4i04z5/f95\n5hkaeHpy4sQJZsyYwbFjx9iyZYvZ+jeVk6mpKKtW8Y2fH7UdHLQOxyjffvut1iGoYtq0aZrNlQgL\nC7v2fnfhwgX69evH+fPnDWprw4YNhIWFqRneDWSakyTVEIqixABZgB4oEUJ0URSlNrAMaAAkAM8L\nIbIq9v8ZeBwoBEYKIU5U0malaU6Kohh8xXP8+PGMHz/+lu0lJSXs2bOHsLAw+vfvT+vWrQ1qv7r9\nmtprr73GvHnzzN6v2uebl5fHli1byMvLY8SIESbr25jnllqEEBYxqDGWWueROGkSrj/8gOvYsehc\nXFSI7O7WnDjBkJkzcXd3JzIykkaNGtnEYxKem8v9rq7orHwujnyNGC8vLw93d3e+/fZbxowZcy0O\nQ97/qnMeFe+xMs1JkqRK6YFAIUQHIUSXim0TgM1CiPbAVuDfAIqiDAHuEUI8AIwE5moR8FUlJSX8\n/vvvZGdn8+6776o+kNBSTEyM1iGows3NjWHDhjF06FCtQzE5W/iQBOqdR8MvviC/XTtSzDgoHhwQ\nQP8HHiA3N5cPPvjAZh6TNu7uVj+QAPkaUYObmxuPPvoo//znPxFCsH//fgBCQ0Or3Zapz8P6n7GS\nJFWVwq2v+YHAwor/LwIGXLd9EUDFNxL2iqJoVibFwcGBoUOHMmzYMNzc3LQKQ6oCd3d3rUMwmc2b\nN9tEetPx48eNSm+qTJ0VK/C4coWk4GBV270dRVH4fsgQHO3tWbNmDZs3bzZLv6YghGDTpk1ah6GK\njRs3ah2CKnbv3m0RpWCvpu998cUXPPTQQwC0b9/+2v0hISF3fE+6cOECERERpg0SOZiQpJpED2xX\nFOWUoij/qNjmLYRIAxBCpAL1K7Y3Bq5cd2xcxTaTCwwMrHR7gwYNNOnX1Pz8/DTpV6vz1bpvY3h7\ne9tEWVu9Xk/Dhg1VbdOxXj2KFy7Ec9068lQeqNyOh7MzY/r3B+Cdd96xiA9/hsjPz9fsfUBtpn6f\nNhcPDw+LKAXr5OTEkCFDmDJlCnq9nlOnTgFw4MABoPy9tE+fPrc9Pi8vD38zlBiWgwlJqjkeEkJ0\nonwexOuKojwOWNykKa0+aGrVrzne6CtjzvP9+++/iY6O1qRvNXXu3FnrEFTx4IMPmmR9jDr9+5Px\n+usUBgWhLy5Wvf2b+derxz8HDKC1jw+xsbFMmzbN5H2qSS8EJ3JycHNz44EHHtA6HFXYymvEks5j\n+fLlALz11lu0a9cOgO7duwMwceJE9uzZQ15eXqXHtmvXDmdn50rvE0Jw6tQpRo8eTePGjY0qcCEH\nE5JUQwghkiv+TQFWAZ2BFEVR6gIoilIPSK7YPRZoct3hjSu23SIgIIDXXnuN8ePHM23aNIKNTHPI\nzs7mypUrd99Rshq+vr6sXr2aQ4cOqTp5Ojg4+Ibnm6luFxQUmLU/U93evn07u3fvNml/Z595hjIf\nHxLnzSP47FmCz5793/0q3RZCUFBcTPDZs+w7f56fnnsOgEmTJrF9+3aTnp+at/+5Zg0dZ8zgs4oK\nPVrHY8ztgoICi4rH0Nvbtm279h5lCfEEBwdjb2/PyJEj+eOPP9i1a9e1FawnT57Mww8/DECPHj1u\nOL60tJQdO3Zcu52UlMSHH35I69atb6jAFxAQwKRJk4iLi8PT09PgBe1kNSdJqgEURXEFhBCiQFEU\nN2Az8CPl31JECyGmKYryCeAvhPhQUZShwEtCiCGKonQE5lZM0r65XVWrOV25coUVK1bQo0cPunTp\ncvcDbEBwcLDVXqmvjoyMDP788098fX0ZMGAAOp3OoHa0qOY0adIkPvvsM6tf7Xr+/Pn07dsXHx8f\nk/ZTnJJCYZs25HXvjk9FGpKajl++TGpuLn0rCjEIIWg9fjyRiYnMnTuX1157TfU+1ZZTWkrzkBCS\n1q1jwZgxvKJy2pm5ff/993z55Zdah2G0X375hZEjR1pEitP1hBDY2dkxePBg1qxZg729PXq9HiEE\nv/32G//4xz9IT0/H1dWVrVu3MmXKFPbt21dpWw0bNmT48OEMHz6cjh073vJthCHVnORgQpJqAEVR\n/IG1lM+bcAX+FEKMUxSlDv8rDZsIPCeEyKw45lfgUaAIeNPUpWGjoqJYu3YtTz/9NC1atKjWsZJ1\nKCoqYs2aNZSUlPDCCy/gYEAtfUsoDSvdXfahQzg+9hj5b75JnTZtTN7fggMHGDFvHi1atCAyMtLi\nqwmNiY7mu8uX6erhwf6OHbGz8Hgl7Y0ePZpJkyZRWFhISkoKTZo0oVOnTsTHx5OQkFDpMcOGDWP4\n8OH079//tulON5ODCUmSzEqtwURERASbNm3ihRdeoHFjs8zzljSi1+vZvXs33bp1M6jykxxMWI/k\n2bNx+/xz7EaPxqVePZP2VVxaSpMvvyQ5J4ctW7bQr18/k/ZnjOiCAlodPkyxEBzs2JGunp5ahyRZ\ngavfTlSmVatWDBkyhPfff9/o4gpynQlJklSlKIqdoijHFUVZX3HbT1GU/YqihCqKslSNPnJzc9m6\ndSsvvfSSHEjUAHZ2djz++ONWUUJ2xYoVNlEKdt++fcTFxZm93/pvv03W0KHkzZiBvqTE6PaSsrNv\nmENxPUedjk8ffxwoX6Hcko2/cIHi4GBeadDA6gcSy5Yt0zoEVWzYsMHiq4EpisKpU6f47LPPOH78\n+LU0JyEEZ86cYeLEiaSlpREeHm7+2OQVHkmSbqdiHkUnwFMI8VTFoGKOEGKdoijTgI/U+GaiuLgY\nR0dHtcKWbJg5v5k4ffq0TVTZOXPmDK1atdIk9UeUlZHSpQtldnb4vPWWUW3FZmTg4eyM121W2c7M\nz8d39Gjyi4s5fvw4HTp0MKo/U4nPzmbs0aNMePhhfJ2ctA7HKLb0GrGFxVDPnTuHv7+/QSmkV8k0\nJ0mSVKMoSmPKV77+FvgUeAZIFEJ4V9z/IHBEzQnYknQ38rllfYqTkylq04a8Hj1oaOL0o4+WLeOX\n3bt57rnnbOaquSSZk0xzkiRJTT8Bn/O/tSjqAynX3V9pqVipeq4vBVhTCSE4cuQIJSqkwqghPT3d\nJgYsubm5FBUVaR0GjvXro1+3jlrbtpFx5ky1jxdCkHGbOvo3+78+fbBXFFatWsXly5er3Zeppaen\nax2CKmzlPDIzM20ilbGoqIjc3FzN+peDCUmSbqEoykAgSQhxErj+CoXReRKlpaXGNmGV9Ho9OTk5\nxMfHk5qaem17SEjItf/n5eWRlpZGsRkW/LI0sbGxLF++HL1er3UoLFq0yCYGE+vWrSM7O1vrMADw\neughsqZMwXHuXArS0qp17IkrVwir4pyPe+rUYWjHjpSVlTF16lRDQjWZvLw8Vq1apXUYqli4cKHW\nIahi2bJlFnMRwxg7d+68bUUnc5BpTpIk3UJRlP8ALwOlgAvgAawBnhBC1K/Y545pTuPGjbt2OzAw\nkMDAQDIyMliwYAFvvfWWxdXxNoVz584RHBxMTk4O+fn5uLi44O7uTkBAAN26dQNgwoQJ135X4eHh\n7N69m5ycHOzs7PDw8MDd3Z127drRsWNHLU/F5PR6PYsXL6Z+/fo88cQT17bfvJDThAkTbOKDfk0V\nP2IEjnv2UGf0aOyMyOu+k+OXL9Pp229xdXUlLi6OWrVqmaSf6hBCWHy5WkkCOWdCkiQTUBSlF/B/\nxk7ALi4uZs6cOXTs2JGuXbuaJXZT0+v1xMXFkZOTU+nkvZycHLKzs/Hw8MDNzQ17e/tb9rl+MHGV\nEIKioiJycnLIzc3Fzc2N+vXr33JsWloazs7OuLm5qXdSGiooKCAoKIiePXsSEBBQ6T5yzoR1E6Wl\npHTpQqlOR6ORI03WzyOTJ7P3/Hl++OEHvvjiC5P1UxVn8vJ4NSKCKffeS2Dt2prGIkl3I+dMSJJk\nah8BXyqKEgpUuZi1EII1a9bg6+tr9StbFxcXExkZybp16/jxxx/ZuHEjOTk5le7r4eGBr68vnp6e\nlQ4kbkdRFJydnfH29sbf37/SgQRAZGQk//3vf5kzZw779u0jJSXFqj9ou7i48MILL7Bjxw5iY80/\nJWf+/Pk2kT+9fft2TUrBVoWi0+G1eTMeFy+SuG3bHfe9kp7OzogIg/r5qmLl7alTp2qaNiiE4KOI\nCI6tXs2ylJS7H2Dh5s6dq3UIqli2bJnFl4KtimPHjhEaGqp1GPKbCUmSDFfVRev27NnDxYsXefXV\nV9HpdOYMUVVFRUVMmzYNHx8fWrZsSYsWLaht5JXGyr6ZqI7S0lIuXbrE2bNnOXv2LDqdjuHDh1O3\nbl2j4tLS5cuXqVu3bqXfuJjym4mYmBj8/PxM0rY5WcN5ZP39N059+1LwzjvUvv/+SvdJzs7GzckJ\nNwPKpwohaDl2LFHJySxYsIBXXnnF2JANsjE1lUHHj+OZn8/5AQPwtvIS2Nbw3KoKWzmPy5cv4+vr\nW62LVXcj05wkSTKrqgwmcnJyWLBgASNGjLCKhcruRu01MYKDgwkMDFSlLSEECQkJNGzY8LYrpVo7\nmeZkO5J+/RW3f/4T3Vdf4Vynjurtz/37b95YsIBWrVpx+vRps89ZKNbreeDIEc4XFDDtvvv4SC7K\nKVkBmeYkSZLF8fDwYNSoUVY1kMjMzCTtNhVn1F5cT62BBJT/EWjUqFGlA4mysjKLqJSkhuIyddNW\n4uLibOJ3k5GRoWl5yOpq8P77ZD/1FLk3rZCt1+uJz8w0uv3hXbrg7e5OREQEO3fuNLq96volNpbz\nly9zv6sr7zVqZPb+1aRF2qEpJCUl2UT1pvz8/Nv+jdKCHExIkmRy1nKVPC8vjy1btjB79mzi4+O1\nDkdVYWFhzJo1i7Nnz1r9lf2ec3tyMeOiau1t2bLFJirt7Ny50+pKL/vMnYuoXZvE60qNhsbFEafC\nYMLJwYGPevcG4LvvvjO6veqqV1qK1+nTTLvvPhys5D3wdrZu3ap1CKqwlfPYu3cveVVce8UcZJqT\nJEkGq+qcCUtXVFTEgQMHOHz4MG3btuWRRx6xmQpJVwkhOHfuHLt27cLZ2ZnHH3+ce+65R+uwqkSv\n11NQUICbmxuKojB1/1S+2/cdM5+cyZBWQ7QOTzJSUUICJW3bkvvoozTs00fVttPz8mg8ejQFJSWc\nOnWKdu3aqdr+3eSXleGqYj67JJmanDMhSZJZ2cJgoqysjBkzZuDr60tgYKDRE6otnV6vJywsjD17\n9uDj48OQIUNwMFG9f7WEhoZy9OhRXnvtNezt7RFCcDjuMC+sfIGBzQcyue9knHXOWocpGSFr716c\n+vW744RsQ72/dCnTg4N58cUXWbJkiaptS5KtkXMmJEmSqsne3p6RI0fyzDPP2PxAAspTztq3b8/7\n779Pq1atrKK6Vtu2bbGzs+PQoUPXtnXx7cLxd46TkJtA9zndiUqLqna7v/32m02Ugl2zZo3FloKt\nKq+ePTn56acEz5pFYUaGqm1/1qcPdorC8uXLzZL7X1hYSFBQkMn7MYdff/1V6xBUMXfuXJsoBbt3\n715OnjypdRi3kIMJSZJqPGdn7a5qX7+6sznpdDratWtnFXMFFEXhqaeeYu/evTdsr+VcixXPrmBk\nx5F0/6M7S8OWVqvdZ599VtWSilrp0aMHvr6+WodhtNaff07AoEG3TMg2ll+9egwOCKCsrIyffvpJ\ntXZvR6fTMWSIbaTfPf/881qHoIonn3wSV1dXrcMw2v3330/79u21DuMWcjAhSVKNUVRUZHHpVyEh\nIVqHYBXq1KlDr169btmuKArvdX6P7S9vZ1zwON7e8DYFJQVVatPb21vtMDVhK+fh6emJ36JFCC8v\nEhctUrXtr/r1A2D27NlkZ2er2vZV+WVlzIqPR9jZUccEpW61YCvPLVs6D0u8ACQHE5Ik1QjJycnM\nmjWLS5cuaR2KRUtNTWXPnj0WWSr1Tqund/DpwLG3j5FXkkeXoC5EpNx+5eRz585Z5PlVV2JiIpkq\nVD3SWklJCRcuXADKV8j22LwZz6goElUs5/qgnx/dmzUjNzeX33//XbV2rzflyhXe3bmTVwxctduS\nnD17VusQVBETE0NhYaHWYRgtKyuLhIQErcO4LTmYkCTJ5p09e5b58+cTGBhoE6uempKrqyuXLl3i\nzz//pKioSOtwbnC3K3IeTh4semYRH3f9mEfmPcL8k/Mr3e/o0aNWU674Tg4dOmTxk+erIiIigoKC\n/32b5OzrS+mqVdTatInMc+dU6+er/v0B+PHHH1Vfa+BKYSHfRUbC5cu8ZwMpZ8eOHdM6BFXYymvE\n0t+zZDUnSZIMZunVnIQQ7Nu3jyNHjvD8889bZF75hAkTGDdunNZh3KCsrIytW7cSExPDCy+8QN26\ndbUO6ZqqPrfCk8N5bsVzdPbtzPQB03F3tJ5FE6VyiT/9hPuECeUrZKtQHEGv19Ni7FgupKSwePFi\nhg8frkKU5YafOcPS5GSe8/Zm2QMPqNauJJmbrOYkSZJ0nT179hAZGcnIkSMtciBhqezt7Rk4cCBd\nu3Zl7ty5XL58WeuQqq1N/TYceesI9oo9nX/vTGhSqNYhSdXU8JNPyO7Xj5yZM9GrsBifnZ0do594\nAihfxE6tCx5/Z2WxNDkZZzs7Jt17ryptSpI1kYMJSZJsVpcuXXjttdfw9PTUOpTbqmxSsaV48MEH\neeaZZ8hQuVSnubg5uvHH038wpscYei/ozbOfPGt1K0RXZvHixVZfChbg9OnTbNq06Y77NFywAMXd\nXbUJ2a9060ZdNzfCw8PZs2ePKm3OvXgR1qzh8yZNaKphZTg1TJ48WesQVDF9+nSbKAW7fft2iywF\nezOZ5iRJksEsPc1Jsj2GPrciUyMZtmgYbRq3Yfag2Xg6We4A825yc3Nxd7f+tK3CwkJ0Ot1d1zop\njI2ltH178vr0ocFjjxnd7783bmTchg08/vjj7Nixw+j29Ho9iy9dYsg99+Bm5aWGbeW5ZUvn4ebm\nZtYKTnIFbEmSzEoOJiRzM+a5VVBSwKfbPmVH9A6WDVtGp0adVI5OMpWM3btxGTSIovfew6t5c6Pa\nSsvNpfHo0RSWlhIWFkabNm1UilKSrJ+cMyFJUo0lhJADGKlSJ0+eRK/X4+LgwownZ/Cf3v+h/+L+\n/PfQf63qOXP58mVSU1O1DsNoRUVFnD59ulrH1H7sMTK/+Qa7oCCKjCyHW9fdnRHduwPwww8/GNXW\n8ePHjTreUtjKedxcGcxapaamWlUZczmYkCTJJuzZs4cDBw5oHUaNEBcXR1ZWltZhVFlMTMwNZRWf\ne+A5Drx5gPmn5jNk+RAyCqxjTsiZM2dsInUjKioKJyenah/X8NNPyenTh+yZMxFlZUbF8Hnfvtgp\nCn/++Sfx8fEGtZGXl0daWppRcVgKayyyUJmoqCicrXzeCpS/1j08PLQOo8pkmpMkSQazlDSn06dP\ns2PHDt566y3c3NzM1m9NtX//fsLDw3n99dfNXsNdzedWUWkRo3eOZm3kWv4c9ifdGndTpV3JdPTF\nxaR36EBxrVo0GjHCqLYG//Yb606d4vPPP2fSpEnVOjajpITaNrB+gSTdTKY5SZJU4yQkJLB582Ze\neOEFqxxIBAcHax1CtT300EN4e3uzfv16q0oTupmTzolp/aYxrd80nv7zaabsn4JeWP/K2LbMztER\n961b8YyIIMnIakxXF7GbOXMmOTk5VT5uR3o6TQ8e5L+xsUb1L0m2Qg4mJEmyWrm5uSxbtowBAwbQ\nsGFDrcMxSEhIiNYhVJuiKDz55JOkp6ezb98+rcO5rf/85z+UVSEdZvD9gzk88jCrIlYxaOkgUvMt\na17C3LlzbaIU7MmTJ9mwYYPR7Tg3aULJihV4rV9P1vnzBrfT1d+frv7+5OTkMGfOnCodU6rX82FY\nGDl//km+3voHnhMnTtQ6BFVMnTrVJkrBbty40SpKwd5MpjlJkmQwrdOc1q9fj7u7O4+pUC5SK5a4\nAnZVZWdnExQUxODBg2nWrJlZ+qzOc6ukpKRaaVglZSX8a/e/WBK+hMVDFvNI00cMDVNV1T0PS1VW\nVoaiKDfMXzFG4qRJuH3/PY5ffYWTl5dBbaw7eZLBM2bg6+tLTEzMXcvU/hobywfnz9NMp+NM9+44\nqXQuWrGV55Y8D/XINCdJkmqUAQMGEBgYqHUYNZanpyeDBw+22IXgqvtH2cHegR/6/MDsJ2fz3Irn\nmPjXRMr0xk30VYPWHy7UYm9vr9pAAqDhF1+Q89hjZBkxIXtQu3b4161LXFwcq1atuuO+aSUljI2J\nAWDq/fdb/UACbOe5Jc9DW9b/SpAkqUoURfFSFGW5oiinFEU5oyhKN0VRaiuKsr1i21ZFUbwq9m2s\nKEqsoiiFFT/TKrbfsL+2ZwQ6nU7VDydS9TVr1owWLVpoHcYN9u/fj96IFJT+zftz7O1j7IjeQb/F\n/UjMTVQxuqo7d+4cSUlJmvStpry8PJOVHm24eDF2Tk4kLF5s0PF2dnZ88cQTQHla3J2+9RofE0PG\niRP0rlWLp+rWNag/S2HJ6YnVcfz4cZtIb0pISODChQtah2Ew+VdYkmqO34HVQoj2QBvgDDAB2Fyx\nbSvw74p9+wCRQghn4DHgXUVR2lWyvyRZnLy8PKMHmb6evux6dRcPNX6IjrM6sit6l0rRVV18fDx1\n6tQxe79qu3LlCt7e3iZp287JCbctW/A6c4YkA+cfjXjoIWq7uhIaGspff/112/1e9vSki6cn0+67\nz6wrEpuCLazFAJCeno6Li4vWYRjt0qVL1K9fX+swDCbnTEhSDaAoSh3goBCixU3bLwBdhBBpiqLU\nAw4IIZorijKH8kHDqor9soD3gfE37Z9iCaVhrVlwcLBM1aoGLZ5bu6J38eraV3mzw5uM7TUWnd2d\n8+ol88vYsQOXwYMpev99vO69t9rHj1u/nn9v2kTfvn3Ztm2bCSKUJOsg50xIknQ7zYHUijSncEVR\n5iuK4g54CyHSAIQQqcDVSyONgSsAiqL4AY5AbCX7m1VBQQHFxcXm7lZVQghyc3OvLfomBxLqMSa1\n6U56N+vN8bePcyD2AL0X9CYu27SVlUx1Hlow17nU7tOHzH/9C7vff6c4O7vax7//6KM46XRs376d\nM2fO3HK/rTwm8jwsixDCJi68ycsrklQz2AGdgQ+FEEcVRfkJ+Bq447tYxYBjBRAB5Fe2f0BAAAEB\nAfj5+VGrVi0CAgIAGD9+/LV9AgMDVfnQvHv3blxcXKyqepNer+f06dMkJCRc+7G3t8fd3Z1Ro0bd\nsn9BQQGbN2/Gx8eHRo0a4ePjY9BqwVo5dOgQLVu2pFatWqq0FxwcfNu1OK5uv/rcGjlyJC+99BK9\ne/eu9H5jbjdwb8CXvl+yJGwJD/7+IH889QcucS6qtX/97fPnz9O/f3+ioqJM0r65bs+ePZvU1FTG\njBljlv4iH3qI1NateWTmTLz/7/8IqSgbG9iyZfn+Z8/e9ra3hwd9WrViY1gYkyZNYt68edfa79y5\nMzNmzODBBx806+/PFLfnzZvHvHnzLCYeQ29PnTqVNm3a4OzsbBHxGHp73759DBo0iPbt22sWz9X/\nHzx4kMREw+aHyTQnSaoBFEVpDOwVQvhX3O5B+WDiXqDrbdKctgJvVvw7EngCCLlpf7OlOaWnpxMU\nFMT777+Pq6urqm2bkhCCNWvW4O3tjY+PDz4+PndcXK+4uJgzZ84QHx9PQkICSUlJNGjQgG7duvHA\nAw+YMXLD7Nmzh6ysLAYPHmyS9u/03BJCmCWXfe+lvQxfPZzhbYYz8bGJONirW4HFXOdhalcfJ3Oe\ni76oiIz27SmqX59GL79crWOjkpJoOXYsOgcHLl++fMPaNbb0mMjzsByWeB4yzUmSpEoJIWIpT3Nq\nXrGpN+XfNmwGXqnY9gqwpeL/m4EplE/S/gsoE0LEVbK/2ezevZtu3bpZ7ECirKyMkpKSW7YrisKQ\nIUPo2bMn9913311X6XZ0dCQgIIABAwbw5ptvMnr0aHr06GE1Eya7d+/O+fPnSU5ONnvf5vqj3LNp\nT068c4LwlHAemfcIlzIvqdq+pX24MJSiKGY/FzsnJ1y3bsUrLIzkO0ymrkzzBg0Y2K4dJSUl/PLL\nLyQWFfFGZCSxhYU29ZjYAnkelkUOJiSp5hgJLFEUJRzoSnllpvHAQEVRQoH+wNiKfROBJsAoYB/g\nqChKv0r2N4v4+HguXbpEt27dzNVllQkhOHLkCD///DPh4eGqt29vb0/Lli2vpVhYOicnJx5++GF2\n7TJf9aMdO3ZUaaVrNdVzrceGFzcwtNVQugR1YV3kOqPbDA0NJSEhQYXotJWVlcXBgwc169/Fz4+i\npUvxWLOG7IsXq3XsV/36ATB9+nQ+P3eOuevX86kVl+y8ylYmle/du9cmSsHGxMQQGRmpdRiqkYMJ\nSaohhBCnhBCdhRBthBADhBAZQoh0IUQfIUQ7IURfIURmxb5/CyHshBAuQghXIUQrIcTWm/c3V+zB\nwcE88sgjODo6mqvLKsnIyGDBggWEhoYyfPhwOnToUO02rs9brS4hBJGRkowBjwAAIABJREFUkdVK\nKcsUekaXZpMh8ohmJWWoP6G9c+fOJCUlERsbq3rblXFzc8Pe3t4sfV3PTrHjs+6fse6FdXy09SM+\n3voxRaVFBreXn59v1eUhr0pJScHf31/TGOr060fmP/8Js2dTnJNT5eO633svDzZtSnbDhiy6cgVd\nnTp8q/G5qMHDw0PrEFRhb29vsd9OV0dGRgZNmzbVOgzVyDkTkiQZTFEUYY45EzExMTRu3BidzjJq\nRlz9NiIkJISHH36Ybt26GbyuwYQJExg3bpxBxxYWFrJ48WLs7e15+umnqV279h33F0IwojSTZCWY\nV+2X4KVk0Ip3acYwg/q/kwMHDlBcXEyvXr1UbddSyw5nFGTwxvo3uJJ1hWXDlnFvneqXJ5XUF//0\n0+jOnMH7009RqjjgXHX8OMPatIE2bfi/xo2Zct99Jo5SkiyHnDMhSZJN8vPzs5iBBJS/2RYVFfH6\n66/TvXt3zVbhdnZ25vXXX6dFixb8/vvvHDly5I4ftBfoC1gvivAiCy8lA4DzLKaY6pfSvJtu3bqp\nPpC4mSWVCa7tUpvVz61mRPsRdJvTjeWnl1f52JKSEoscIBnCkh4TgIbLlmFvZ0fCn39W+ZjCnj2h\nZUtIT6fdqVMmjM70LO3xMJStnEdZWRmlpaVah6E6OZiQJEkyQM+ePalXr57WYWBnZ0f37t154403\nOHLkCDt37qz0g2mkKOXLsvJBw0794+SL8ko1JeRwniWqx2WOiYU//vijRdWbVxSFD7p+wNaXtjJm\n1xhGbRxFQcndJ84vXLjQJuZKHDt2zKxzZarCztkZly1b8Dp1iuR9+6p0zAW9HmX1aggKYtq331r1\nQG/y5Mlah6CK6dOn28RciY0bNxIREaF1GKqTaU6SJBnMXGlOtsyYNKeb5efnExwcTN++fW/4JqdQ\nCHqXpnFalF8Ra6Xo+FN3hnDl3wAo6AjkD1xppEocAPqSEtJPHKNeF3UnzVvLcyu7KJu3N7xNRGoE\ny4ctp2W9llqHVKOlb96My7PPUvLRR3j6+d11/zCg5yefkJWfz969e+nRo4fJY5QkSyDTnCRJkmow\nV1dXBgwYcEtK2NiynGsDCWdgjr0X9yg9qU35uhWCUiKZo0oMWX+vI3pkew7c68jJ5x8ibu9ednzx\nBcKCvkEwB08nT5YOXco/Ov+DHnN7sPDUQq1DqtHqDBhA5ujRMGtWlSZktwXer0jT+89//mPi6CTJ\nusnBhCRJFik/P5+srCytwyAzM5MFCxZUuoaEGkw9r2CrvpDZ+v+lB0y096S1nQMKCq1459r2BELI\n4IxBfeRfCCVh4tOkv+NI0peDiZgXSvoVsM+DVY89xv7JkzkyY4bR53LV2rVrzV4K1hCKovB2p7fZ\n9eouvt37La+ve5284rxr9x88eJD4+HgNI1RHSkoKf1VzTQct+IwdS1737mTMmoWo5Pmj1+tZe/Lk\ntdsfPPYYjvb2bNmyhbMVq2Vbi9WrV2sdgiq2bdtmE+lNZ8+e5fTp01qHYTJyMCFJkkU6efKk5h9Q\nysrKWL58Oc2bN8fBQd1Vjq8KDAw0+FghBCdO5HL0bCGTT8HCc7AjFsLSIaUA4vRl/KP0fwOyAYoT\nb9q5XLtdm9b48Mi12xHMQlD1FKLkWZ+Q+l59nGe1x/ncekJXl3B2H+grPqflpYGjvvwbkZ2jR5NR\nzZr/t+Pn56dJKVhDtWvQjqNvH0Uv9HT+vTPhyeXrkbi4uODj46NxdMbLz8+nTZs2WodRJQ1WrEAH\nJCxbdst9haWltL7u8Wjg6cnLFWvbTJo0yVwhqqJZs2Zah6CKhg0b2kQp2LKyMpo3b373Ha2UnDMh\nSZLBTDlnYt68eXTv3p0WLVoY1Y4x/vrrLy5fvsxLL71kUSuVRkUVsHRpCkuXphIZWcBzX/mx3M/3\nlv1ce2Xi4F8IQCPs2OdQjzrKjdeQ8ognhDcQlH/o78g4fOhZpThS36tLLed0Iv+Ci8duvM/NGR7Q\nwcp8SK3IcPIPDOSV3buN+l1ay5yJ25l/cj6f7fiM73p/x5sd3rSo51VNkX/hAnTqRO7TT1P/4Ycp\nAw45O9O9sPCWfc8mJnL/uHE4Ojpy5coVm1gHRJLuRM6ZkCRJc2qUvcvPzycxMVHTha+SkpI4dOgQ\ngwYNsogPfPHxRfz0UxydO5+iRYvjjBt3hcjI8kpB2w9WngZQcNgDv7QSFCGYqfO6ZSAB4EYj/Hj6\n2u1IgtBTtZSuNNGF4Dk3DiQUFx2tBg+kR6N61LGHJ13g6m/vYnAw4UuXVu2EbdSIgBFsf3470/ZP\n4+U1L5NTVPUF1SyNEIKcaiwIZylc772XwsWL8Vi5kpxLl5jr6cnD9erxgbf3Lfu2bNiQ/m3aUFxc\nzH//+18Noq0ea3w8KpObm2vVFw2uKikpobCSQaqtkYMJSZJUtXPnTqPbOH/+PH5+fiZLLbobvV7P\nunXr6N27N15eXprEAJCeXsLvvyfy2GPhNG58lE8/jeHo0dwb9nFzs+Oh5o6Mal7Gi/fCo42gVS2o\n7QSiwJ6pZQ15c30w9SIv3Laf+3gJHe4A5BPHJTbeMa6i1FSOv/oK52ZupeC6JSrc+/rz6JlI7luz\nEYewS9h9/zON7vGlq2P5H5seTw2k1dChBv8+bEV4SDgbB2/EzcGNTrM7cSLhhNYhGeTEiRMcOXJE\n6zAMUmfgQDI//5yMhQv5ytUVduygR0HlZXy/6tcPgF9//dXi8/dnzZqldQiqWLBggU18CN+2bRsx\nMTFah2FyMs1JkiSDmSrNaeXKlTRr1oyOHTsaE55RLl68iJ+fn9m/lcjLK2PDhnSWLElh69ZMSkpu\n/T06OCj071+b4cPr8eSTdXBzq3z+QFEZ2CuQEHeF5cuXM2rUqNvmH0ezkghmlrePB4+yEIeKAcZV\nQgjili7l9EcfUZyaem27XR17fKcNpN3Lq7FTboxFFBVRNP93zkz5gSa7D+DduHG1fh83s/Y0p5st\nDVvKh1s/ZHyv8bzX+T2L+BasJnl38mRmde5Mj/x8/oqNpbLfvhCCTt9+y4krV5g+fTrvvfee2eOU\nJHMxJM1JDiYkSTKYqQYTe/fupW3bttSqVcuY8KxCcHDwDZOwV6xI5bnnbq0coyjw6KNevPhiPYYO\nrUft2tVbEXzTpk04OTnx+OOPV3p/GcWE8AYFJALQjOdoxdvX7s+/fJmwUaNI3rz5huNcXvTEf9pI\nmtWfjHKHL7tXr16Nv78/HTp0qFbcN7O1wQRAVFoUz698nma1mxH0VBC1nG3/eW8JzuXn0+bIEUrL\nytgSFMQTdyiGsOLYMZ6bPRs/Pz/Onz9vVQUAJKk65JwJSZI0Ex4ezokT6qRr9OzZs0YMJABCQkKu\n/T8iIoWwsNPodP9bk6FzZ3d++smf2NgH2bWrDSNHNqz2QAKgW7dunDx58rZzWuxx5H5GXrsdwxry\nSUTo9Vz89VeCH3jghoGEfRMddTc2psWSj+86kIDyEri2XM2kKnbv3k1cXNwt25vXbc6BNw/QyKMR\nHWd15HDcYQ2iq7q4uDh2796tdRhGm3jhAiU7d/Kqhwc9N20ief/+2+77TEAATWrXJiYmhvXr15sx\nyqpZtGiR1iGoYvXq1RafSlYVJ0+eJCwsTOswzEYOJiRJUoWbmxtt27bVOgyrdvp0Ct98E0xpaQz3\n3ptBVFRHDh9uz8cfN6JRIyej2q5bty7Dhw+/4xVVH3pRi/sB0FNC+Jnv+LtHD8I/+ICy3Iq5Ggq4\nvV+bBqeb0XjgmzRh3F0HElf7d3d3v+t+tqxJkyY0alT5KuNOOid+6f8LU/pO4cklTzL1wFSL/QbG\n3t6ezp07ax2G0ab6+/Nhv3780L49BQsXlk/Ivny50n119vZ81rcvAN999505w6ySrl27ah2CKtq2\nbWsTpWA9PT1p3bq11mGYjUxzkiTJYKYsDVtTTJgwgXHjxgFw/nw6zZuXV4zx9nYlKekzs+fQpxPO\n/qIP4fsYxLcxcN2cDV0rR2oH+eDU3ZV6PE9jvq7SQEJNNeG5dTHjIi+seoH6bvWZ9/Q86rrW1Tqk\nGiFh7FhcZ8zAdcwYHNzcbrk/t7AQ39GjyS4s5O+//6Z79+4aRClJpiXTnCRJMruioiIyMjK0DkMV\n4eHhmlYQadasNu7ujgDodHZkZmoQy4Ec7DuGI8ZfvDaQUBzs8BhXjwYn/CsGEi/SmLFmH0hYq6ys\nrGqlbvjX9mfv63tpWbclHWZ14O/Lf5swuqrT6/UkJydrHYYqEhMTb9nmM2EC+Q8+SPqsWVDJgNXd\n2Zn3Klast5RvJyo7D2uUmpqqSllxrRUUFJCZmal1GGYn/xJIkmSUkJAQUq+r7GOt8vLy2LRpE3Z2\n2r0t2tkp7Nz5ComJ/0d8/P9Ru7bL3Q9SSWlODuEffsjfDz9M6ZmUa9t1XV2pf7wpXuO9UZzsqMdw\nGvMvlErr3kiV2bJlS7UHqY72jkzpO4XfBv7G0OVD+W7vd+iF/u4HmtCpU6e4cOH2JYatRV5eHtu2\nbbv1DkWh/sqVOJSUEL98eaXHfti7Nw729mzatImoqCgTR3p3q1ev1joEVaxbtw69XtvntxqCg4Nt\n5uJadcg0J0mSDKZ2mpMQgj179vDoo4+aPb3n3LlzHD58mJdfftms/d5czUkLSVu2EPbuuxRcly+u\nuDli910T6r/nyNVpFt68hC9jNB1I1IQ0p5vFZsfy4qoXcXVwZeEzC6nvJldhNpQQ4q7vLflRUdCp\nE3lDh+L90EO33P/avHnMP3CAt99+22bWdZCkq2SakyRJVq2wsJAjR45oUms/Pj4eHx8fs/erxUAi\nIyODsrIyilJSOP7SSxweMOCGgYR3v370PH0U1w8eobb9Oyg44c0rRg8kQkND2bVrlxqnUKM09mzM\nnhF76NyoMx1ndWTPxT1ah2SVQnNzaXPkCFvT0u64n2vz5hQsWID7ihXkXLlyy/1fVEzEnj9/Pikp\nKbfcL0k1jRxMSJJkMXJycjSr+JOQkKDJYEILy/78k9PTp7OnVSviliy5tt2hbl06LFpE182b8Wra\nll4EcS8fcT+r8OVLo7+R0Ol0NpESV1UbN26stBSsIXR2OiY+NpG5T8/lpdUvMSF4AmX6MlXavpuL\nFy+yfft2s/RlKkIIPoyI4MyqVWxJT7/r/nUHDybzo4/Qz5xJSV7eDfe1btSIvq1bU1RUxPTp000V\n8h3ZyjciCxcutIlSsAcPHuTUqVNah2G09Cq8NiojBxOSJFmMnJwcPDw8NOk7Pj7+tmU7bUn+pUs0\nCgri0kcfUXLdFVrfl1/m0YgIGr/00rVvhq5OsHammSqpTe7u7uReLTFbA3Ts2BFfX19V2+xzbx+O\nvX2MkEshPL7wceJz4lVtvzJeXl707NnT5P2Y0prUVEKysqjdowfj/fyqdIzPxInkd+xI2uzZt0zI\n/qpfPwD++9//UlBQoHa4dzVo0CCz92kKvXv3tolSsE2bNrWJ0uiOjo4GHScHE5IkVYuiKP0URQlT\nFOW02m1rNZjQ6/U89NBDeHl5mb1vc7oybx7BDzyAcvz4tW0u99xDl82b6bhwIU7e3ibt38PDg5yc\nHJP2YUlMNTj18fBhxys7eNTvUTrN7sS285VMJlZRnTp1cHExXzEAtRWWlfHZhQug0zGxY0dqOzhU\n7UBFof7q1TgVFhK/cuUNd/Vq0YJ2vr6kp6ezYMECE0R9Z7Zy4cNWzsPHx0fT4h1qMTQzwPrPXJIk\ns1EUxRGYATwBtIfylT7VkpeXp8lVKjs7O7p3767JXA1z0nl5UVaRsiEUBf8PPyTw9Gka9O9vlv7d\n3NzIuyllxBalpqaSnZ1t0j7s7ewZ22ssS4cu5c31b/LVzq8o1atbWrOsrIxLly6p2qYWfoqN5WJ0\nNG3c3Hi7mqmM9m5uOG7ZQq1Dh0g5/L+VyRVF4auK182kSZPMVokoOjraLP2YWmxsLEVFRVqHYbTc\n3FybKJcshDDquSUHE5IkVUdXIFwIES+EKAXYtGmTao03bdqU+++/X7X2rEFwcLDZ+vJ55hl8hg7F\npWVLUj77jDY//4zOjHNUdDodZWXmyfPX0l9//WW2gWmgXyDH3znOyaSTBM4L5ErWrROGDRUeHm4T\nZS79hKDexYtMu+8+dAZcPXa7/34K5s/H/c8/b5iQPaxjRxp5eREdHc3GjRvVDPm29u7da5Z+TC0k\nJAT7q2XirNiBAwcoKSnROgyjxcbGEhMTY/DxsjSsJNUAiqK0AJYBAlCAZsDXwMKK7Q2ABOB5IURW\nxTE/A48DhcBIIcQJRVFeBHoKId6r2Ee8++67zJgx4+b+alz5TkNdvwK2ORRnZJBbUsKukBCeffZZ\ns/UL5Ve/srOzjUonk8+tyumFnsl/T2bqwakEDQpiUEvbyKlXS7Fej6ORaSjxX36J6x9/4D5mDLqK\nb1B/2rGDT1eupGvXrhw8eFCNUCVJU4aUhpWDCUmqYRRFsQNiKf+W4XMgWggxTVGUjwF/IcRHiqIM\nAV4RQjyjKEoHYK4QIqA6g4leFSvFAvj5+eHv70+vXr0qLYUaHBxMSEjILdvl/nL/ixcvXrti5ufn\nx/z58+Vg4g72X9nPi6teZGiroXz/+Pc42hs2oVKqhBAk9ukD8fE0/OgjUBRyCgvx/eILcoqKOHDg\nAN26ddM6SkkyiiGDCYQQ8kf+yJ8a9AP0BfZW/P8CULfi//WAqIr/zwGGXndMGOAL9AQ2XrddTJw4\nUdys/K1Fqorx48drHYJVseTn1rJly0RsbKzWYYi0/DTx1NKnROfZnUV0enS1j4+IiBCbN282QWTm\nlZeXJ2bMmKFqmyXZ2SK9aVMR16ePELNmCTFrlvisb18BiKefflrVvq43depUk7VtTjNnzhR5eXla\nh2G0Xbt2iRMnTmgdhtESEhLE4sWLb9hW8R5brc8Vcs6EJNU8zwNXFxfwFkKkAQghUoGrS+s2Bq5P\nvo6r2HYYeEBRlEaKojgA9DfT5F1TSk5O5tixY1qHIVm5vn37ql4K1hB1XOqw9vm1DG87nK5BXVl5\nZuXdD7pOkyZN6N27t4miMx9nZ2eGDx+uaps6Dw8ct2yh9sGD1yZkf9K7Nzo7OzZs2MCFCxdU7e+q\n119/3STtmtvzzz9vE6VgO3XqRPv27bUOw2h16tRh8ODBRrcjBxOSVINUDACeAlZUbKpWvogQoggY\nBWwHTkJ5LX1rl5eXR2hoqNZhSFauVq1aWodwjaIofNztYzYN38QXO77gH5v+QWFpYZWOdXNzM7je\nvCXILS3lpytXKBYCT09P1dt3a9WKvD/+wP3PPzkVFkZcVhaPt2qFXq9n6tSpqvcHlvXcMoatnIeX\nl5dNVP9zdHS8YXC3cmX1LjxcpVMrIEmSrEJ/4FjFtxAAKYqi1BVCpCmKUg+4WuMuFmhC+TcRUP6t\nRCyAEGIrsBXK50wEBAQQEBCAn58ftWrVIiAgwODgkpKSiI+Pp0OHDga3YYgGDRqQlJSEEMLsfyCu\nn1siVc/VSlhX511odbt58+a4uLhcG5BqHc/Nt0+8c4KRG0bS5os2jO81npeffrnS/Xfs2EFCQgKv\nvvqqRcVf3ds777mHb4ODWasoTPD3N0l/9YYNY+OSJZQdO0aTX3/l5dat2fryyyxevJiff/4ZnU6n\nSn/R0dG88cYbZv39meL2+fPnuXDhAk5OThYRj6G3c3Jy6NChA40bN7aIeAy9LYRg3rx5+Pv7X7tv\n9uzZJCQkYJDq5kXJH/kjf6z3B1gKjLju9i/AxxX//wT4peL/Q4HVFf/vCJy6TXuiMrfbfjcXLlwQ\n8+bNM+hYY/30008iNTVVk77NLTY2VhQUFJi930uXLolly5YZ1Yahzy1T2rhxo8jPz9c6jDvS6/Xi\nt8O/iXqT6okloUsq3Sc0NFRERESYOTJ1XczPF45btgi+/17sz8w0bWcZGULUqydEZKTQ6/WiefPm\nAhA7d+5UrYsVK1ao1paWVq1aJcrKyrQOw2h79uwRycnJWodhtMuXL4sDBw4IIcrfG2rVqiUAMWvW\nLDlnQpKk21MUxZXyUq+rr9s8HhioKEoo5d9ajAUQQqwC4itWuQ4CXjNHjFqukOzj42P4VRkrs3bt\nWjIzM83eb3Z2tk2kBtxs4MCBFr9CtKIojOo8ih2v7GBc8DjeWv8W+SX5N+zTtm1bq1/n5fPoaIqd\nnXlp0CAeMvWK9rVqwSefwIQJKIrCc889B8Dy5ctV62LYsGGqtaWlIUOG2MQK0YGBgXh7e2sdhtGa\nNGlCt27dyM7Oxs7OjszMTA4fPszbb79tUHvW/8hKklQlQoh8IYS3ECLnum3pQog+Qoh2Qoi+QojM\n6+57XwjxgBCioxDihDli1HowER8fr0nf5lRUVERWVpYmfxBzcnJwN+MiedKtAhoGcOztY+SX5tM1\nqCsRKRFah6Sa4IwMVqak4Gpnx/fNmpmn0w8/hN27ITz82mBi1apVlJaquxq5JKntzJkz19b8SUlJ\noXPnzga3JQcTkiRZDCcnJ/R6PcXFxf/f3n3HR1Wsjx//TBqB0KRDQkdBQm8i3CugCEhTQYoIIl4E\n8d4LqF/rVbmAXstPFEQURVARhYB0hISioSgBhAAJBKQnJCShhZDCpuz8/tgNBgmQbDu7y/N+vfJi\n9+zZmWfYs2XOmXnG5XU3a9aM0NBQl9frasnJyVSrVs2Q1WczMjIoV66cy+t1lm+//ZbExESjwyix\ncqXKseDRBUy8ZyL3fXMfby9+22UrODtTWHw8/Pgjr9WpQ0hgoGsqLVsWXnoJJk2iefPmNG7cmPPn\nz/PLL7/YVez//vc/BwVorBkzZpCVlXXrHd3c2rVr2bt3r9Fh2O306dPMnz+fsLCwq993eXl5VKlS\nxa5ypTMhhHAbSikqVKhgyBCcSpUquUVaT2c7cuQIderUMaTutLQ0p2TXMcqQIUM89phRSvGPNv/g\nl5G/8H3y94SZwsjIyTA6LLvMat6cZa+9xou1a7u24nHjICoKFR3tsKFOL7zwgiMiM9zYsWO9IhXs\n/fffb1dyEXdRq1YtoqKiGDp0KL169UJr7ZATS9KZEEK4le7duxPoqrOKbqAgw4Yr5OXlsXfvXtq2\nbeuyOgtLTk6mZs2ahtTtDN5wnDar1ozfn/0dfz9/2s9pT0xKjNEh2czHx4dHg4Mp7eqrbmXKwGuv\nwVtvXe1MLFu2jNzcXJuL9IZjC6Qd7kRrTcOGDfn888+ZNm0a69atc1jZ0pkQQriVJk2aeNXZ61vZ\nvHmzy+rKycmhU6dOVK5c2WV1FjZmzBi7L6e7g+PHj5OamnrrHd1cdnY2+/btIyggiHkPz+P1v73O\n/fPvZ87uOQXZ2jzGjh07jA3gmWcgJobQ9HTuvvtuLly4wM8//1ziYgxvh4Ps37/fK4Y3paSkcOLE\nCaPDACAxMZE9e/bY9NzLly/j4+PDyZMn2bx5s8OvfElnQgghbhNlypShU6dOhtVfqlQpr8jmdPz4\nca9YfOvEiRNXJ2ACjGg5gq2jtjJz50yGLRtGuindwOiKLyMjgytXircgn9OUKgVvvIEqdHXClqFO\n58+fd3RkhkhMTHT7DGfFcfToUSpVqmR0GADMnz+ftm3bEhISgslkuuax119/nS1bthT5vGPHjl09\nQZeYmMh9993n8NikMyGEEH9hVEYp4Rm6d+/u0StEF2jatCn16tW7ZluTKk3YMXoHFUpVoO2XbYk+\n45JEbjZLycmhbNmy7rH441NPwYkTDKpbF4Dly5eXOJlE7969nRCY6z300ENeceKgc+fO13S4jbB2\n7VrOnz/Pa6+9xtq1a0lMTCQwMJD58+df3efnn3+mS5cuNGzY8JrhdWvWrKFRo0aAJZNfrVq1nBKj\ndCaEEKKQvLw8Zs+ezdmzZ40ORbgZTxv6czM3a0tp/9LM7jubqd2m0nNBT2btnOWWbV97/jx1t2/n\nw/h4o0Ox8PeHSZMInTeP0NBQLl68yKZNm4r1VHf8/7WFN7XDXdrSp08fqlSpwhtvvMFDDz1Efn4+\n9957LyNHjkQpxcWLF4mKimLVqlUcP36cgIAAFi5cyBtvvEG/fv3o0KEDWmunngCRzoQQQhTi5+dH\n165dWblyJWaz2ehwhBuZO3euR6aC/avo6OhipYId2mwov/3jN+btncegJYNIu+L6LGs3kmM2MyEm\nBlNYGL7udAb8iSfg3DkGt2kDFH+o09SpU50ZlctMmzbNK+ZKrFq1in379hkdBmDp2IwZM4Z33nkH\npRQnT57kt99+uzp/olKlSkyZMoV+/fqRl5dH27ZtGTZsGO+88w4TJkzg2WefdXqMyl16XkIIz6OU\n0kV9hiil7Dqrk5KSws6dO+nXr5894dlMa838+fNp1KgRnTt3dmpdkZGRdO3a1WnlX7lyhQsXLjjt\n8nZxZGVl4evrS6lSpewuy95jyx75+fmGrM/haGazGaVUsYehmPJMvLThJdb8sYZFjy2iQ3AHJ0d4\nax8lJPDisWPcFRBATMeOBLjT6sphYcS9/TZNY2OpUKECqamptzwr7C3HlrTDeRITEwkJCQFg0KBB\nhIWFoZRi1KhRfPPNNwAcPnyYxo0bA5Y5FsOHD8dsNpeoLdbP2BL10N3o3SeEEBYVK1YkNjb2uklm\nrqKUon///vz6669OH+7kzI4EQEREBNHRxo573759O1u3bjU0Bkdwtx8XtvLx8SnRePZSfqX45KFP\n+LDHh/T9oS8fb//Y0CEgqTk5TDl5EoCPGzd2r44EwKBB3K0UzevW5dKlS2zYsOGWT/GWY0va4TzB\nwcForfnggw9YsmQJPj4+7Nixg6+//ppTp04BXO1IHD9+nBEjRqCUcklb3OwdKIQQlqw/tWvX5tix\nY4bFcMcdd9CtW7di/RBwV0eOHOHkyZM8+OCDhsbxxx9/XP2S80QHDx4kOTnZ6DDsdvnyZXbt2mXz\n8wfcPYAdo3ew6MAiHl70MBeyLzgwuuJ768QJLu3axUOVKtHboDTkj3DeAAAgAElEQVTHN+XjA1Om\nMNh6MuRmQ51sSR/rjqKiorxieFNCQgJ//PGH0WHc1EsvvUR6uiXTWseOHWnRogWHDx+++nhGRgYh\nISE3zO7kDNKZEEK4pcaNG1/zAWmEdu3a8cgjjxgag63S0tJYvXo1/fv3NzTzUFpaGhkZGR67UjTA\nhQsXqFq1qtFh2C05Odnu16H+HfXZOmord1W+i9ZftOa3hN8cFF3xjatUiS7BwXzUsKHL6y62hx9m\nkLWjs2LFihteZXXHM+C2MJlMXrHSdUpKikd8VpUrVw6tNYsXLyYmJoYePXpw1113YTabCQoK4ty5\nc1SvXt1l8cicCSGEzZw1ZwLg0qVLfPHFF7z44ote84XrKpcvX+brr7+mY8eOdOhg7Pj2qKgoUlJS\nePjhhx1SnpFzJsS1Vh9ezejVo3mh4wu81PklfJScn7zGunW0evRR9plMrFq1yrA5YMK75ebmsm/f\nPtq1a+eQ8mTOhBDCa1SoUIHq1atfHQsqiu/ChQu0bdvW8I6E1po9e/bQsmVLQ+OwVV5entd0XPLy\n8hxeZr/G/fj9md9Z/cdq+vzQh7OZzk+n7Ix2OE2vXgy2nh3+61Anj2rHTXhLO8xms8dm7/P397+m\nI2HEayKdCSGE2xo2bBgNGjQwOoxrODr/eGRkpMPKKlC3bl2nZ6EqjpycHBo0aEBd6yJenubbb78l\nKSnJ6DDstnv3biIiIpxSdu0Ktfll5C+0rtGa1l+0ZvPJzU6pByAzM5MZM2Y4rXyHU4pB1pSvK1eu\nvGaV7nfffdeoqBxqxowZXjFXYvXq1cTGxhodht3i4+NZsGCBy+uVYU5CCJs5c5iTu9q5cydnz56l\nR48e+Pv7213e5MmTmTRpkgMiuz248tjSWnvFKr7gmrZEHI3gqZVP8Vy753j976/j6+P44Yme+Jq0\nKVeO6IwMVqxYcXW4nye2oyjSDvdjb1tkmJMQQjhZ8+bNMZlMzJ49m3g3WHk3Pz/f6BC8lrf8uADX\ntKVno57sHrObn0/+TM8FPUnOcEwGrESTiaEHDnAsO9sjX5PBTzwBwOJFi65u88R2FEXa4X6MaIt0\nJoQQogRKly7NgAEDePDBB1myZAnh4eHk5uYaEkt8fDyfffaZVwzFcSe7d+/2iv/TCxcu8Ouvv7q0\nzlrlarFxxEY61+5Mmy/asPH4RrvLfOXYMcJWreI/x487IELXG/TSSwCsWr6cH3/80eBoHGPTpk1e\nMbzp6NGjxMXFGR2G3a5cuWJoGnPpTAghrqGUmqaUOqiUOqCUWq2UqlTosdesj+1XSvUwMk6jNWnS\nhHHjxpGVlcXatWtdWndGRgbh4eEsWbKE7t27G7q6tbeqUaOG0SHY7dKlS4as7+Hr48vkbpNZMGAB\nI1eM5M2f3yTPbNuk0O2XLvH9qVP416rFu242f6q4GjZsSNsmTcgwmThhcLprR6lQoYJXpILNyspy\nu3l5tkhPT+euu+4yrH6ZMyGEuIZSqiuwRWttVkq9BwRorV9QSrUFPgc6AjWBbUA9V8yZ0FoTERFB\nly5dKF26tMPKdZS8vDz8/Pxsem5J5kwUdCKOHTtGaGgo999/v1t+oZtMJkqVKuWUsr15Po43SslI\nYfjy4eTk5/DDgB8ILl/8HP5mrem4Zw+7Ll/mP3Xq8LYH/+j74IMPeOWVVxjaujUL9+wxOhwhbkjm\nTAghbkgpNVkp9YdSKk4ptUQpVVopVU8p9Zv1SsNCpZSf1joS8FNKLQKGAiOUUnWA3kCY1tqstU4E\nXJb6QilFbm4u27Ztc1WVJXKjjsS5c+duOaehS5cuxa4nMDCQOnXqMGHCBPr27euWHYnMzExmzpxJ\ndna20aGUmMlk8oo5KFprtxmCUr1sdSKGR9CjQQ/azWnHuiPriv3c71JS2HX2LLUCAni1Th0nRul8\nffv2BWD13r1knXV+Cl1nyc7O9orOfF5eHjk5OUaH4RDu8F6XzoQQtwGlVENgBNBMa303YAaGAZ8A\n72utWwApwL+sT/kXkAzsB+YDM4EQIKFQsYmuid6iS5cuREdHk56e7spqbZaXl8fSpUt5//33+eqr\nr/jpp5/Ys2cPycnJ13wZd+3aFbD8AMzIyODIkSNs2bKFjIyM68r08/OjQ4cOBAYGuqoZJbZ161ZC\nQ0Pd8grSrSxatIjU1FSjw7BbdHS0W3W8fZQP/7nvPyx+bDFj1ozhlQ2vkJt/63lGZy5dwm/dOt5v\n0ICyNl75cxerVq2iffv2ZGrNuuefNzocm3311VceeaLgr9atW8eRI0eMDsNuCQkJLF++3OgwZJiT\nELcDpdQdwHbgXuAykARkAHWAg4ACAoEMrXVrpdQm4BBQA3gMS0djObBJa73YWuZsYKwrU8Nu3LiR\nrKws+vfv7/CynSUnJ4fk5GSSkpI4c+YM6enpjBw58urjCxcu5Pjx4+Tl5REYGEjNmjWpWbMm99xz\nD+XLlzcw8pJLS0vjyy+/5LnnnqNs2bJOqUOGOXm2c1nneHL5k6RdSWPRY4uoU+HmVxwSrlwhuFQp\nfLwg286HH37ISy+9xOBSpQhLTQUPe3+L24Mtw5ykMyHEbUIp9QzwEZAFrAdextI5aGp9vAbwi9b6\nbqXUGSxXIf6utTYppeKAlcBZrfU06/5rgD436kwUngfQtWvXq2fg7ZGdnc2sWbMYNmyY10w6NplM\n+Pj44Ofn59HpCbXWLF68mOrVqzvktS4QGRl5zcJ+kydPls6EhzNrM9N+m8aH2z9kTr859G/sOScH\n7HHq1Cnq1atHGV9fUl99laC33zY6JCGuI50JIUSRlFINgDXA34BLwBIsVxpe+2tnAngeS8ehhdb6\nsPWxQ8C/gXeATliuWGzFRROwC4uJieHy5ct06tTJKeUL28TGxrJlyxbGjBlj82T04nDGsbV161Ya\nNGhAcHDxJwe7o5SUFOLi4hzamXOm7QnbeXzp4zza5FHef/B9AnwDAMvaKcuWLWPQoEEGR2i/sLAw\nhgwZcvV+x44d2bFjB4vLlmXQqVNQqdJNnu0+Vq9ezQMPPOCW87RK4sCBA2itadasmdGh2CUjI4PI\nyMirc3EcyZbOhGcPQhRCFFcH4Fet9QUApdRy4D6gSqF9QoDTWOZHmIEVSqlsIAqoBGwC2mGZR5EP\njAUiWrVqRatWrahXrx4VK1akVatWTm1I8+bNnVq+sE29evWoXr26UzsSf1VwxaLgx7Ot96tVq0at\nWrUcVp5R97ds2XLNXBWj47nVfdMxE5/c/QnzLs6j87zOPF/jeWqVq8U999xDu3btDI/PEfcLzy+I\njIykTZs2ls5E1apUHT8eRo92q3hvdL9hw4bs3LnTbeKx9X5CQgKPP/6428Rj6/2cnBxycnKIjIy0\nu7yC21FRUSQn27bQpFyZEOI2oJRqD8zD0qm4AnwNxABdgHla6xVKqelAvNb6I6XUi0CI1vp5pdSj\nwCit9XVjEZRS2tVXJrxN4S8DcWtybHkfrTWf7PiEt7e+y7gHv2Byy/4ePeTvZuLj46lbty6lAwNJ\nLV2asocPQ9WqRoclxFWSGlYIUSSt9S7gRyxXFeKwTLaeBUwAXlFK7ccydGmm9SmfAsFKqRjgJWC8\ny4O+TWzevNnoEG5bGRkZmEwmo8Owm9aaCxcuGB2GzZRSTOg4gaf7LGdqvKLZxnlcybtidFh2udHr\nUadOHe69916yr1zhp/bt4f33XRxZyaSlpXlFumSTyVRkhjxP5I7vdelMCHGb0FpP1lrfqbVuorUe\nqrW+orU+obW+V2vdwrot17qvSWs9WGvdXGvdSWt90uDwhXC4lStXekyq4ZuJjo4mNtZly744xYXc\nXOYkZsDWrVTIOsy9c+/lyHnPTd353Xff3fCxwYMHA7DYzw/mzYOkJFeFVWJhYWHk5t46ja+727hx\nI2fOnDE6DLvFx8dfMzzJXcgwJyGEzdxhmFNSUhKpqalOn6vhLCVZAdudmEwm/Pz88PX1dWm9MszJ\nO004coRPEhPpVrEiG1u04IvdX/BW5Ft80usTHm/+uNHhOdTp06epXbs2gYGBpI4eTTmAmTNv9TQh\nXEKGOQkhbjuBgYFs3LiREydOGB3KbcNsNrNkyRJ2795tdCjCCxzMzGRWYiI+wPRGjfDx8WFc+3Fs\nGLGBSZGTeGbVM2TlGr/Kr6OEhITQuXNnrly5wprQUPjhBzh1yuiwhLCZdCaEEB6tUqVKDBgwgKVL\nl3Lx4kWjw7ktbNy4EbPZTLt27YwOxSYREREkJrp0AXeniI+PZ8OGDUaHYbf3jh0jf/16xtaqRYtC\nix22qtGK3WN2k5WXxT1f3UPc2TgDoyyeefPmFWu/q0OdIiJg7FhwszUnFi1aRFaW53fgfv/9d/bv\n3290GHZLS0tj2bJlRodxQzLMSQhhM3cY5lRg586d7N69m1GjRhEYGOjSuu3hadmcoqOj2bp1K6NH\njzYk57wjjq1Tp05Rt25dB0VknLNnz1KmTBmCgoKMDsUuaVlZfHDgAC+0bEmVgIDrHtdaMy96Hq9u\nepUPH/yQka1GFlGKeyjusZWYmEjt2rUJCAgg9dAhyrdrB1FR0KiRC6K8NW95jyQkJBAcHIyPj2ef\nO09PTycvL49KLliXRBatE0K4lDt1JrTWREREkJSUxKhRo7w2taSRDhw4QHh4OCNHjqRKlSq3foIT\nyJyJ21dsaiyDlwymfXB7ZvWeRdmAsrd+khu777772Lp1KwsWLOCJI0fg+HGYP9/osMRtTuZMCCFu\nW0opevbsSc+ePaUj4QRaa44cOcITTzxhWEfCXhcuXPCK9JD5+fleMUwLLGeOi6tZtWbsemYXvsqX\n9nPaE5MS48TISqYk7ShwdajT4sXw/POwbh3EGTuUKzk5mZycHENjcITMzEzOnz9vdBgOYcux5WrS\nmRBCeA2lFMHBwUaH4ZWUUjzyyCPUqFHD6FBstmnTJq/ImR8TE+MVaS4zMzPZtm1biZ4TFBDEvIfn\n8frfXuf++fczZ/cct7hSFRERUeLnDBw4EKUU4eHhXAJ44QX4738dHVqJREREeMXJmG3btnnFnI/4\n+HgOHjxodBi3JMOchBA2c6dhTuL2IMeWd8jXGl87f7QeOneIwUsGE1otlC/6fkH5UuUdFJ3rdO3a\nlc2bNzN//nxGPPqoZc7E+vXQooXRoYnblAxzEkKIInjDoktCeIs9ly/TeMcOVpw9a1c5Tao0Ycfo\nHVQoVYG2X7Zld5LnpSq+ZqhT2bLw8svw1lsGRyVuVyaTyabnSWdCCOHVTCYTs2bN4o8//jA6lCK5\n42qmJpOJTZs2kZeXZ3QoDrFs2TKvmGNw5MgRwsPDjQ7DLlpr/n3gAMd+/JFtly7ZXV5p/9LM7jub\nqd2m0vuH3vRb2I9Nxze57OrVTDsXmysY6hQREcEnn3zC3IAAzKtWsScqykERFs+8efO8YljQli1b\n2Lt3r9Fh2C01NZVFixa5tM6FCxfanAlRhjkJIWzmKcOcTp8+zeLFi+nQoQOdO3d2qzHB7rYC9sWL\nF1m4cCEhISH06dPH5Stc34otx9bZs2epWrWqkyJynfT0dEqVKkWpUqWMDsVmYampDI2JoXJODsce\nfJAKfn4OKzs7N5vvY75netR0lFJMvGciw5oPo7R/aYfV8VeOOLY6duzIjh07WLFiBQ936wa1aoGL\nEwV4y3vk3LlzVK5c2a0+422RnZ1Nfn4+Zcs6P2NZXl4e9evX5/Tp09x3331s2bJFhjkJIcRfhYSE\nMHr0aOLi4li6dClXrlwxOiS3dOTIEebOnUu7du3o16+f23UkbOUNP5IAypcv79Ediaz8fF46dgx8\nfXmvZUuHdiTAcpVidJvRxIyL4eOeH7P80HLqzajHW7+8xZnLzpmw7ohjq0+fPgD89NNPkJIC1avb\nXWZJect7pEqVKh7fkQAoXbq0SzoS27dvx9/fn9OnT7Nx40Y2b95sUznSmRBC3BbKly/PU089RenS\npZk7dy5ms9nokNxGXl4eK1euZO3atTz22GN06NDBLb+Q9+3bV6L9k5OTvWJV9NzcXI4ePWp0GHb7\nfwkJJBw5QuuyZRlVs6bT6lFK0b1Bd9YMW8OWp7ZwPus8oZ+F8uTyJ9lzZo9D6jh06JBDyoE/OxNr\n165Fp6RAtWoOK/tWTp486RUnVy5dukRSUpLRYdhNa+3QY+tmHn30UTp16kRQUBAmk4kHHnjA5rKk\nMyGEuG34+/vTp08fRo4c6fErojqSr68vtWrV4tlnn6VevXpGh1Ok5ORk1q9fX6Ln7Nixg4AiVlT2\nNHFxcV7xg6+5jw81U1KY0aiR3ZmciqtxlcbM6jOLY+OP0bxacx5Z9Aj3fX0fy+KWkW+2PU1wdHS0\nw2Js3bo1NWvWJDExkX07d7q0M7Fjxw78/f1dVp+z/P77715xJfX06dOctTMxwa2cPHkSpRQrVqxg\n9uzZZGRk2P05KXMmhBA2u9mcidjYWEJDQw2IyrO425wJd5Sfn8+cOXPo2LEjrVu3dqv5OKJk8sxm\n/AzsyOeZ81get5zpO6aTdDmJ8R3G83Trp6kQWMGwmABGjx7N3Llzead/f16vXh2+/NLQeIT7ccS8\nlkmTJjFlypSr5RW1AKmkhhVCuI1169aRmZlpdBjFprUmOTnZ5fV26dLFpfV54vCurVu3Ur58eVq2\nbGl0KMJORnYkLPX7MSh0EL8+/Sthj4WxK2kX9WfUZ8K6CRy7cMywuK7Om4iOdumVCeEZ8vLyqFat\nGjVr1rTpMzw9PR2lFFOmTGH8+PForYvsSNhKOhNCCKdo2bKlZQywh5xFTk9PZ+HChYSFhTn9MnNh\nXbt2dUk9+fn57Nq1i5kzZ3pUCsjk5GR27dpF3759iz2P4/vvv/eKVLAHDhywTMr1cJmZmXz66adG\nh3GdDsEd+GHgD+wft5+ggCA6zu3II4seIfJk5A0/tz744AOnxNK9e3f8/f2JOn2a80FBTqmjsFmz\nZnnU58CNrF+/3itSwSYlJbFgwYLrtm/YsIEtW7bg5+fHli1bSE5OxtfXl4SEhGKXvXDhQipUsFx5\ni4uLY8aMGQ6Lu4AMcxLiNqGUehV4GjABc7TWnyil7gDCgOrAGWCI1vqSdf8ZQHfgCjBaa33dIOGb\nDXPKzc1lzpw5tG3blg4dOjitXY6Um5vLzp07+e2337jrrrvo2LEj1Q3IrOJIubm5xMbGsm3bNipW\nrMgDDzxArVq1jA6r2GJjYzGbzbSwrghcnNSwmZmZBLngB5mzmUwmfH198XNw1iNX01qTlZXl9q9J\nVm4W3+37juk7plPKtxQTO05kaLOhBPr9mXvfmcdW9+7d2bRpEwv+9S+esHP9ilvxlvdIZmYmZcqU\nccuEESWRl5dHXl7edes8jBkzhjlz5vD0008zd+5cLl++TPnylpXev/vuO4YPH37DMvPz86lfvz4J\nCQn8/e9/Z/PmzcX6f7JlmJN0JoS4DSil2gDfAu2APGAd8CLwDHBcaz1dKTURqK+1nqCUGgCM0Fo/\nqpRqDXyttW5VRLk3XWfi4sWLzJ07l6FDhxISEuLEFjrWlStX2LFjB7t376ZPnz40btzY6JBsEhcX\nx5o1awgODqZjx440aNDA6JDs5m5rmIgbS8/LY2ZiIhNDQgjyoMmxZm1mw7ENTN8xnegz0Tzb7lnG\ntRtH9bLOPbHw8ccf88ILL/D4/ffzw6ZNTq1LeI6ZM2cyfvx4wLL+RGBgIL1792bdunU88MADbNy4\n8brnREVFce+99wKWqxvdu3cvdn3SmRBCFEkpNQzoprV+xnr/DcCM5UrFPVrr80qpKsB2rfWdSqm5\ngC/wJFAF2Az0Al6m0NUKYM+tFq1LTU2lcuXKHplpIz/fku3FE2MHS7pEs9nMHXfcYXQoDnOzzsSp\nU6cICgpy6FhgI1y5coVjx455fAKDV44d44NNmxjYqRM/NmtmdDg2iTsbxyc7PuH79d8z8IGBTLhn\nAq1qXHdexSH++OMPGjduzB3ly5N6/rxTrkjFxcVRr149Spd23kJ+rnDu3DkyMzOpW7eu0aHYxWw2\ns2/fPlq3bn3T/Q4dOsTdd98NwN69e2nZsiVhYWEMHToUgLS0tKtDmQYMGMDy5cspXbo0Fy9eLPHa\nNDIBWwhxIzFAF6XUHUqpMkBvoA5QVWt9HkBrfQ4omPnXEGgMnLLeTwSGA3W01qFYOhJfF6fiatWq\neeyPcV9f3yJjz83NZcOGDcTHxxs+oTkjI4MDBw4U+ViFChW8qiNxK3FxcZQrV87oMOx27Ngxj16c\nDuBIVhYfHTkCly/zap06Rodjs7ur3s3nfT/ns79/RuPKjen7Q1+6fduNlYdW2pVatih33XUXjXx8\nuJieTlRUlEPLLnD06NHrhtJ4Im95ryclJRXrO6RJkybk5OQA0KpVK9577z2GDBnC6dOnAahYsSLf\nfvstSimWL1/O559/TlZWlss+R+TKhBC3CaXUs8BzQBawF9DAMK11hUL7XNJaV1BKJQPPA/8D2gI/\nADnAt1rrpdZ9Y4Bmt7oy4Y2ys7OJiori8OHDXL58mUaNGhESEkKdOnVKPMciMjKyRJOw09PTSUpK\n4syZMxw/fpyzZ8/SsGFDHn30UY8fWw+WM3U3WwPE248tb/FwTAyrzp9nVI0azGvSxOhwHCY3P5el\ncUv5OOpjzmedZ/w94xnVahTlSjngh21uLhNLlWKG1rz66qu8++679pcpvM7EiROZMWMGwcHBxMfH\no5S65jPzRilfi8uWKxOe/80jhCgWrfVsYDaAUmoSkAacVUpVLjTMKVUp1R84i6XzUCAEOAcUTiGR\nCDRr1aoVrVq1ol69elSsWJFWrZwzBMCdlC5dmm7dutGtWzfS0tI4evQoiYmJpKWl8eCDD163f3Z2\nNjk5OZQtW/a6Kx2bN2++pjOhtebKlSv4+/sX2TlYtmwZ/v7+1KxZk65du1KvXj2PvfLzV+np6cyf\nP5+nn36aMmXK3HL/yMhI4M+MWHLfPe7ntGjBqvPnCdy/n745OWDtTLhLfPbeH9p1KEObDeWzJZ/x\nY/iPTN48mZEtR9I+pz01y9W0vfyVKwkpUwYyM/npp5/o2bOnW7RX7rvX/enTpzNgwAC6dOlyzWd/\nv379eOGFF652JIpbXsHtqKgom9Ojy5UJIW4ThToNNYCjQDyWYU05wHmgMrAbqArMBAYCrYFRwAwg\nGXhTa73TWl440LOkVyays7M5c+aMV0wGLq6DBw8SHh5OZmYmgYGBlClTBh8fH0JDQ/nll1+oXr06\nZrOZ3NxcMjIy8PX1Zfjw4R41ad1eubm5fP311zRt2pS//e1vN9yvqGNr3rx59OzZk+DgYGeH6VR7\n9+4lISGBfv36GR2KXcbv38/M2bN5/9VXedmDhzgBTJ06lTfffPOm+8RfimfWzlnMjZ7LfXXvY2LH\nify9zt9LnmFo715MI0ZQ+cQJMjMziY+Pp3bt2nZE/6ePPvqIZ599tliddHe2evVqateu7fEnrRIS\nEti0aRNPPfWUzWWkp6dfnSdx8ODBq3Mq7CUTsIUQN6SU2gqUA3KBl7TWkUqpSvyZGjYZmAQsxzIU\nqop1/xzgIeAJYG2hYU6xQOiNOhOFV3Xu2rXr1bMhKSkpzJ8/n0ceeYQ777zTOY11U1prMjMzyc7O\nxmw2ExgYyPTp0xk7diw+Pj74+flRtmxZAgICjA7VpfLy8li0aBFly5bl4YcfvuZHWGRk5DVn0CZP\nnnxdZyI3Nxd/f39Xhes0+fn51w1Z8FQbUlO5r0oVSnl4W0pybGXmZDJ/33ym75hO2YCyTLxnIkOa\nDSHAt5jv54gI+PBDHi1blhUrVjB79mzGjh1rR/R/8pb3iLe0Q2tNfn6+Ww5Nlc6EEMKhlFIngDZa\n64tKqYHAE1rrAdZUs18DLWyZM5GQkMCiRYsYOHDgbXWFoiiTJ0++puN1u8nPz2fx4sX4+fkxcODA\nW/6QljkTwt2ZtZnwo+FMj5pObGos49qN49l2z1I1qOrNn/jddxAezlfduvHMM8/Qr18/Vq1a5Zqg\nhbCSbE5CCEfTgAKwXpFIUkodAL4CnrK10Nq1azN48GCWLl3KqVOnbv0E4bXOnDmDn58fAwYMKPEZ\n+cOHD5OSkuKkyFwnMzOTPXv2GB2GQ2zdutXoEBzCnnb4KB9639mb9SPWs37EehLSE7jr07sYvWo0\nMSkxN35iaipUr07v3r0B2LRpE1euXLE5DoDdu3d7xUrXSUlJHD161Ogw7JaXl8dvv/1mdBgOJ50J\nIcQNaa0baK0vFLr/L611qNa6TVErYpdE3bp1GThwIIsXL+bs2bP2B+uhunTpYnQIhgoJCWHQoEE2\nTSI/c+YMlStXdkJUrpWQkEDVqrc4a+0BMjMz3XLYhi1MJpNDymlWrRlf9vuSI/8+QoM7GtDr+148\nvOhh8sx51+176cQJjh86xN5ffqFB3bpkZWXx5Zdf2lV/Wlqax68pAZb3SEkz5bmj1NRUKlasaHQY\nN/TPf/7TpufJMCchhM1utQJ2caSkpFC1alWvGCcunE+GObkfrTWnTSZqe8H6Bc6Wk59Dj+96MCR0\nCOPaj7vmsfRdu/C//35O9OrFz35+/HvRInx9fPhp7dqrmZ2EcJahQ4cSFhYGIMOchBCepXr16tKR\nECVi9EKBjuQNbVl57hwNtm/nHS8Ysujs1yPAN4Dpvabz383/5WL2xWseK9++PdmLFtFg7VqGVa3K\nKz17km82M3DgQGJibjI8qgjecFyBpaPqLScP3Pk1KehIfPPNNzY9X77BhRBCuERGRgYnT560u5x5\n8+aRmJhof0AG27NnDz/99JPRYdjFZDbzfGwseYsXU8EL1juZOnWq0+toVaMVjzR+hCmbp1z3WKU+\nfUj/9FNKz5vHa23aMLBNGzIzM+nVq1eJ1gD46KOPvGKuxMqVK9m/f7/RYdgtPj7e5h/qzla4IzFy\n5EibypBhTkIImzlimFNRsrKyCAwMlCsWXuTMmTOEhYXRrkZXapEAABNISURBVF27m64jcStKKcxm\nc8lz+LuhgveIJ7fl/fh4Xj1+nKalS7OvfXv8PPw9q7V2yeuRmplK6GehbB21lSZVrl8h/MzUqZSb\nNg3TxIk89M037Dp1ilatWvHrr78Wa60IV7XD2bylHeCebSmqIyHZnIQQXmHbtm0sWLDAK86sCYiN\njWXBggX06NHDro5EAXf7QraVUsqj23LGZOJt69CmGXfe6fEdCXDdsVUtqBqvdn6VF9e/WOTjNd98\nk/ShQ/H9/HOWjxpF7TvuYO/evQwdOrRYw2U8+bgqzFvaAe7XFkdckSjg+e98IYRbyc3NtbuM7t27\nU6NGDb766itSU1MdEJX7Krwgm7fRWvPzzz+zceNGRowYQdOmTY0OyS2kpaWxfft2o8Ow25snTpCx\nfTsPV65M90qVjA7HLuHh4S6v89/3/Jsj548QfrTouk0vv8zT/v4MefddmtesSVBAAKtXr+b//u//\nbljmli1bvOIkzIkTJzh06JDRYdgtJyeHn3/+2egwruPIjgRIZ0II4WBpaWl2l+Hj40OPHj3o0qUL\n3377LYcPH3ZAZO5p8+bNRofgNOfOnSMxMZFnnnmGGjVqGB2O2zh//rxXLNb4YtWq9GrUiA8bNjQ6\nFLuVL1/e5XUG+AYwrcc0no94ntz8a0/CnDhxggd79GB5YiK/mkysPXiQ8oGB+Pr48PHHH/P5558X\nWaa/v3+xhkG5u7S0NOrWrWt0GHa7cOEC9erVMzqMazi6IwEyZ0IIYQdnzJmIjIyka9euV++fPn2a\nxYsXM2jQIGrXrm1rqCWu11WeeuopQybmGdVee+uW1LDCm2it6bmgJ33v6sv4e8Zf3T58+HC+//77\n6/a/p149dpw8KSljhU2K05GQORNCCEPl5OTYXcZfh/2EhITw7LPPEhISYnfZJanXVRyR3cgWRg6v\n8uahXbfiiPeIO5B2OIZSio97fszbW97mfNb5q9tvlK3M99IlXi6UMjY2NhYwvh2Okp+fT17e9Qv6\neSJ3e02ccUWigHQmhBAOkZSUVOSZNEcoU6aM201eE9fKyMgwOgS3t2fPHjZt2mR0GHbLzMzks88+\nMzoMh/jwww+NDoHQaqEMDh3MpMhJV7cFBwcXuW9IZibjy5RhQOvWZGZm0rNnT5KTk/nss8+8Yq7E\nTz/9RFxcnNFh2C0hIYFFixYZHcZVzuxIgHQmhBAOUqtWLUaNGuXSOr3lDJYn01oTFRXFZ5995pD5\nMt6sTZs2PPTQQ0aHYbegoCAmTpxodBgO8frrrxsdAgCTu05m8YHFxKZarjRMnTqVhn+Zi9KwYUP+\ns3AhlTZs4OPQUNrVrUtSUhK9e/dmzJgxXjFXon///jRv3tzoMOxWu3ZtnnzySaPDAJzfkQCZMyGE\nsMPN5kwI4SzyvWWMU1eu8O8jR3ivQQOaBgUZHY7X+WTHJ6z+YzXrh69HKcWJEyd48803SUpKolat\nWkydOpX69etzYc0aygwZwqlhw3hw6VISLl6kX79+rFixQtbm8VLx8fEEBwfjW8KFIW3pSNgyZ+Lq\nUuXyJ3/y5/l/wFwgBdhfaNsdwHpgHxAOVCj02AzgALAbaF1o+0jr9ljgyZvUp7Ozs/WaNWu0N1i6\ndKnRITjE8uXLdX5+vtFh2G379u06MTHR6DDslpqaqjdv3mx0GHYbtH+/ZsoUPezAAaNDsZs7vtdz\n8nL03Z/erVceWnnLfVPmzNFZQUF6xkMP6bIBARrQzz//vAuidI64uDgdGxtrdBh2y8zM1GvXrnV4\nuYAG9Lhx47TZbL663WQyaUDXrFlTX7hw4ZrnDBkyRAP6m2++KXFduoS/PaQLK4R3+Rr4a3qPycBa\nrXVLLJ2JKQBKqQFAHa11KDDa+lyUUjWBN4EOQEfgLaVUtRtVmJWVRYsWLRzdDpeKjIzEbDZz5513\nGh2KXQomNtevX9/jz1BGRkZSpkwZatasaXQodomMjCQ7O9vjh27MWLOGJYmJlGrYkPc8OK1twXvk\nr0OI3IG/rz8f9fyIF9e/iCnPdNN9DzZqRNrLL9Nh2zbChg+/mjJ29uzZLorWcSIjI9Fae8Xnr7O+\nD/Pz83nyySf5/PPP8fHxYerUqQAEBAQQFhbGmTNnqFSpEm3btiUrK8slQ5sK8+xvGyHENbTW24CL\nf9ncB/jOensB0LvQ9gXW50UDvkqpYKA7sE5rnam1zgDWAQ/eqM5KlSo5NWWrK0RGRuLj4+PxP/gK\nfii1bNnS2EAcIDIykhYtWnj8kLnIyEjq1KnDHXfcYXQoNsvXmndXrYLAQF7v1InagYFGh2Qzd3+P\n9GrUi8aVGzNz58yb7hcZGUnNt96izuOP02nNGmYNHAjAv/75T9avX++KUB0mMjKSu+++m4CAAKND\nsUtkZCRVqlS54eR5e/j4+PDtt9+Sk5NDz549eeutt1BK8eWXXzJ48GC01syaNYs9e/YQFBTk0o4E\nSGdCiNtBFa31eQCt9Tmg4CpDCJBQaL/T1m1/3Z5o3eYS06ZNw8fHhwsXLlzdNmHCBEJDQ2nbti3R\n0dEOre/FF1/k008/JTQ0lH79+l1T77vvvkvTpk1p0aKFU76gw8PDad68OaGhobz//vt2l2cymQqG\nn13j9OnTdOnShebNm9OkSRM++OADAC5evEiPHj1o2bIlvXr14tKlS3bHUBSz2UybNm3o378/YEmH\n26lTJ1q0aMHjjz9+3UT6rKws8vPznRKLK2mtMZlufobZE8w7c4aUjAzqlCrF/3n4iQNPeD2m9ZjG\ne9veIzUz9Yb7mEwmzGYztWbPJrtDBwbu3MlL3buTbzYzYMCAqylj3V1OTg65ubm33tEDuOLY8vf3\nJzw8nIyMDFq2bMnYsWNRSrF06VKee+45hgwZAlgm8LuqIwHSmRBC/MnwU8CnT59mw4YN16x8umzZ\nMuLj4zlw4ABfffWVwzNG9enThzZt2nDgwAFCQ0N5++23Adi9ezfLly8nNjaWdevWMXbsWId+6eXk\n5DBu3DgiIiLYt28fP/74I3v37rWrzD179hTZmfD392fWrFnExMTw+++/M3fuXPbv38+kSZPo3bs3\n+/bto1evXrz11lt21X8jM2bMoGnTplfvjx8/nldeeYX9+/dTvXp1Pv3002v2X7p0KdnZ2U6JxZWi\no6NJSkoyOgy7Xc7MxOfECT5o2JAyJZwA6m52795tdAi31LhKY55s+ST/2/q/G+6zf/9+y49Xpaix\nfDn5NWvywuHDPBAcTGZmJl27dmXt2rUujNo269evd9pJDFeKj4/n6NGjLqsvKCiIvXv3cu7cOapX\nr85jjz2GUurqFYk33njDpnKnT59u0/Mkm5MQXkYpVRdYrbVuYb1/FLhHa31eKVUF2K61vlMpNRfL\nXIql1v1iscy3uN+6/7+s2z+1Pue6RSSUUvIBIoQQQngRXcJsTn7OCkQIYRjFtVcZ1gIjgOnWf9cV\n2v4EsFQp1QbI11onKqU2Ypl0XdZaTi9galEVlfQD56ZBK9Uf6Kq1fkEpdQJoq7W+oJSKAN7UWu+0\n7hcOTNJa73BU3YViWAUs0lr/oJT6AtiktV5sfWw28IvWOsxBdT0O/F1r/Zz1/lCgi9Z6nCPKv0m9\n9YBIoDmQqLUuX+ixS1rrCg6ubwnwDlABeBEYi+X/tan18RpY/l/vdmS9Qgghik8p1QA4hiX7Y4lI\nZ0IIL6KU+gHoClRWSsUDk6x/i5VSTwPJwGAArfVSpVQ3pdQBwASMsm4/o5R6B9iJJR3dFK11ioPi\n2wBUL7zJWscbwOvcZKK3k+r9j9Z6tXWf/wC5WusfnBGDO7B2EJcAE7TWl519ZUkp1QdI0VrvVUp1\nLfyQM+sVQghRYqut/5Z4eXvpTAjhRbTWw27wUJE/0guGMhWx/RvgG8dEdU25RcahlGoG1AP2KUv6\nnhBgj1KqA5aJ4bWxdG6wPnbaEfUWqn8kluxW3QptLqi3QInrvYXTQB0nln8NpZQf8CPwvdZ6pXXz\nWaVU5UJD4G4849M2nYH+SqneQGmgHPABULnQPk5ttxBCiGJpClDo+6HYZAK2EKLElFKTlFKnlVJ7\nrH+9Cj32mlLqoFJqv1KqR3HK01rHaq1raK0baK3rY/lx2Vprncqfw7EoPBzLgW3pBbyPZU2Nwsv6\nNgWmKqV2K6V6AqH82aFxhJ1AqFKqllLKHxjCn0PQSkQpNVUptU8pFauU2qyUql/osRnWq08pwFmt\ndeEZdgVD4ODaIXAOobV+XWtdR2vdABgK/Ky1HgFEKaUetu42vKBepdQ067FzQCm1WilVqVA7Snxc\nGUUp9Zj1tci3HrOFH/OYdhRQSvVSSsVYX5dXjI6nuJRSc5VSKUqp/YW23aGUWm99v4QrpRw6rM8Z\nlFIh1vd1jFLqkFLqZet2j2qLUqqUUmqX9TvjsFLqI+v2ekqp36zviYXWEx9uTynlY23LKut9T23H\nSaVUwYmkGOu2kh1bJV3lTv7kT/7kD8vQqReK2N4Gy49kHyAYOAH421D+caBSofufYlmRew+FVup2\nUFtOANlYhnrtw3KJdwCwHHjNGks20MMJ/4+9sKwyfgB41Y5yggrd/jfwjfV2QTs6A/nWdkRb/x97\nAZWADcB+LONkKzrxmOkCrLLerg9st9a7qOAYwTJEz8d6+z3gI+vtto44rlz1BzQG7gR+BtoU2u6Q\n94eL2xJgjbMWltEMu4BWRsdVzNj/BrQC9hfa9gkw0Xp7IjDD6DiL0Y7qQDPr7bLAYaCFh7altPVf\nXyAKy9XgVcDD1u3TC9rk7n/A81jWair4XPPUdhzHusJ2oW0lOrbkyoQQwlZFjXvvA4Rprc3acvUg\nFstK2iWiLVcoLhS6/y+tdajWuo22LLDnSL9jiTEJ6KYtE6L7AAu01u9qy1n1o1h+8DuU1jpca93M\n2rb37Cgns9DdICxzY+DPdvyqtfbF0o6+1v/HcK31Ba31g1rrFlrrHlrrNNtbc8sYN2ut+1tvn9Ba\n32utd6jWOte6PVJrbbY+ZRuWH9xgWWjR7uPKVbTWh7XWR7j+PeKQ94eL3QPEaq2TtNZ5QBiWdrg9\nXbxFPN2+LVrrFK11rPV2BpazxyF4ZlsKcj6XwtKpTgE66j+H1iwA+hoRW0kopUKwfC59Zb3vC9zr\nae2wKlh7akKhbSU6tqQzIYSw1XPW4RrfKaUKlvc1dMG7klKWDFIJWuuYvzzkUe0AUEq9bZ10/xTw\nrnWzx7WjkDFAwRezJ7ejME9sx40Wt/RUf13Es6rB8ZSINRtbO2ArUNXT2mIdGhSN5YRHJJbO3rlC\nu5zmz5MI7uxj4CUsZ/TB8oP8bKHHPaId1qGkBcN7/6GU+qf1domOLY8YzyWEcL2bZUDCMuxoitZa\nK6UmY7kkOuL6UoxnVAYpR7tVRiqt9RvAG9Yx7dOxZudyN96SWas47RDCkVydjc0ZrFceWyulygMR\ngH0rdRrAy7LUFVzFzgK6A+uUUof5s5NULNKZEEIUSd8iA1Ihs4FfrLednQGpxG7UDmdnkHK0Erwe\nP/BnnnCPa4dBmbVKrASvR2Fu145icGnWMRdwdgYzpzAoG5vTaK3TlVJrgQZAlUIPecLx5RVZ6pRS\nHQF/693eWuuzSqmlQHtKeGzJMCchRIkppQpf8nwMOGi9vRYYopTys44pdXQGJIfRBmaQcjTr0IcC\nj2AZiw+e145ewMtAP621qdBDHnNcFeGvC0h6WjsclnXMIDdaxBOckMHMieYBB7ULs7E5mlKqsvXq\nCkqp0liuCkdjye72iHW3q9nd3JUuYZY6N7a94IbWerNSKghLYo4DlPDYkisTQghbfKSUaoHlrEY8\n8A8ArfVupdRyLFl68oGxBZNrPYDG+qNDX7+g31NGBlYMHynL6qX+wElgNHhkO2ZiyR60wXKxiCit\n9XOedlxZfxjNxHLGdY1Saq/W+iFPaweA1tqklBqH5WqXAr7TWu8xOKxiUSVYxNOdKaU6YzkpEGOd\nb6CxDNH8LxDmQW2pBcy3vrcDgR+01j8ppQ4CPyilpmA5MfWSgTHaYwKWdkzFzduhlHqx0N0s63FV\nBliktV6llNpGCY4tZU37JIQQQgghhPBi1iFzucAW4D6gntb6lD1lyjAnIYQQQgghbg8brf+WA7C3\nIwHSmRBCCCGEEMLrKaVqYVlA9N9AaywJVOwvV4Y5CSGEEEII4d0KpRPuiSU1b5lCCwnaTCZgCyGE\nEEII4cWUUj2sN9thzSLniI4EyDAnIYQQQgghvIJS6gmllLb+hSulHrSupRQBXMaSjtcHeM5hdcow\nJyGEEEIIITyfUsoHy5yIF7h2wUmAisDTwEeAj3ZQJ0A6E0IIIYQQQnghpVQgkA1EaK17WedNZGqt\nyzqqDhnmJIQQQgghhHf63frvQ0qpcgW3HVmBTMAWQgghhBDCQymlOmJZwTrZ+ndRa62VUo2AUGC4\n9f6nAFrrrQ6tX4Y5CSGEEEII4ZkKpXwtju1a606OrF+uTAghhBBCCOGhtNaq8H2lVCmgKtAYy0rX\nVYAaQBDwlqPrlysTQgghhBBCCJvIBGwhhBBCCCGETaQzIYQQQgghhLCJdCaEEEIIIYQQNpHOhBBC\nCCGEEMIm0pkQQgghhBBC2OT/AyS8kW795P2jAAAAAElFTkSuQmCC\n", "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "ename": "AssertionError", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mAssertionError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m/awips2/python/lib/python2.7/site-packages/IPython/core/formatters.pyc\u001b[0m in \u001b[0;36m__call__\u001b[1;34m(self, obj)\u001b[0m\n\u001b[0;32m 337\u001b[0m \u001b[1;32mpass\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 338\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 339\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mprinter\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 340\u001b[0m \u001b[1;31m# Finally look for special method names\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 341\u001b[0m \u001b[0mmethod\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_safe_get_formatter_method\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mprint_method\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m/awips2/python/lib/python2.7/site-packages/IPython/core/pylabtools.pyc\u001b[0m in \u001b[0;36m\u001b[1;34m(fig)\u001b[0m\n\u001b[0;32m 224\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 225\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;34m'png'\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mformats\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 226\u001b[1;33m \u001b[0mpng_formatter\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfor_type\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mFigure\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;32mlambda\u001b[0m \u001b[0mfig\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mprint_figure\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfig\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'png'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 227\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;34m'retina'\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mformats\u001b[0m \u001b[1;32mor\u001b[0m \u001b[1;34m'png2x'\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mformats\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 228\u001b[0m \u001b[0mpng_formatter\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfor_type\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mFigure\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;32mlambda\u001b[0m \u001b[0mfig\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mretina_figure\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfig\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m/awips2/python/lib/python2.7/site-packages/IPython/core/pylabtools.pyc\u001b[0m in \u001b[0;36mprint_figure\u001b[1;34m(fig, fmt, bbox_inches, **kwargs)\u001b[0m\n\u001b[0;32m 115\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 116\u001b[0m \u001b[0mbytes_io\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mBytesIO\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 117\u001b[1;33m \u001b[0mfig\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcanvas\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mprint_figure\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbytes_io\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkw\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 118\u001b[0m \u001b[0mdata\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mbytes_io\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mgetvalue\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 119\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mfmt\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;34m'svg'\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m/awips2/python/lib/python2.7/site-packages/matplotlib/backend_bases.pyc\u001b[0m in \u001b[0;36mprint_figure\u001b[1;34m(self, filename, dpi, facecolor, edgecolor, orientation, format, **kwargs)\u001b[0m\n\u001b[0;32m 2178\u001b[0m \u001b[0morientation\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0morientation\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2179\u001b[0m \u001b[0mdryrun\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mTrue\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2180\u001b[1;33m **kwargs)\n\u001b[0m\u001b[0;32m 2181\u001b[0m \u001b[0mrenderer\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_cachedRenderer\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2182\u001b[0m \u001b[0mbbox_inches\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_tightbbox\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m/awips2/python/lib/python2.7/site-packages/matplotlib/backends/backend_agg.pyc\u001b[0m in \u001b[0;36mprint_png\u001b[1;34m(self, filename_or_obj, *args, **kwargs)\u001b[0m\n\u001b[0;32m 525\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 526\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mprint_png\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfilename_or_obj\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 527\u001b[1;33m \u001b[0mFigureCanvasAgg\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 528\u001b[0m \u001b[0mrenderer\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_renderer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 529\u001b[0m \u001b[0moriginal_dpi\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdpi\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m/awips2/python/lib/python2.7/site-packages/matplotlib/backends/backend_agg.pyc\u001b[0m in \u001b[0;36mdraw\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 472\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 473\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 474\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 475\u001b[0m \u001b[1;32mfinally\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 476\u001b[0m \u001b[0mRendererAgg\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mlock\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrelease\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m/awips2/python/lib/python2.7/site-packages/matplotlib/artist.pyc\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[1;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[0;32m 59\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mdraw_wrapper\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0martist\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 60\u001b[0m \u001b[0mbefore\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0martist\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 61\u001b[1;33m \u001b[0mdraw\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0martist\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 62\u001b[0m \u001b[0mafter\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0martist\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 63\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m/awips2/python/lib/python2.7/site-packages/matplotlib/figure.pyc\u001b[0m in \u001b[0;36mdraw\u001b[1;34m(self, renderer)\u001b[0m\n\u001b[0;32m 1157\u001b[0m \u001b[0mdsu\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msort\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mitemgetter\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1158\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mzorder\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0ma\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfunc\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0margs\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mdsu\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1159\u001b[1;33m \u001b[0mfunc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1160\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1161\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mclose_group\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'figure'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m/awips2/python/lib/python2.7/site-packages/mpl_toolkits/axes_grid1/parasite_axes.pyc\u001b[0m in \u001b[0;36mdraw\u001b[1;34m(self, renderer)\u001b[0m\n\u001b[0;32m 277\u001b[0m \u001b[0mlocator\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_axes_locator\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 278\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mlocator\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 279\u001b[1;33m \u001b[0mpos\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mlocator\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 280\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mset_position\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpos\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mwhich\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m\"active\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 281\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mapply_aspect\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpos\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m/awips2/python/lib/python2.7/site-packages/mpl_toolkits/axes_grid1/inset_locator.pyc\u001b[0m in \u001b[0;36m__call__\u001b[1;34m(self, ax, renderer)\u001b[0m\n\u001b[0;32m 80\u001b[0m \u001b[0mwidth\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mxdescent\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mydescent\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_extent\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 81\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 82\u001b[1;33m \u001b[0mpx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpy\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_offset\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mwidth\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 83\u001b[0m \u001b[0mbbox_canvas\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mBbox\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfrom_bounds\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpy\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mwidth\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 84\u001b[0m \u001b[0mtr\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0max\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtransFigure\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minverted\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m/awips2/python/lib/python2.7/site-packages/matplotlib/offsetbox.pyc\u001b[0m in \u001b[0;36mget_offset\u001b[1;34m(self, width, height, xdescent, ydescent, renderer)\u001b[0m\n\u001b[0;32m 219\u001b[0m \"\"\"\n\u001b[0;32m 220\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0msix\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcallable\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_offset\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 221\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_offset\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mwidth\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mxdescent\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mydescent\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 222\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 223\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_offset\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m/awips2/python/lib/python2.7/site-packages/matplotlib/offsetbox.pyc\u001b[0m in \u001b[0;36m_offset\u001b[1;34m(w, h, xd, yd, renderer, fontsize, self)\u001b[0m\n\u001b[0;32m 1143\u001b[0m \u001b[0mbbox\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1144\u001b[0m \u001b[0mbbox_to_anchor\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1145\u001b[1;33m borderpad)\n\u001b[0m\u001b[0;32m 1146\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mx0\u001b[0m \u001b[1;33m+\u001b[0m \u001b[0mxd\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my0\u001b[0m \u001b[1;33m+\u001b[0m \u001b[0myd\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1147\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m/awips2/python/lib/python2.7/site-packages/matplotlib/offsetbox.pyc\u001b[0m in \u001b[0;36m_get_anchored_bbox\u001b[1;34m(self, loc, bbox, parentbbox, borderpad)\u001b[0m\n\u001b[0;32m 1183\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0mthe\u001b[0m \u001b[0mloc\u001b[0m \u001b[0mcode\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0mthe\u001b[0m \u001b[0mborderpad\u001b[0m\u001b[1;33m.\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1184\u001b[0m \"\"\"\n\u001b[1;32m-> 1185\u001b[1;33m \u001b[1;32massert\u001b[0m \u001b[0mloc\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m11\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;31m# called only internally\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1186\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1187\u001b[0m \u001b[0mBEST\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mUR\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mUL\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mLL\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mLR\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mR\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mCL\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mCR\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mLC\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mUC\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mC\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mxrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m11\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;31mAssertionError\u001b[0m: " - ] - }, - { - "data": { - "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -423,11 +392,9 @@ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", - "\n", - "\n", "# Change default to be better for skew-T\n", - "#plt.rcParams['figure.figsize'] = (9, 9)\n", - "fig = plt.figure(figsize=(9, 9))\n", + "plt.rcParams['figure.figsize'] = (9, 9)\n", + "#fig = plt.figure(figsize=(9, 9))\n", "\n", "# Request BUFR UAIR\n", "request.setDatatype(\"bufrua\")\n", @@ -486,12 +453,11 @@ "skew.ax.fill_betweenx(p, T, prof, where=T>=prof, facecolor='blue', alpha=0.4)\n", "skew.ax.fill_betweenx(p, T, prof, where=T