From 0ec0f1b2a245093fec6dd20b79947e34493436a6 Mon Sep 17 00:00:00 2001 From: Michael James Date: Thu, 4 Oct 2018 17:25:20 -0600 Subject: [PATCH] new METAR, GLM notebooks --- .../GOES_Geostationary_Lightning_Mapper.ipynb | 164 +++++++++ .../METAR_Station_Plot_with_MetPy.ipynb | 297 ++++++++++++++++ .../Surface_Obs_Plot_with_MetPy.ipynb | 318 ------------------ 3 files changed, 461 insertions(+), 318 deletions(-) create mode 100644 examples/notebooks/GOES_Geostationary_Lightning_Mapper.ipynb create mode 100644 examples/notebooks/METAR_Station_Plot_with_MetPy.ipynb delete mode 100644 examples/notebooks/Surface_Obs_Plot_with_MetPy.ipynb diff --git a/examples/notebooks/GOES_Geostationary_Lightning_Mapper.ipynb b/examples/notebooks/GOES_Geostationary_Lightning_Mapper.ipynb new file mode 100644 index 0000000..ed53a04 --- /dev/null +++ b/examples/notebooks/GOES_Geostationary_Lightning_Mapper.ipynb @@ -0,0 +1,164 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The Geostationary Lightning Mapper, or GLM, on board GOES–R Series spacecraft, is the first operational lightning mapper flown in geostationary orbit. GLM detects the light emitted by lightning at the tops of clouds day and night and collects information such as the frequency, location and extent of lightning discharges. The instrument measures total lightning, both in-cloud and cloud-to-ground, to aid in forecasting developing severe storms and a wide range of high-impact environmental phenomena including hailstorms, microburst winds, tornadoes, hurricanes, flash floods, snowstorms and fires.\n", + "\n", + "AWIPS GLM point data are available in three formats\n", + "\n", + "* `GLMev` - Events\n", + "* `GLMfl` - Flashes\n", + "* `GLMgr` - Groups\n", + "\n", + "and with seven attributes:\n", + "\n", + "* height\n", + "* intensity\n", + "* msgType\n", + "* pulseCount\n", + "* pulseIndex\n", + "* sensorCount\n", + "* strikeType\n", + "\n", + "\n", + "## GLM Sources and Parameters" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "available sources:\n", + "[b'GLMgr', b'GLMfl', b'GLMev']\n", + "\n", + "available parameters:\n", + "[b'height', b'intensity', b'msgType', b'pulseCount', b'pulseIndex', b'sensorCount', b'strikeType']\n" + ] + } + ], + "source": [ + "from awips.dataaccess import DataAccessLayer\n", + "import cartopy.crs as ccrs\n", + "import cartopy.feature as cfeat\n", + "import matplotlib.pyplot as plt\n", + "from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER\n", + "import numpy as np\n", + "import datetime\n", + "\n", + "# Create an EDEX data request\n", + "DataAccessLayer.changeEDEXHost(\"edex-cloud.unidata.ucar.edu\")\n", + "request = DataAccessLayer.newDataRequest()\n", + "request.setDatatype(\"binlightning\")\n", + "\n", + "# Show available sources\n", + "sources = DataAccessLayer.getIdentifierValues(request, \"source\")\n", + "print(\"available sources:\")\n", + "print(list(sources))\n", + "print(\"\")\n", + "availableParms = DataAccessLayer.getAvailableParameters(request)\n", + "availableParms.sort()\n", + "print(\"available parameters:\")\n", + "print(list(availableParms))" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "request.addIdentifier(\"source\", \"GLMev\")\n", + "request.setParameters(\"intensity\")\n", + "times = DataAccessLayer.getAvailableTimes(request)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAN7CAYAAACH6UEvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XlcVNX7B/DPnWGdYVgEZN8VVAQUkMUF9z3NfUmztMwlNTUrf+WSmZWplVumuWSWWm5lmZgLuLAjsiuLLLLLvg+znd8ffJlEULYZZgbO+/W6r2Q4997nEszc555znsMQQkBRFEVRFEVRFNXdsBQdAEVRFEVRFEVRlCLQZIiiKIqiKIqiqG6JJkMURVEURVEURXVLNBmiKIqiKIqiKKpboskQRVEURVEURVHdEk2GKIqiKIqiKIrqlmgyRFEURVEURVFUt0STIYqiKIqiKIqiuiWaDFEURVEURVEU1S2ptbahoaHhnxUVFRPlGQxFURRFUZQq4nK5YeXl5YsIIemKjoWiqNZrdTJECHEOCAhQd3d379AJi4uLkZCQgIEDB4LH43XoWPKwcOFCXLp0Sfq1t7c3hEIhrly5AjMzM5iZmUEikWD48OF49OgRYmNjweVyERoaCnt7+3afNy4uDhwOBw4ODrK4DOoZEokEd+/exdChQ8FmsxUdTrd2584d+Pn5KTqMFxKLxVi5ciU0NDSwf//+Nu9fU1OD4OBgBAQEIDAwEDk5OZgyZQqmTJmC0aNHK/z3Lzg4GAMGDACHw1FoHPIkFAqhrq4u/drR0RE5OTkoKiqCpqYmdu/ejQMHDmDq1KlwcXHB+vXrYWJigsOHD2PMmDFgGKZd5y0oKEBaWhq8vb3BYtFBFwAgEAgQEREBa2trWFlZKTqcVsnNzUVqaioGDBgAXV3dVu8nkUhw4MAB3+3bt8dramp+IhAI9hNCxHIMlaIoGWEIIa1q2KNHj9Tr1687eHh4tPtkeXl5SE5OhpeXF7S1tdt9HHlaunQpjh49ihs3bmDhwoXo27cvzp07B0NDQyQmJuLgwYPg8XjYuXMnAOCLL77Axo0b2/0BCgCZmZkoKiqCu7t7h45DNS87OxsVFRXo16+fokPp9gIDAzFixAhFh/FShw4dQmhoKE6ePNmm/e7cuYPhw4fDyckJ8+fPx5gxY+Dl5dXoxlzRcnJyUF5e3q3+FlJTU6GtrQ0LCwvpa8nJybh27Rri4+NhamoKT09PvP/++2Cz2fD09MSCBQswYcKENp8rJSUFfD4fLi4usrwElSYSiRAZGQkjIyP06tVL0eG0SmVlJaKiomBnZwdra+s27ZucnIwFCxZUJycnP66oqJhHCHkopzApipKRTkuGMjMzkZ2drXQ3B88TiUQQiUTQ0tJq9HpRURGMjY0BAF5eXnB0dMThw4c7/IS1pKQE8fHxGDx4MNTUWt1RR7XBvXv34OHhobQJeHeiCsnQ7NmzMWXKFCxatKhN+1VXV+PDDz9EaGgogoKCmryHKAOJRILbt2/Dz89P4b1UykYsFuP8+fPYt28f+Hw+7t+/3+ZjEEIQGRkJExOTNt9Ed2USiQTR0dHQ0NCAs7OzSjz0E4lEiImJAZvNhouLS5v+XiQSCX744Qfy4Ycf8iUSyde1tbU7CCFCOYZLUVQHyL0vnxCCpKQkFBQUwMfHR6kTIQBQU1Nr9ibGwMAAkZGR2LlzJ9hsNiZNmoRDhw5BJBK1+1x8Ph8xMTHw9PSkiZCclJWVQUNDgyZCVKslJSW1q+eEy+XiwIED6NOnDyZPnozHjx/LIbqOYbFYMDMzQ05OjqJDUSqZmZnQ19fHvHnzEBwcjKlTp6K8vLzNx2EYBgMHDkR6ejpKS0vlEKlqYrFYGDhwIBiGQVRUFCQSiaJDapGamhrc3d2hp6eH4OBgVFdXt3pfFouFlStXMomJido+Pj4f8Hi8hwzDtH9YDUVRciXXZIgQgri4ONTW1mLQoEFK9ySysrISU6ZMgbW1NQYNGoTXXnsNp0+fxuLFi6GhodHoDTsiIgJ///03tLS0EBISgtdeew0bNmxATU1Nu84tkUgQGRmJ/v37d+nx+4qWnp4OOzs7RYdBqZDRo0dj1apV7UoYGIbBzz//jOHDh6NXr16YOXMmBAKBHKJsP1tbW2RkZKC1owK6MkII7t69i+XLl6Oqqkr6+qeffgoLCwv4+fkhOTm5TcdUU1ODp6cnoqOjwefzZR2yymIYBs7OztDX10dYWFiHHiR2FoZhYGdnh/79+yMiIgL5+flt2t/a2ho3b97kfP/99w66urp3dXR0vmUYhj6ZoyglI7dkSCwWIzIyEhoaGnBzc1O6bnE+n4/x48fDzMwM165dQ69evXDmzBksWLAAP/30E5YvXw4WiwWBQACGYeDr64tPP/0UW7duxblz51BZWQlCCMrKynD48GF88MEHbbq5iIuLg5mZmXToHSV7AoEA5eXlMDIyUnQolArZs2cPRo8ejddee61dT7DZbDa2bNmCLVu24OLFi9iwYYMcomw/LS0tcDicbttzUV1djcePH+Pu3buYPHky/Pz84O/vDwDo1asX3nrrLeTk5KCiogKzZ8/G4MGDsW/fvja9v3O5XDg7O+P+/fsq0QvSmRwcHGBlZYWQkBDU1dUpOpxWMTAwwODBg5Geno7ExMQ2/S4wDIOFCxciJSVFe/To0ct0dHQSGIZpf7UliqJkjxDSqs3AwCA1MjKStIZAICBBQUEkLS2tVe0VYfv27WT69OnkxIkTxNLSkgAgAEjv3r1JSEiItF1RURGxtrYmmpqaxMPDg6SkpBBCCMnKyiJmZmbS/TgcDqmpqWnVudPT08n9+/eJRCKRy7VR9ZKTk5X6d7A7CggIUHQIrSISiUifPn1IcHBwh45jaWlJNDQ0ZBSV7BQVFZHWvp93FXw+n0RFRRETExNiZWVFnJ2dyTfffEP69u1LPvroIyIUCpvdLykpiaipqZFDhw6RdevWkQkTJpA1a9aQysrKFs+ZkpJCYmJiZH0pXUJBQQEJCAggVVVVig6l1SQSCXn06BEJCgoifD6/Xfvv27dPzOFwKlgs1hjSyvsvutGNbvLdZN4zxOfzERISAltbW6UdniQSiXD06FG88847WLx4MbKzswEA06dPR1RUFHx8fADUD2VbtWoVxOL66pjffvstevXqhatXr8LKygp5eXkAgL179yI7O7tV81JKSkqQlZWllL1lXQkhBNnZ2SpTzpVSLmw2G3p6ehAKOzbnefr06XjllVdkFJXs9OjRA9XV1d1qGNfQoUPh7u6OgoICREdH4//+7/9w5swZuLi44IsvvnjhvM2jR49CJBJh+/btePr0Kd59912UlZXB3t4eY8eOxcWLF0FI8z0FDg4OEAqFyMzMlOelqaSePXvCzc0N4eHh7ZqfpQgMw8DJyQm9evVCcHAwiouL27z/6tWrWVeuXOHxeLzL2traGxh6I0BRitfarKk1PUOVlZUkICCAFBYWvrSdoiUnJxMAZPv27aSmpoa8+uqrZM6cOUQkEjVqJxaLibq6Opk8eTLR0tIib7/9NtmwYYO0N+jjjz+W/htAi0+4ampqyK1bt1rdg0S1X15eHomNjVV0GNRzVKVniBBC1qxZQzZt2tTq9oWFheTChQuNenyrq6uJnZ0duXXrljxC7JCMjAzy6NEjRYfRaWpqashHH31EABAzMzPi5+dHTp061WIPfVFREdm1axdxdHQk5eXl0tfT09PJ+fPnSf/+/cn06dNJUVFRs/sLhUJy+/ZtUlxcLNPr6SpU5b7heTU1NeTu3bskNTW1XaM80tPTiZOTUxWPx/sdgBZRgqfjdKNbd91a3bClZKikpITcunWLlJWVvbCNspg+fXqj4W3u7u4v7PLeunUr0dHRaTQkTlNTkxgaGpKtW7eSqKgokpSURACQnJycF55TJBKRO3fuqNwbvqoKDg4mFRUVig6Deo4qJUN79uwh06ZNI2FhYeTzzz8n69atI6+//jp56623yJ9//tnkBujgwYMEgHQobYOTJ0+SESNGdGborSIUCsmtW7eIWCxWdCidJi8vjwAgHh4erRrm1hq1tbVk+fLlpE+fPiQ7O7vZNtXV1eTWrVuktrZWJufsampra8nt27df+hmqjMRiMYmJiSHh4eFEIBC0ef/q6moyffr0Gh6PlwDAgijBTSHd6NYdN5kMk3v69CliYmLg5eUFPT09WRxSrhqqA/Xr1w/9+/eHSCSCpqZms20XLVqE2bNng8ViSYdR7Nq1C8XFxUhNTcXAgQPh6OgIsVgMc3PzZo9BCEFsbCwsLCzoZP5OUFlZCQDg8XgKjoRSZefOncPIkSPh7e0t/fsdNWoUXFxcsGXLFowaNQoZGRnS9itXroRAIGiysOT8+fORm5uLS5cudfIVvJyamhp69uzZ5gpZqszU1BR8Ph+RkZHQ0dGRyTG1tLRw6NAhjB8/Hnv27Gm2DYfDQf/+/REZGUkLKjRDS0sLvr6+SE9PR3p6uqLDaTUWiwVXV1eYmZkhKCgIFRUVbdqfw+HgwoUL2hs3bnTkcDhxDMMMllOoFEW9RIeToezsbCQlJcHX1xdcLlcWMcldwzyAxMREpKSkYNeuXS9sa29vjx9//BFz5syBWCxGUlKSdI7Rr7/+ivnz5wOof1MEgD/++KNRiVYA0hsmZZ1D1dVkZGTQnzXVYZMnT8aXX34JX19f3L59G7t27cLFixdRU1Mjvfn19vZGUlKSdJ/m1lFTV1fHiRMn8Pbbb+OHH37ozEtoka2trUrdfMrCix58ddSKFStw5swZ/Pnnn81+39jYGGZmZoiLi5PL+VWduro6fHx8UFRUhEePHoEQ1Sn9bmlpCQ8PD0RFRSErK6tN+zIMg48//ljt3LlzBjo6Ojc0NTXfkVOYFEW9QIeSocePHyMrKwu+vr5y+4CRh5KSEnzzzTcAgP/7v//DuHHjXtr+4MGD+Pbbb0EIgZOTE3bv3i393ubNmwEAdXV1mDJlCqZPn46SkhLp94uLi5GdnQ1XV1daMKETCIVCFBUVwcTERNGhUCpu06ZNuHz5MioqKjBt2jTcvXsXixYtQkFBAZYuXYpt27bh6dOnCAwMbPFYgwcPxo4dO/DPP/8o1U0el8sFm81u8xNtqiknJyf88ssvmDdvHh48eNBsG3t7e4hEokY9itR/2Gw2PD09IRAIEBMTo1R/Ky3h8XgYOnQoCgoKEBMTIy281FqTJk1CZGSktqmp6bc8Hu8owzDKvUI9RXUh7UqGCCFITExEWVkZvL29X1iFR1l5eHjg7NmzMDQ0xIQJE1psHxER0ejrhmEOR44cgYODA7Zt2wYtLS38/fff2L17N6ytrQEAtbW1iI2Nhaenp9ItONtVZWdnw9LSkiaelEwMGjQIwcHBKCwsxIwZM+Dq6orvvvsO8fHxKCkpQXp6Ot55p3UPcufNm4e0tDTMnDkTtbW1co689ezt7btd75A8XLhwAWPGjJGuYRcTE9OkDcMwGDBgALKysho9NKP+wzAMXFxcoK2tjYiIiDYnFYqkpqYGDw8P8Hg8BAcHt3lRdicnJ8TGxnJ8fHzm83i8EIZhesopVIqintHmZEgikeDBgweQSCRwd3eXDg9TJaNHj0Z4eDiKi4vRp0+fFtsvXLiw2dc/+eQTaGlp4dNPPwVQ3yvx/vvvA/hv0VlXV9dWldymOo4QgszMTNjY2Cg6FKoL0dXVxfnz5zFt2jRp2X0A0NbWhq2tbasTb319fdy/fx91dXUvnFuiCMbGxigtLe1wGfHubsyYMfjll1+wY8cOFBYWYsCAASgqKmrSrqH3IyYmRqmSYmXSUMLaxMQEoaGhKvW7yTAM7O3t4ezsjLCwMBQUFLRpfz09Pfj7+3NWrlzpyuVy4xmGGSinUCmK+p82ZTIikQjh4eHg8XhwdnZW2afvz05gbW6M//PGjx+PGTNm4NVXX230emFhId544w3p/JSGp0CEEMTExMDKygqGhoYyjJx6maKiIujp6UFDQ0PRoVBdTHp6Oj7//HOUlpZiypQpjeYJtaSkpAR1dXUA6uerjBo1Cps3b5a+pmgMw8DKygpPnjxRdCgqTU9PDwsWLMCHH36IDRs2QFdXF66urtL16J6lra0NFxcX3L9/X6V6PjqbjY0N7O3tERISonKJY48ePTB48GCkpaXh4cOHbRryx2az8dVXX6mfOHHCmMvl3lNTU5svx1ApqttrUzIUHx8Pc3Nz9O7dW2UTIQCYNm0aAGDdunWt3ufLL7/E5cuXpV/funULhBD89NNPuHPnDgBIfybp6elgsViwtbWVXdBUi9LT02nhBEou7OzskJGRgdLSUgwZMgR+fn5wdnbG3r17X5jUEELAMAwMDQ2xYcMGAEBMTAz279+PP/74Q6nmWVpbWyMrK0ul5mgoKzU1NezatQuZmZmoqalBVVUVCgoK8O+//zb6+RoZGcHc3BxxcXH05/4SZmZm0l6WhkqhqkJTUxM+Pj5gGAYhISFtfgAye/ZsBAUFcYyMjI7q6Oh8wzAMHW9PUXLQpmTIyspKOh9GlWlpaWH9+vXYuXNnq/f5+uuvpR9Yffr0wciRI6Xfs7S0hEAgAI/HQ1FREXJzc+Hi4iLzuKkXq6mpgUAggL6+vqJDoboghmFgY2MDfX19bNy4EXl5eThy5Ahu3rwJZ2dn+Pv7N9lHKBTCw8MDw4cPx5IlSyCRSPDGG29g3bp1TXqZFU1dXR0GBgYoLCxUdChdQl1dHV5//XUsWLAAvXv3xr179zB+/Pgmc0js7OxACKEFFVpgaGgId3d3REZGorS0VNHhtAnDMOjTpw8cHBwQHBzc5rlibm5uiI+P57i6ui7T1dW9yTAM/ZCjKBlrUzLUVYZ82djYYM+ePa0aIgcAQUFB0jVC3nrrLTx69AgMw0i3s2fPQl1dHXw+H3FxcbRgggLQuUJUZ2KxWBgyZAguX76MAwcOYOnSpfjpp58atdHQ0EBkZCQuXLiAJ0+eIC0tDTExMTAzM1NM0C2ws7OjhRRkoLKyEqNHjwaHw8F3330HQghmzJiBpKSkJkPiGIaBq6srsrOzVe4mv7Pp6urC29sbMTExzc7FUnYmJibw9vZGQkICMjMz27SvkZERbt++zVm4cKGPjo5OHMMwfeUUJkV1S6pVBk5B3n77benTnGPHjgEAli1bBhMTExgYGGDSpEkghCA6OhrOzs7Q0tJSZLjdDiEE+fn58PPzU3QoVDc0YcIE3LhxA35+fnBwcMCwYcOk3ysqKoKTkxM4HA709fXx5ptvYtGiRSgtLcWyZcsUGHVTurq6qKurQ11dnVIN4VN2iYmJiIyMRH5+PmxtbXH48GE4Oztj3759OHPmDNauXStNdHg8HsrKyhoVHmKz2XB3d0dERASGDh2qctVZOxOHw4GPjw9CQ0Ph5uYGAwMDRYfUJhwOB4MHD8b9+/fB5/Ph6OjY6ikH6urqOHjwoKaHh4fF6tWrI9hs9nyxWPyXnEOmqG5B9UrBKcCSJUvg7u4OALh8+TIIIfjhhx+wbds2rF27Frq6usjMzASHw0HPnrQSZmcrLi6Gvr4+7Y2jFMbc3BxcLhd+fn749NNPceXKFdTU1OC9997DokWL8PjxY+zbt086b8DR0VHRITfLwsICOTk5ig5DqZWWluLgwYM4ePAg5s2bh3HjxuHq1asoKCjA2bNnMWDAAHz22Wdwc3PD8ePHceXKFXh4eACo7zUSCARNjsnlcmFra4vExMTOvhyVo6WlBS8vL8TExKC8vFzR4bQZm83GoEGDwOfzERMT06igU2ssWbKEuXnzJldfX/83Lpe7jVHlCdwUpSToI6hWqKyshI6ODmpqapotk11dXY2MjAwMHTpUAdFRWVlZsLKyUnQYVDdVXl4unau2aNEiCAQC7Nq1C4sWLUJJSQnu3LkDDQ0NjBw5Ej///DO8vb0b9R4pE0tLS4SHh8Pe3l7RoSitr7/+Gn///TeGDh0KNzc3/Pjjj+DxeI3ahIeHQygUShfkbejBGDNmzAt7fmxsbBAWFoanT5/Sh2ot4HA48PT0REREBAYNGgQdHR1Fh9QmDcMjk5OTERERAQ8Pjzb1CPr4+CAuLk574sSJG9LT0z0ZhplLCKmSY8gU1aXRnqFWYBgGxsbG0NTUhFAoRFZWFhiGkY4Hf/DgAdzc3OjwBgUQi8UoKyvrMvPZKNVTVVWFMWPGID09HSdPnsQXX3yBwMBA6WLNfn5++Pzzz0EIgZeXF4qLi5X2vUJTUxPq6uoqV7Wrs9TV1eH8+fPYvXs3Dh06hP/7v/9rkggBQEhISKNeC39/f0RFRUEoFOLUqVPNHrthQdaEhIRme4+oxnR0dODh4YHIyMg2L26qDBrWUjIzM0NoaGib/5+bm5sjLCyM8+qrr47S0dGJYRiGllKlqHaiydBzysrKsGXLFowcORKjRo3CgQMH8N577yE3NxfGxsbgcDjSinqDBw9GSkoKjIyMGo1dnj59OiZPnqyoS+hW8vPzYWJiotKl3inVZmFhgevXrzcppW9vbw+hUIhp06Zh8+bNMDIyAlC//ogys7KyQnZ2tqLDUErHjh2Do6Mjxo8f/9J2FhYW4HK50q/ZbDYGDhwINzc3JCYmory8HKdPn24yREpLSwtOTk6IjY2VS/xdja6uLgYMGIDw8HCVW4eogbW1NXr37o3g4OA2J3VaWlr4+eeftXbs2GHL4XCi2Wz2aDmFSVFdGk2GnjNlyhSkp6djzZo1GDp0KA4fPoyJEyfiq6++QkRERKPVpOfNmwd/f38kJycjLi4OAPDdd9/hjz/+wMSJExV1Cd0KHSJHKTM1NTVcunQJYWFhIISoxHoypqamyM/PV4lYO9P9+/fx6aefYtOmTS22PXnyZLM/w0uXLmHs2LG4cuUKFixYgOLi4ib7mpubg8Vi0YS0lfT19eHi4oLw8HClWci4rUxMTODm5oawsLA2z4NiGAZr1qxh/fXXX7o6Ojp/aWlprafziCiqbZRzrIYC1dbW4saNG/jll18A1A9xeeONN/DOO++AzWZLx9Krq6tjxYoVOHXqFCIjI+Hs7Izs7GyUl5dj6tSpWLVqlSIvo1uoq6uTru9EUcrMy8urzeuLKAqbzYa+vj6Ki4ulvVndXUlJCdauXYvPP/8cvr6+LbYvLi6GQCBARUUF9PT0pK87ODhALBZj3rx5GDt2LIyNjZvd38XFBUFBQTA0NGx2nirVmKGhIfr27YuwsDD4+vq2etkMZWJgYIBBgwZJ7yde9LvxIqNGjUJ0dLT2+PHjt+fn53szDPMGIYQvp3ApqkuhydBz/Pz88O2338LGxgaZmZm4cuUKdHR0sHjxYgQFBSEkJARisVg62bWgoAC9e/dGQkICAOC3337DnDlzFHwV3UN2djYsLS0VHQZFdTlWVlbIyspSimQoLS0N6enp0NfXR2pqKtLT02Fubo6ePXuCEILs7Gyoq6vD2toa2dnZKCgogLW1NXx8fMDj8RAcHIzKykpUV1fDwMAABgYGcHR0hIWFRbPDawkh4PP50NbWRl1dHcrLy7FkyRKYm5vjzTffbFXMAwYMwNy5cxslQiUlJQgMDMTFixfBYrFeerOrrq4OZ2dnREdHw8fHhw4DboWePXtCLBYjLCwMPj4+Sjsv72V0dHTg6+sr7eVq6+ebnZ0dHjx4wFmwYMGUW7duRTIMM44QkiuncCmqy2BaOxSiR48eqdevX3doKBHaFYlEIukTpW3btsHPzw8jRoxo0q6oqAjJyckwNjbGwoULER4eDoZhpAuvNnxw3bx5E4GBgdi+fXtnXka3cefOHXh7e9M1UVRIYGBgs39TlHIhhCAwMBB+fn4KKVm/Z88e7N27F2w2GxUVFejbty8qKyvRq1cv2NraIi8vD0VFRWCxWLCwsIBAIEBmZiZMTU1hZWWFpKQkxMTEoKKiAg4ODnB0dASXy0VxcTFKS0vx6NEjPH36FKampli3bh20tLTg7++P2tpaZGVlITMzE9ra2uDz+dDV1YWnpydOnjwJExOTVsX/448/IigoqNFCvIQQGBsbIzo6GoQQ6OnpQVdX96XHiY+PB4fDodX92iA7OxtPnjyBt7e3yi63IBKJEBERAWNjYzg4OLQ5GSaE4IsvvhB9+eWXldXV1ZMJISFyCpWiugTVe3QiR3V1dRg2bBgGDhyIrVu3AgAKCgoalTkVCoWIi4uDj48PtLW1pRVgCCGwsrKSvmklJiZizJgxAECTITmorKyEhoYGTYQoSg4YhoGJiQny8/NhYWHRaeetrq7G0qVLERoaiqNHj8LOzg5aWlqtmhfI5/ORlJQELpcLe3v7RgubNkcikeDRo0fYsmULeDwelixZAgMDAxgbG8PZ2RkVFRXQ19dvV6+Mk5MTTp482ei1qqoq1NTUwNzcHFpaWhAKhViyZAk8PDxQVVWFpUuXNllEtG/fvrh37x6MjY3pcOBWsrS0hFgsRkREBLy8vFr8PVBGampq8Pb2RnR0NOLj49G/f/82/R4yDINPPvlEbcCAAQbz5s27qampuaauru6oHEOmKJVGk6FncLlc3LlzBwCQmpqKf/75ByYmJjhx4oR0eERcXBx69+4tHcc9cOBAzJkzB46OjlixYgUiIyMRGRmJFStWAECzE2SpjqOFEyhKvqysrJCQkNCpydD169eRkZGBmJiYNt38CwQC6XuygYEBBAIB+vXrBwcHB9jZ2cHJyQne3t5wcnKS3lSyWCz069cP58+fb/aYzycmbWFqatqo2A5Q//liaWmJ3bt3Q0NDA6+88gr69u2Lc+fOITAwEK6urpgwYUKjfdhsNtzc3BAdHY0hQ4ao5I29ItjY2EAkEuH+/fvw8PBQyZ8bi8XCwIED8ejRI9y/fx8DBw5sc0/X5MmTERERoT1u3Li9PB7Pq6qq6l1CiFBOIVOUylK9d4hOMnfuXOm/Fy9ejOHDhyM2NhZisbjRzYGRkRGysrJw5MgRFBYWYsqUKdJEyNTUFMXFxfjiiy/w+PHjTr+GrooQgoKCApiamio6FIrqsng8HgQCQadW6AoODsbEiRPb3AuioaGB06dPY9y4cRAKhejTpw969eoFX19faGtrw9/fH+PHj4e1tTXAJ1xhAAAgAElEQVRWrFiBwMDAJmWtZcnIyAj5+fmNSiWzWCwMHjwYH330Eb766itcvHgRo0aNQmBgILy8vJqU6+bz+UhPT0dgYCD27duHZcuWyS3ersjBwQF6enrSYYmqiGEY9O3bF4aGhggNDYVQ2PY8pk+fPoiNjeV4e3sv0NXVDWIYpm2VGSiqG6DJ0AuMGzcOTk5O0q9jY2ORn58PNze3Rt3Vjx49grOzs7Tc6rNVbPLz8+Ho6IhPPvlEJavbKKvi4mLo6+ur7HhwilIVFhYWyMnJ6bTzPX78uN3zY+bPn49r164hLy9POsz5s88+g4mJCc6cOYOMjAxcv34dNjY2eO+999CrVy9s374dWVlZsrwEAPU9OlVVVeByuUhJSZG+fvDgQYwYMQKzZs0CUP9eZmhoiPDwcPzwww94+PAhli1bhp9++gl+fn6wt7fH1q1bcfHiRfTu3RsZGRl0QdY2cHR0hJaWFmJjY1U2IQLqCyPY2dkhODi4Xesp6evr49q1a5zly5cP4HK5CQzDDJBDmBSlsmgy9AKmpqbQ19eXfv3uu+/C1tYWGhoajdotX74cW7duxZUrV3D79m38+OOPWLJkSaOJsQzDYOHChZ0We1dHh8hRVOewtLSU+3o3FRUVCAkJwbFjx5CTk4PCwsJW7feim1sdHR1MmTIFp0+fRlBQEL777juMGjUKhw4dgo6ODjZu3Ijo6GicO3cOeXl5GDBgAHx8fPD999+jsrJSJtd07do19OrVC8OGDWu0bgyXy0VAQIC0V3vs2LE4evRow80qJk2ahCNHjmDx4sVYvXo1hgwZgtjYWEgkEnz77bf4888/YW5ujkWLFknXtqNerm/fvmAYBomJiSqdEJmbm6N///4IDQ1FRUVFm/dns9nYuXOn+rFjx4w5HE6QmpraPDmESVEqiSZDL/H333/jzTffxNixY1FYWIh///1X+r3q6mrMmzcPEydOlHZfz5gxA7q6ujh27BiePHkiHf9NCMH8+fMVdRldilgsRllZGQwNDRUdCkV1eZqamtDQ0JBZkvCsCxcugGEYmJmZYfXq1bhz5w4mTJiAt956q1G7p0+f4uzZs1i+fDkmTZqEIUOGwNLSEmw2GzweDy4uLpg6dSrWrVuHK1euNHpy7uTkhKioKKxatQqhoaFwc3ODh4cH1q9fj/j4eLz22mtISEjAtm3bcPPmTfTr1w+hoaEdvrbRo0dDKBTi8ePHLfasTZs2DaWlpfjjjz+Qnp6OwsJCjBgxAosWLUJISAgiIiJw8uRJBAQE4NVXX8WVK1fg4uKCUaNGITw8vMOxdnUMw8DFxQUCgQDJycmKDqdDDA0N4eHhgaioqHbPR547dy6CgoI4hoaGx3k83m6GYegQC6rbo6W1W1BdXY0rV65g0aJFeOeddzBy5EgUFBRI5wVJJBLpsLndu3fjyJEjGDFiBI4cOSJ9/fTp0zQZkpGcnBxpqV1K9dDS2qonJycH5eXl6Nevn0yOJxKJsGzZMhw/fhy9e/fGw4cPmwx5FYvFuHnzJg4fPoxbt27Bz88PI0eOhKOjI3g8HqytrWFhYYHq6mpkZGQgLS0NSUlJ8Pf3R1xcHFatWoW1a9c2KYIgFAoREhKCoKAgxMfH4/Hjx4iPj4eBgQEYhkFWVhaWLFmCY8eOdegaExIS4Ofnh5KSEujr6yMvLw9aWlqt3v/XX3/FwoULUVNT02jRVUIIwsLCYG9vj/nz52Py5MlYv359h2LtLgghuH//PgwMDODg4KDocDqktrYW4eHh6N27N8zNzdt1jP/Nca55+PBheEVFxTRCSHnLe1FUF0UIadVmYGCQGhkZSboTiURC7t69S3Jzc8nw4cOJsbExASDdioqKGrXfs2cP4fF4BACJj48nq1evJuPGjSOzZ89W0BV0PSEhIaSiokLRYVDtFBAQoOgQqDYSiUTk1q1bRCKRdPhYhYWFZO7cucTNzY2UlZU1+p5EIiH//vsvWbRoETEyMiLu7u7k0KFDpLy8vE3nSE1Nlb5HnzhxosX2IpGIpKWlkczMTFJYWCiT6zx//jzx9fUlBw8eJABIXFxcm49RUlLS7Ou1tbXE39+fcLlckpKS0tFQuxWxWExCQ0NJenq6okPpMIFAQO7du0fS0tI6dIzly5fzdXR0sgD0I628H6Qb3braRofJvURKSgoMDQ1hZmaGgIAAnDlzBgDg7+8PQkiToVpaWlqorKzEzJkzwTAMJBIJfH19ce7cuXaN8aUaq6urg1AopOttUFQnYrPZ0NfX7/AyARKJBLNmzQKPx0NgYCD09PQA1Pe+nzp1CoMHD8aaNWswaNAgREZG4v79+1i+fHmLC5M+z8HBAT169ABQXwm0JWw2G3Z2drC2toaRkVG71hV61vHjx7F7925IJBKsXLkShBD079+/zcd5UWlvLS0t7N69G8uWLcP48eNx69Yt6fdyc3PbVXGsu2CxWPD09ERubq5cCmd0JnV1dfj4+KC4uLjd86HU1dVx6NAhzY0bN1oASGCxWG/LPlKKUn40GXqB8vJy5OfnSyvKMQyDYcOGYdWqVVi4cCE++OADpKWlNdqnYY2iyMhIvPLKKzh48CAyMjJgYWFBb+BlIDs7u1PXPKEoqp6VlVWHbx6///57iMVi/PDDD9LiNCdOnICdnR3Onj2LDRs2ID4+HqtWrYKNjU2HzlVcXIykpCRYWVkhMjKyQ8dqi6SkJLz11lsIDQ1FWFgYTp48iXPnzqG6ulqm57l+/TrGjBmDOXPmYPTo0QgMDMRbb70FCwsLLFmyRKbn6mrYbDa8vLyQmZmJ3NxcRYfTIWw2Gx4eHhCLxXjw4EG7y8V/8sknjLm5OVgs1mFNTc19TEefCFCUiqHJUDPEYjGio6MxcODARou1aWhoYPLkydi/fz8YhoGXlxdmzZqFX375BZcvX0ZeXh6A+rG46enpsLOzw8mTJ3HixIkOP22k6ucu0GSIatGNEfUbJTOGhoYoKyuDWCxu8j2GYcAwDLS1tTFo0CBs27atSQU6iUSCI0eOYMeOHWCz2YiPj8fSpUuxfft23Lx5E1euXMHMmTNlVi5fIBDg9u3bUFdXR1FRkUyO2RocDgdz587FuHHjMHv2bLz55puYM2eO9LNBlsaMGQMrKyv06NEDCxcuhIaGBr744gucPXtW5ufqatTU1ODt7Y3U1NQmi+OqmoYCEbq6uggLC4NIJGrXcdLS0jBy5EiWWCxexeVybzEMw5VxqBSlvFo7nq47zRmKi4sjqampTV7Pzs4mmpqaxNjYmAwbNoz8/vvvZP/+/WT27NnE2dmZ7N69m4SGhhJCSKO5RSKRqLMvocupqKiQ/mwp1SX3OUPDhxMC/Lf9CvmerxtJTEwk2dnZTV5PTU0lr7zySqP3vIaNy+WSn3/+maxcuZL4+voSkUhEzp49S4yNjcnmzZtfOC+mNcRicbPzJcRiMdm4cSPx8PAgp06dImKxuN3n6Ijg4GDSs2dPkpWVJbdzHD58mFy9epWIxWISExNDAJBt27bJ7XxdDZ/PJ4GBgaSwsFDRochEVlYWuXPnDuHz+e3aXygUEmtrawKAcDicTAB2RAnmc9CNbvLeWt2wuyRDhYWFJCgoqNlJtK+88grZvn074fP55MyZM6Rfv35EQ0OD6Orqkt69exMTExPi6elJevbs2eiGgOq4hISEZm/EKNUi12TIVY80SoRoMiRTFRUVJCQkpMV2YrGYBAcHkxkzZkjfA318fEhBQQG5cuUK6dmzJ4mNjW3z+SUSCfnmm2+kx3R0dCRsNpsMGDCAbN26ldy9e5dER0eTCRMmECcnJxIdHU3EYjGpra1tz+V2yMOHD4mlpSW5ePGi3M8VGxtLHj9+TCZMmEAAED6fT2JiYoiDgwM5fvy43M+v6mpra0lAQECHEnNl8vTpUxIQEEAqKyvbfYzvv/+ecLlcoqWlVQVgJFGCm1W60U2eGx0m9wyhUIj4+HgMHDiwybC29PR0hIWFYcOGDdDU1MS8efOQkJAAPp+PjIwMXL58GQEBAViwYAGePn0q3a+9q6lT/yGEoKCgQLpQIUU1MWIEENtMZdgFABgGOE2HqXYUj8eDUChEXV3dS9uxWCz4+vriwoULIIRg7ty5ePfdd3Ht2jW8/fbbuHTpElxcXNp8/pKSkkZlpJOTkzFy5EgYGhoiJSUFa9euxYwZM+Dr64sHDx7Azc0N8+fPh5mZWZvP1RESiQRjx47F9u3bMX36dLmfr1+/fnj8+DFiY2MB1A8nHjZsGAQCATIyMuR+flWnpaUFLy8vREdHN1ogV1UZGxtj4MCBiIiIQGlpabuOsWLFCpw4cQIaGhpcbW1tfzU1tbkyDpOilApNhp4RFxcHBweHRus6NNDQ0IBIJGpSqYdhGBgYGKBPnz4oLy/HunXrpN9zdXVFVFSU3OPu6oqLi2FgYCCz+QTUc5zV6hOGZzdVMmIEcPu2oqPoFiwsLJrMB3oZiUSCxMREWFhYYNeuXThx4gQGDx7crnMbGho2epKXlZWF5cuXw8nJCTdv3sSJEyewf/9+/PHHH+BwOHB1dcXNmzdRVlYGQtpeaau9GIYBl8ttdu5GQkJCi8lkg5qaGqxZswajR4/GjRs3XtguJSUFy5cvx0cffQQ2m43a2lro6enh/fffR1FREYKDg/HTTz+193K6BQ6Hg0GDBiEqKkouCwx3Nj09PXh7eyMmJqbdc6Jmz56NgIAA1NbWaojF4rNsNnuFjMOkKKWhpugAlEVubi7EYjEsLS2b/b6JiQkkEgn4fH6TynASiQRvvvkmTp061ej1oKAg6OjoyC3m7iIrKwtWVlaKDqNraegpeY0AGU0nxXc5CwAsYOoHz1HtZmFhgbCwsFYvWrl582YYGBjg9u3bMDU1xbhx42QWi6WlJSwtLTFz5kwMGzYMPj4+0NPTw/Hjx6Gnp4ecnBzMnj0b27Zt63ABm1u3bmHq1Kk4e/YsXnnllZe2ZRgGf/75J0aNGoUnT57A09MTjx8/RkREBM6cOQMNDQ3o6OhAX18frq6u4HA4MDAwgLW1NWxsbKCpqYmHDx/C398fd+7cwdy5c7F27VrExsbi559/xmeffQZjY2MwDIO3334bc+bMQVpaGmJjYzFr1iz0798fo0aNwrBhw7Bnzx7o6Ojg66+/Rnl5Od57770O/Ry6Mh0dHXh4eCAyMhJeXl7gclW7fgCHw8HgwYMRHh6Ouro6WFtbt/kY7u7uKCgoaLj/+Z7FYvWXSCTvyiFcilKs1o6n68pzhgQCAbl16xapq6t7YZvLly8THx+fJq/X1dVJx7CvX7+eACBqampk37598gy52xCLxTJb8JH6n9Ns0mRuzYs2GZPbnCG9ZuYLdcL1dEfBwcGkqqrqpW0kEgnZvn07sbe3JwcOHCC2trZyLSRACCHV1dWNitXU1NQQDQ0NIhQKO3TcwMBA6Xt8WxZPTU9PJ8uWLSOTJ08m7777Lvnxxx9JQUEBKSgoIEVFRSQhIYH8/vvv5NSpU2Tv3r1k/fr1ZObMmWTkyJFk7dq15OTJk+Tp06fSc/fu3ZvY2dkRR0dHsmLFCgKAHD9+nCxdupQAICwWixw9epRYWFiQpKQkQgghb7zxBgFAli1bRkxMTEh0dHSHfhbdQUlJCQkMDCQCgUDRociEUCgkwcHBJCMjo0PHmTVrFgFA2Gz2YqIEczzoRjdZbq1u2JWTobi4uBbfKJYsWUL279/f5PVffvlF+mFlaWnZ8GahkEm7XVFBQQGJiYlRdBhdx68gpC9Il0uGCGlaSY4mQ3KRnp5OUlJSXtrm6tWrpFevXiQ0NJT06tWLXLp0qZOi+095eTnR0dHpcOEVe3t7AoCEhYXJKLK2ycrKIkVFRSQ8PJz89NNPJCkpibi6upI///yTjBgxQvr5M3r0aHL//n1y8OBB6cO42tpa8uuvv5Kamhry3nvvka+//loh16BqsrOzSWhoaJd5CCcSiUhQUBB58uRJh44TGhpK9PT0aths9lyiBDewdKObrLZuP2eooqICpaWlLXYhN0zIfd6z625kZ2dj+vTpyMzMhJaWlsxj7Y7y8vI6fQJ0l3VGrX642ENFByIngYHAi+aVEUKHyMmIqakp8vPzX/j9qqoqbNmyBZ999hl27tyJ2bNnY9q0aZ0YIVBWVoaxY8di/PjxHZ5rOHv2bAB46bwdedLQ0IC6ujoGDRqE2bNnIz4+HpmZmfD09MTdu3dRW1sLQghu3LgBd3d3sNlssNlsFBYW4tixY5g/fz60tbVhYWHx0v9v1H8sLCygq6uLxMRERYciEw0LzT558gQ5OTntPo63tzfu3LmjraOjc4IWVaC6km6dDBFCEBcXh/79+790TLm/vz8ePHiA33//vUkBhZ49e8LPzw+zZ8/G7du3cfHiRbowqIwQQlBSUgJDQ0NFh9I1bO8Gc4NEovqkR09P0ZF0WQ0PeporBHDjxg1YWVmhvLwc586dQ3p6OjZv3tzZISI2Nhbh4eH4999/0a9fP+zYsUP6PbFYjNGjR7c6rq+++goSiQQff/zxC9v8/vvvePvtt/HkyZMOx/689evXQ09PD5WVlRg1ahS++eYb/PzzzzA2NgaXy0VxcXGj9tXV1dDT08PJkyexatUqXLhwAQDg5eWF06dPo7CwUOYxdkV9+vRBdXU1srKyFB2KTKipqcHLywtpaWkdWgTY1dWVJkRUl9Otk6GcnBzo6OjAwMDgpe1Onz4NADhw4ACqqqoafW/ChAm4ffs2fv/9d/j5+ckt1u6orKwMenp6YLG69a+pbNwY0bYeIT091e5JGTAAGD6c9gjJSXO9Q9evX8fYsWNRVlaGp0+fwtvbG3fv3m22Oqe8+fn5gc/no7i4GIcOHYK/vz/I/34PTp06hYiICOzZs6fVx3vZw7KYmBisXLkSycnJWLx4Maqrqzsc/7P27t0LAPD19QVQ/764YcMGaGlpwcLCAubm5o3aDxkyBH///TcyMzPx4YcfYs2aNaiursbw4cMxatQoaXJEvRzDMHB3d0daWhpKSkoUHY5MqKurw8fHBykpKe2uMgfQhIjqerrtXaZQKERKSgr69u3bYtuwsDCsWbMGhJAWEydKdvLy8ujaQrKypo2lpwcMkE8cnSUwsH6j5MLMzAypqamYMWMG7OzswDCMtFLc119/jby8PHz00UcKraapqakJdXV1TJkyBQKBAIsWLUJ+fj5++uknvP766xCJRPjyyy8hEAg6dJ7Nmzfjs88+Q0BAAExNTfHRRx/J6ArqGRoa4uDBg7Czs4Ouri4OHz6Ms2fPorKyEjExMU0SNW9vb0yfPh1DhgzBpk2bMGzYMLzzzjuYOnUqsrKykJCQINP4ujI1NTUMGjQIMTExqK2tVXQ4MqGurg5vb288evSoQ72ENCGiupJumwwlJyfDzs4OGhoaL223atUqJCcnd7g0K9V2T58+Rc+ePRUdRvf0fCKh9r+1iJzV6nuZqG6rYQmCBw8e4OrVq8jIyMBrr72G5ORkSCQSfPDBB0o1Z5LD4cDf3x9qamp48803MXXqVNy9exdCoRA7d+7EgAEDMGPGDGzduhX//PMPJBKJdN/a2lpkZGQgJiYGiYmJTYZJA/ULcg8ePBhsNhvLly+Xy9pyK1euxF9//YVr165hyJAhcHd3B4fDgbq6erPt58yZg3HjxiE+Ph67du3CkydP4OPjAzMzM0ydOlXm8XVlDWtWRUZGNpojrMo0NTXh7e2NhISEJsMs24ImRFRXwZBWDiHp0aNH6vXr1x08PDzkHJL8VVRUICYmBkOHDn1pklNaWooePXoAACorK+maQZ2osrISiYmJ8Pb2VnQoXUs/puXhciwAYlKf+CS28OHfxiFogYGBGDFiRJv2oZSHv78/Jk6cCAA4d+4cfHx8Xrg2m7IRCoUYPXo0vL29sXPnTvzwww9YvXq1NPlZt24d7t27h7S0NFhaWiI/Px/l5eUwNjaGgYEBYmNjYWZmhtzcXOkxCSHgcrkoKCgAj8dDWloahg8fjidPnijFA7QHDx7AxMSkyVA6qu0yMzNRWFgIDw8Ppfh/Kwu1tbUICwuDq6ur9F6nPWJjY+Hn51dbVVW1WCQS/SbDECmqU3S7niFCCOLj41ssmgDUzwdqwOPxsGHDhi7zZEjZ0SpyCvIrgGvD6//9qBW/6wxTv/Vj6hdyPdNF13EeMeK/a9XXV3Q0nUoikWDHjh0wNTXFxIkToa6ujtTUVIwZM0alqpOpq6vj559/xtWrVzF27Fjk5ubi/fffx5YtWwDUL7y9ceNGfP7554iJiUFBQQEKCgqQkpKCcePGoWfPnjh8+HCjY8bGxqJHjx7ShbhtbW2RnZ0NFouFmTNn4rfffkN8fDxa+9BR1vr164ekpCSIRCKFnL8raVgQNyUlRdGhyIy2tja8vLwQGxuLsrKydh+H9hBRqq7bJUO5ubnSFb9bwuFwAEB6U75nzx5cunRJrvFR9QoKCuh8IXlIfGbVneeny7EAvEaA9+7V3/RLmjvAC2T+779ErLoJ0Y0R9bGfaybZiY7u9HCUxbp167Bp0yYUFBRg06ZNqKurg4ODg7TC2bPDypSdra0t7t27hxkzZkBDQwOZmZnYt28fgPqb3ePHj2PFihXS9np6eoiNjcXu3btx7949TJkypdHxvv32W6xevRoAUF5ejk8//RQAMGvWLJiamuLcuXMYM2YM9u/f3zkX+BxNTU3Y2Nh0qRt4RXJ2dkZxcXGHqrEpGw6Hg0GDBuHBgweoqKho93FoQkSpsm6VDIlEIiQnJ7eqaEJwcDCSk5NRVlaG3NxcEEIgEAgwa9asToi0e6utrQWLxWpxPhfVQep6QL9n1mDpr1ffA9KaHqHn1aB+DaPPoboJ0djbwGtiYE75fwlRQ49Qefl/7crLu00PUUJCAvbt24dFixahsrIS27dvl/aoMwwDIyMjFBUVKTjKttHX10deXh6mT5+O3377DW+88QaA+qG5u3btQmpqKggh0iqir7/+OgDgxx9/lB6Dz+eDEAJ9fX1UVFRAIBBAX18f27dvBwCcP38ew4YNw/nz57Fw4UK89957KH/2d6gT2draorCwsEklVKrtWCwWPDw8kJSU1KHEQdlwuVx4enri/v37qKysbPdxaEJEqapulQwlJSXBzs4OmpqaL21HCMHq1auxe/du6D2zXsmLJqtSspWfn0+HyHWGhCog6bmv790DOjL3XZl7iM7pN9/r09Aj9Czh/xKibtojVF1djaioKPTv3x8AcPLkyWbnTJqZmankU/IdO3bA1dUVDMPgnXfewePHj6Guro6xY8di2LBh8PDwQGZmJtavX4/Ro0dj//79+Oyzz0AIwblz56CtrY2PP/4Ya9euxeHDh5Gamip9yDZv3jwAgKWlJWpqavDHH39g48aNjT5LOhOLxUL//v0RFxensOF6XYmGhgY8PDwQFRXV7FpbqorH48HDwwORkZEdKg9PEyJKFXWbZKiyshLFxcWwsbFpse21a9cgEAgwdy79O1YEWlK7k+jo1G/Pf/3n8Pq5Q93l3aGhR+hZC1DfQ2RRBbDZTffR0wM6MMZemYWEhEhvjID6pQVepEePHigpKVGpm+wLFy7AyckJffv2BZfLhY2NDezt7bF3715kZ2cjOzsbH3/8MdLT09GzZ0/weDysXr0ajo6OcHV1xaZNm+Dv749Lly7h9ddfh56eHjw9PTF27FgAwNmzZzFixAhERUXB19cXo0aNwpdffqnQa+7Rowc0NTVVao6XMuPxeOjbty8iIyNVaphoS3R1deHu7o6IiAjU1NS0+zg0IaJUjZI9upUPQgji4uJaVTShoqICa9aswZdffkkX+1QAgUAAkUgkna9FyVHDzbyaWuOvGyxl6oe/tQX/f/9V1wMMlGStoobeIGF5469ntyKZ+VSnvp2+/n9D5bpgIhQfHw8XF5cmr6urq8PLy+uF+7FYLOjr6zeqvKksBAJBo6G2AQEB2LZtG/Lz86UV4AICAsDhcCCRSFBbWwsulystfjBz5kzpvrNmzUJ2djaKi4uxePFisFgsxMbG4vr161BXV8cvv/yCAwcOwNDQEMXFxRCLxYiOjsZnn32mNKWs+/Xrh5CQEBgbG0NNrVt89MuViYkJKisrERcXJ+1l7Ar09PTg5uaG8PBweHt7t3vR5IaEyM/P74SamhpolTlKmXWLu/2Gogmt+bDeuXMnPDw8Gn0QUp2noKAAJiYmig6je3m+h6hBQw/R89vLNDwkVZZEqDUaCko863e9+tcaEqYBA+p7iLpgIgTU3yjv2rVL+rWmpibU1NTg5+fX4r6mpqZKN1Tut99+g6amJioqKqRV4xYuXIhly5YhNjYWDx48QGlpKby9vcFiscBms2FkZARdXV0wDCPdHj6sr0Pv6emJadOm4a233pI+JNPQ0MDkyZMxbtw4bN68GRKJBMXFxRg1ahR+/fVXHD9+HK+++qrS3CRraWnRYgoy5uDgALFYjIyMDEWHIlMGBgZwcXFBWFgY+Hx+yzu8AO0holRFl0+G2lI04d69ezh27Bi+/fbbToiMag4tqa0AZWXN3+CPCayvLvcaAXoOB5j/DRd7WULEQX3bMYH1mzKYXVa/qevVbw1ft0VgICASdclECABSUlLwwQcfSL/esmUL+Hw+bty40eK+PXv2RGFhocKGyl24cAHnzp1DTU0NqqurERsbi19++QVA/c2qs7Mz+Hw+oqKiMH/+fGhoaCAqKgpDhgxptObV+vXrUVlZCXd3dyxYsABvv/02bG1tWxUDl8vFokWLAAC3bt166dBCRbK1tcXTp09pMQUZYRgGbm5uyMnJQWFhoaLDkSlDQ0M4OzsjLCysQ3OjaEJEqYIu31eenJwMW1vbFosmlJeX4/XXX8eRI0fofBUFEYvFqKmpka7ZQSmRMYH1hQae3q7/+lcAS9F4GB0h9W1UlQrNe5GlteP3ygsAACAASURBVGvXYu/evQCAU6dOYdKkSW0a8sZms8HhcFBZWQldXV15hflCDRU+zc3NUV1dDXV1dTg4OCAhIQGampowMjJqVLwgPz8fW7duRU5ODjZu3IjffvsNy5YtwxdffCGdQN5ajx8/xldffYXffvsNkyZNwqVLlzB+/Ph2Dy2St4ZiCvHx8fD29laaXitVxmaz4enpiZCQEHh5eYHL5So6JJkxNjZG3759ERYWBh8fn3ZXeKVD5ihlx7T2aV6PHj1Sv/zySwcnJyc5hyQ7EokENTU1zVZBel5GRgZYLBasra07ITKqOSKRCCKRCFpaHSlnRslVZTIgfKb0aibqh8axAAz0aHH3qqqqVv09Up0nPT0d6urqsLCwaPfNsVAohEQiafGhkzyUlpYiOzsbFhYW0NXVfel8mNLSUjx58gTGxsYwMzNrdL1VVVUQiUTQb6FkOiEEFRUVyMvLQ11dHYyMjGBiYqJS83Bqamqgrq5OK6TKkFgsls4762pJpkgkAp/P7/C1PX78GBs2bBBWVla+ThMiSpm0KRm6fv26Q0OFIWVHCEFoaCicnJxafMr5119/YcOGDYiKiupST3VUzYMHD2BjY6N0E7Gp5zT0/rRjGFxgYGCjoUlU1yAQCBAaGtqqOUayVFNTg4iICLzyyiuYMmUKzpw5g6tXr2LChAmN2hFC4ODggPT0dNy+fbvVcRYXF8PQ0BC5ubm4ceMGbty4gb/++gu9e/fGhg0bMHPmTLCbqzao5Ph8PkJCQuDn56eS8SurnJwcZGVldclet9zcXKSlpcHHx6dDiX9sbCz8/Pxqq6qqFtOEiFIWXXbOUF5eHrS0tFq8sRYIBNi0aRO++uormggpkEQiQVlZGQwMDBQdCtUSZZoPRCkFDQ0NqKmpoba2VqbHvXPnTqMSv2JxfQn0s2fP4uOPP5aWvR4wYADef/99APVFWJ6VkJAAFouF9PR0AICvr+8Lz5eQkIClS5eid+/eePDgAYyMjMAwDBwcHPDnn3/C09MTCQkJCA8Px5w5c1Q2kdDS0oK1tTUtpiBjFhYW0NfXR2JioqJDkTlzc3PY2toiLCxM+nfYHnQOEaWMVKdfvw1EIhGSkpIwePDgFtv+8MMPMDMzw7Rp0zohMupFSkpK0KNHjy73NI2iuouGBVjt7e1lcry//voLU6dOxcyZM2FgYICjR4+CxWJh6NChuHPnDhYuXIirV69i3Lhx0n34fH6joXoikUi6cOzff/+NSZMmvfQ95p133kFwcDAAYOzYsWCz2fDx8cE///yjkPlQ8mRnZ4e7d+/CysqKPgiUIScnJ0RERCArKwtWVlaKDkemLC0tIRaLER4eDi8vr3Y/DKBziChl0yWToeTkZNjY2LQ4fj0sLAzbt2/H9evX6U24gtGFVilKtZmamiIqKkpmydD169cB1FeLayCRSFBeXo6NGzc2u5Dp8+/5U6dOlZbAnjx5covn1NDQgLOzMyIiIgAAjx49goODQ5dLhID6YgrOzs7SYgqUbDAMg/9n777Do6jWP4B/z5ZsT++9VxIIBKSIyQUUEBALIArSLyhyFQVU+IEIIkovXkABlV5EBLzSUQIqRcEAISSBFFIgpPee7Pz+CBsTCEl2d3Znd3M+z7OPZnZm9g3ZbOad95z3dO3aFRcuXIBMJjO5Yd8eHh5QKpW4cuUKunfvrvF6jDQhogyJyQ2TKysrQ15eHry8vFrdr6amBpMnT8aXX36JLl2MaE0UE8QwDPLy8mBnZ8d1KBRFaUgikUCpVKKmpoaV8+Xm5mLjxo2Nw9+mTJmCwMBAnD9/vsVEqCWLFi3CSy+9hPY0/klKSsKtW7cwZcoUSCQSSCQShIeHm2QipGJrawuBQIAHDx5wHYpJEQgEiIiIwPXr11kfOmoIvLy8YGtri6tXr0KpVLZ9wBPQIXOUoTCpZIhhGMTGxqJTp05tVnpWrlwJLy8vvPoq/f3jWklJCRQKhcZ3mCiKMgwODg4aX1jX1NRgy5Yt+O2337B8+XJcvnwZzs7OWLx4MWJiYrBlyxbEx8erlZx0794dY8aMwbFjx1BXV/fE/RiGwXvvvYfJkyfj3Xff1Sh+dRUVFSE1NRU7d+5ESkqKXl6zJSEhIUhISNBqHgj1OKlUirCwMFy5csUk/219fHxgaWmJmJgYrdYYowkRZQhM6uozKysLIpGozbJ0ZmYmVq9ejfXr19PhcQaALrRKUaZBNW9IHVlZWVi5ciVEIhGmTp2KZ555BjExMZg9ezZeeOEFSKVSrar3Q4cOhZ2dHdasWYNbt261eCd7x44dSEtLw/z58/X2N2H27Nnw9vbGuHHjGps7cEEsFsPNzY02U9ABGxsbuLu7a50wGCo/Pz/IZDJcu3aNJkSUUTOZZEjVNCEkJKTV/RiGwaxZs/Dmm2+2OZSO0o/s7GzY29tzHQZFUVpSKBSorKxstQrTVGFhIcLCwjBnzhwAaLyTvmfPHkyfPp2VxIQQgk2bNuGDDz5ASEgIhg0bhurqagAN80bHjh2L2bNnY8OGDZBKpVq/Xntt2bIFqampKCgoQP/+/fX2ui3x8vJCdnY2ysvLOY3DFKnmL5tqshkQEAAzMzPcuHFD44Ro//796Ny5Mw4fPkwTIooTJpMM3blzp82mCQzD4P3330dycjLmzp2rx+ioJykvL4dIJKKL/1GUibC3t0dubm679r1z5w7y8vKQlZUFpVKJa9euoVu3bqxXZ/z8/JCfn4+MjAyIRCKMHj0a3333XeOaKWfPnkXfvn1Zfc22EELg6elpEMsJNG2mQLEvJCQE+fn5aldNjQEhBMHBweDxeLh586ZGCVF4eDgA4F//+heKi4slZmZmO/h8Pk2IKL0xiWSovLwcOTk58PT0bHW/3r17Y+3atThz5gxtJWogaBc5ijIt7R0qxzAMvv32W4waNQoODg4ghOh0iJq1tTVcXV2xZ88e+Pj44PDhw+jSpQtmzpzZ2H67I1M1U3h0nSZKezweDxEREUhMTERJSQnX4bCOEIJOnTpBqVQiISFB7eP9/f3x9ddfA2i4TnNxcTFTKpX7+Hz+TLZjpaiWmEQylJCQgKCgoFYn4K9atQqXLl3Chx9+CEtLSz1GR7UmJycHDg4OXIdBURRLLC0tUVxc3OYd4rNnz+LXX3/Fli1b9Dp3UywWY+XKlThy5AhiYmJoN9EmgoKCkJiYaJLzW7gmFArRtWtXXLt2zSQbKhBCEBYWhtLSUqSnp6t9/NSpUwE0VJZv3ryJt99+G3K5fCkdMkfpg9EnQyUlJaiqqmq1LfPp06exatUqpKen44svvtBjdFRr6uvrUVNTA4lEwnUoFEWxhBAChULR5h3ww4cPY+TIkSbdutrYSKVSWFpa4v79+1yHYpLMzc3h6uqK+Ph4rkPRCdUaS3fv3kV+fr7ax2/ZsgV//fUXqqur8d///he//fYbnUNE6YXRJ0MJCQkIDAx84p3FhIQEjB07Fnv37jW51aCNXX5+PmxsbLgOg6IoltnZ2bU6b6i8vBxbtmzBpEmT9BgV1R7+/v64c+cOrQ7piJeXF8rKypCTk8N1KDohEAjQvXt33LhxQ+2GHJMnT8aQIUMwatQoVFdX0y5zlN4YdTJUVFSE+vr6J15Q5+Tk4LnnnsPy5csRGRmp5+iotuTm5tIuchRlguzt7Vu92CsuLoZCoYCPj48eo6LaQywWw87ODhkZGVyHYpIIIejSpQvi4uIauxqaGolEgi5duuDKlSuora1t93GEEGzYsAEKhQJDhw5FQUEBTYgovTDqZEg1V+hJjhw5gp49e2L8+PF6jIpqr7y8PFoZoigTJJFIUFNT88S5ETKZDIQQbN68WeNFWind8fPzQ0pKSotrMlHaE4vFCA4O1np9HkNmZWUFX19fXL16Va3vUSAQYO/evQgKCkJUVBTKyspoQkTpnNEmQwUFBeDxeK02QygqKqKVBwNVVVUFgUAAgUDAdSgURemAjY3NE+cNWFhYYN68eZg2bRo+/PBDPUdGtcXMzAyOjo5IS0vjOhST5eDgAIlEgrt373Idis64uLjAysoKcXFxah0nEAiwbt06AA1rl2VnZ9OEiNIpo02G4uPjERgY+MTny8rKsG7dOowZM0aPUVHtlZub22rTC4qijFtr6w1VVVVh06ZNWLx4MTZv3qznyKj28PHxwd27d02y85mhCAkJQXp6OkpLS7kORWf8/f1RVVWldtJHCMHVq1cxcuRIDBw4EHl5eTQhonTGKJOh3NxciMXiVrsQfffdd+jVqxd69eqlx8io9srJyaFVO4oyYTY2NsjLy2vxuY0bNyIxMREKhQKFhYV6joxqD6FQCFdXV5OuXHCNz+ejS5cuiImJMdmkkxCC8PBwZGRktHsxZhWhUIj9+/ejX79+GDp0KEpKSmhCROmE0SVDDMMgISEBAQEBre539OhRvP7663qKilIHwzAoKSmBhYUF16FQFKUjqmGwVVVVjz03depUfPvtt4iNjUVERETjBXdOTg5iY2NNdh6FsfHy8kJ6ejrq6uq4DsVkWVhYwMXFRaPFSo0Fn89H9+7dcfPmTZSVlal1LCEEy5cvh4+PD95++20wDEMTIop1RpcMZWdnQ6FQQC6Xt7pfbW0t/YNqoEpLS6FQKPS60CJFUfr3pBbbcrkcEydOxDfffIMxY8agR48eqKiowMKFCxEWFgYXFxe1L5oo9gkEAnh4eCAlJYXrUEyat7c3SkpKTLbdNtDQNKJr1664cuUKampq1DpWIBBg8+bNuH79OhYvXgwAzRIioVD4ii5ipjoOo0qGGIbB7du34e/v3+p+NTU1KCgo0FNUlLpycnLofCGK6gBamjdUV1fX7EbVvHnzEBYWhldffRXr16/Hli1bkJWVhWHDhuk7XKoFHh4euHfvnlotkin1qIaSxcXFqZ0oGBMLCwsEBATgypUrancqlMlkOH78OD755BOsXLkSQENCdPbsWYlIJNpBCAnXRcxUx2BUydD9+/dhaWkJqVTa6n4nTpxAUVERXnzxRT1FRqmDzheiqI7BwsICxcXFzZKf3r17g8fjYezYsQAaOpcNGjQIN27cwFNPPYWdO3cCAKKjo1FUVMRJ3NQ/+Hw+vL29kZSUxHUoJk0sFiMoKMik220DgJOTE+zs7BAbG6v2sS4uLkhMTMSKFStw5MgRAEB4eDi+++47qUwmO0kIoRcWlEaMJhliGAZ37txpsyoENNxBcHV1BY9nNN9eh1FfX4+amhpIJBKuQ6EoSscIIVAoFM26ZTk7OwMAdu/ejdOnT6Nv37748MMP4erqipiYGJw/fx6urq6IjIyk1QgD4ebmhuzsbJNdJNRQODo6QiQSmXxLc19fX9TX12s0/NLf3x9HjhzBlClT8McffwAARo4ciRkzZlgqFIpjhBAh2/FSps9osoWMjAzY2dlBLBa3uW90dDTtImeg8vPz6UKrFNWB2NnZNZsLIRT+c63y7rvvYvz48Th06BByc3Mxc+ZM1NTUICMjAzt27KCfFQaCx+PBx8cHd+7c4ToUkxcSEoK0tDSTbrdNCEHnzp1x//59jeZJ9ezZE7t378bLL7/cuIbR0qVLhU899VSQXC7fxHa8lOkzihUvlUolUlJS0Lt37zb3TUtLw+bNm/HLL7/oITJKXXR9IYoyXnV1dSgtLYWVldVjz+Xn5+PYsWOQyWSorq5GamoqcnNzUVZWhqCgIOzatQuFhYUoLS3FkSNHEBISAm9vbyiVysbFl9euXYs1a9ZgyZIlWLBgAd544w3s2LFD398m1QJXV1ekpKSgsrKSVvZ1SCAQNLbbfvrpp012hIuqw9zFixchkUigUCjUOv65557D6tWrMWjQIPz+++/w8PDADz/8IA0LC3tNJBL9WV1dTRcwo9rNKJKh9PR0ODo6wszMrNX96uvrMXr0aMyePRudOnXSU3SUOvLy8tpsi05RlGH6888/0adPH5w/fx59+/YFAMTFxeHLL7/EoUOH0KVLF8hkMohEItjY2ODu3bvo1asXAgICsHnzZsjlcvj7+ze7wOPz+UhKSgKfz4eHhwcAIDMzEwBga2ur/2+SahEhBH5+frh9+zY6d+7MdTgmzcLCAs7OzoiPj0dISAjX4eiMSCRC165dcfXqVfTu3bvNa7xHjRkzBnl5eXj22Wfx22+/wcHBAadOnZJGRESsJYTcZBjmgo5Cp0yMwSdD9fX1SE1NxdNPP93mvocPH4ZSqcSsWbP0EBmlrqqqqsa1RyiKMj6q6vyQIUNw6dIlvP/++7h+/TqmT5+OEydOQCKRoLy8HJmZmY0NbGJiYjB48GD89ddfOHPmTIt3un18fJp9/dVXX+Grr77S/TdEqcXJyQlJSUmoqKhos5ERpR0fHx9cunTJ5EdTmJubIygoCH/99Rd69eqldiXs3XffRUFBAYYMGYJz584hICAA+/fvl4wcOfJnQkgYwzCZOgqdMiEGX3+9e/cuXF1dm40zb0l2djZmz56Njz/+2GTLysbO1D/UKaoj8PPzQ2lpKXr06IG///4bNTU12LJlCyIjIzF8+HBMmTIFX3zxReP+9+/fx/Xr1/H222/TSo+RI4QgICAAiYmJXIdi8ggh6NKlC27evGnS7bYBwMHBAY6Ojrh+/bpGnfQ++eQThISEYMKECVAqlXj++efxf//3fwqFQnGSENL2RHOqwzPorKGurg7p6enw8vJqdb+MjAw4OjoiKioKQ4YM0VN0lLpoMkRRxq2mpqZxEj3DMJgzZw6uXbuGc+fO4d69e9i+fTv69++P8vJyAMC0adNw+fJlXLx4EQEBAXShZRNgb2+P8vJyk57gbygkEgkCAwNNvt020LDwLCEEycnJah9LCMHmzZuRlZWFjz/+GAAwd+5cwYABA7wUCsV2Qj94qDYYdDKUkpICd3f3VodVVVZWolu3bgCAjRs36is0Sk0Mw6C4uBiWlpZch0JRlAaUSiUCAwMbK+8VFRWoqKjArFmz8Oyzz8LFxQWTJk2CRCLBli1bUF1dja+++go9evRoHB5LWzMbP0IIAgMDaXVIT5ycnCASiZCens51KDpFCEFYWBhycnLw4MEDtY8XiUT48ccfsXPnTvzvf/8DIQQ7d+6UODk5DRGLxe/rIGTKhBhsMlRbW4t79+7B09Oz1f1mzJiBZ599Fkqlkna4MWClpaWQy+X0zjBlGs5EAXtIw6ODyMnJQWpqKoRCIcRiMczMzFBXV4fhw4fjf//7H+7cuYNbt27h008/xVNPPfXYZGhbW1vk5uZyFL2WoqIAQhoe9IYObG1tUVNTg+LiYq5D6RBCQkKQmpqKsrIyrkPRKR6Ph4iICCQkJGj03rK3t8fevXsxZcoUJCUlQSaT4eTJkzKRSPQpn88foIOQKRNhsMlQUlISvL29wefzn7hPYWEhfvjhB2zatIleZBu4nJwc2NvTxaEpylg5OjpixYoVGDJkCKqqqhATE4NPP/0UY8aMQVBQEBwcHFo93t7eXqM1RQzCuXP//D9NAAAAgYGBSEhI4DqMDqFpu22lUsl1ODplZmaGbt26ISYmBlVVVWof37t3byxatAgvvvgiysrK4OnpicOHD0vEYvFBQoi3DkKmTIBBJkPV1dXIzs6Gm5tbq/vdunUL9vb2kMvleoqM0hSdL0SZBFVFKKfJxXEHqhDNnj0bBw8exMsvv4ybN2+qdaylpSWKi4uNa+6DqiL0KFohgrW1NYCGm5KU7llaWsLR0bFDJKAKhQLBwcG4cuUK6uvr1T5+2rRp6NmzJ8aPH4/6+npERUXhiy++kMvl8jOEEHrBSD3GIJOhO3fuwMfHp82ucL169YKjoyO2bdumn8BMjWrYh46ravX19aiurm5oxcrXz2tSFKWd1pKWoqIitef/EUIgl8uNa+J904rQo2iFiFaH9MzX1xdFRUXIy8vjOhSds7e3h4uLi0bNIwgh2LBhA/Lz8/F///d/AIAZM2bwXn75ZSdzc/MDhBCDvPaluGNwb4jKykrk5+fD1dW1zX15PB5mzZqFXbt26SEySlMFBQUNdxEJAUy7wk+ZugHRwOsMYB/5z7bXmYaHiaioqMDXX38NHo/X4kVIYWEhfv31V1y7dk3tc9vb2xvvvCHqMRYWFhAIBB3i4twQEEIQHh6O2NhYk2+3DQBeXl4QCoWNHSzVIRKJcODAAezatQsnTpxQdZwTe3t795VKpZ+wHy1lzAwuGbp9+zb8/PzaPQdo4MCB+P3331FXV6fjyExIS5UZHVZrcnJyYD9lcvvioCiKM5cuXYJMJsObb76JwMDAFj+Hs7KyADTM61SXnZ2d8cwbOmAJ7EbD41Gq7Wei9BqSIVJVh4xq+KMRk0gkCAgI0HhNHmPTqVMn5Ofn4/79+2ofa2dnh927d2PixIm4f/8+RCIRjh07JpNIJLP4fP5wHYRLGSmDSoYqKipQXFwMJyendh9TVlYGqVTaaqMFilv5R4/CNla9+QUUZdBUFSITqAjV1dWBYRgwDINevXoBaFhPKD4+vsX9Y2JiAACDBw9W+7WkUimqq6s1mgdAGSaFQgGpVEorfnrk7OwMoVCIjIwMrkPROVWHuTt37qCoqEjt4yMjI/Hmm2/ijTfeQH19PZycnHDs2DGpWCzeTQgJ1kHIlBEyqGQoMTFR7YX5Dh8+jMjISNPvJsfmJO3ISODR5JHPByws2Dl/E9XV1eDX1ECgQVcYiqJ069SpUxAKhQgPD29MUAYNGgShUNji/j/88APGjh0LAHjhhRc0ek1ra2sUFBRoFrA+jSxqGA5J+P9UglQP+8iGRHhANKchGoqAgAAkJiZ2iEqFoejUqRNSUlJYa7fNMAwWLFjQWPk1JEKhEBEREYiJiUFlZaXax8+fPx9KpRLLli0DAPTo0QMbNmyQymSy04QQK7bjpYyPwSRDZWVlKC8vV6v9cnZ2NubPn984QY5qp+ho4NFhhXV1QFERICMND5bk5ubCduRIoKU/kgzT8naKonSqqqoKhBAMHDgQAHD9+nUUFRWhX79+OHHiBBYvXvzYnIT6+nr8/PPPiIiIgFKp1Lgab1QttgdEAwLafKotMpkM5ubmGi2WSWlGIBCgc+fOrLbbXrJkCby9DbP7tEwmQ2hoKK5cuaL2tAg+n48dO3ZgzZo1jQ0/JkyYQCZMmGCrUCiOEELo0KIOzmCSIU2qQtHR0ejduzd69OjBbjCWls3bpgoEuum81tr5VM89WhHSRYVIVREiBKhAw4OlhIi21KYow7J///5mC1Q/9dRTePHFFyEUCnHixAn07t0bCxcuhLe3N7Zu3Yq4uDgAwMqVKxEdHY0NGzZoVYm3sbFBfn6+1t+H3qgqRKpqEK0Itcjf3x937tyh1SE9srKygoODg0YNBh5FCMFff/2FFStWsBCZbtja2sLd3R03btxQ+1g3NzcsWrQII0eORHl5OQBg7dq1ZqGhod1kMtkqtmOljItBJEOVlZWoqKiAra2tWselpKTA19eX/YDqyhrapqr+4DMcjm9/Q4fnVlWIVBWhplhKiIqLi/9pwauqBNGKEEVxRvWZqZrz069fPxw6dAgWFhYQCoU4evQoFAoFNm3ahGPHjmHgwIH4/PPP8dVXX2H79u1a33xSDcGrra3V7hvRpwHRNAFqg0QigUKhoJ3l9MzX1xcPHjxovMDXRkREBGbMmMFCVLrj4eEBhmGQmZmp9rFvvfUWwsPD8dZbb+H27dsQCAT46aefpAqF4t8CgWCMDsKljIRBJEOpqanw8vJS+27jzz//jGeeeYa9QCwtAbkAKG+S/LTUDlrbCtGjxzf9+tHnlACa/orqYtK2qiL0KC0ToqqqKgiFwjbXi6IoSn+8vLwAAL///jsA4PPPP2/2vKWlJV577TV8++23+P777zF37lzMmzcPnp6eiIyMfOx8mrCysqKLdZogHx8fJCcncx1Gh8Lj8dCpUyfcuHGjw1TlwsLCkJSUpHYCqFp/aOfOnQgICMDdu3dhY2ODkydPSsVi8WZCSDcdhUwZOM6vUuvq6pCdnQ1nZ2e1jqutrcWVK1fQrRuL7926suaJkCFRp0Jkadl8WF9U1JP3DW4j2WkpSWqngoIC2NjYaH4CiqJYsXv3boSEhABoaGDw6quvYsiQIQDQbMicyvr161FZWYnRo0fDyckJ77zzDvbu3ctaPDY2NsbRRIFSi7m5ORiGMa6FdU2AjY0NxGKxQTQ/YBgGv//+OyoqtLh4aINQKETnzp3x999/qz1fSqFQ4NatWwAabgzV19cjLCwM27Ztk8pkshOEkPZPXKdMBufJUHp6Otzc3NSuHgiFQrz55pv47LPP2AnkTBSwWY1ESJs7MI8OE2vPsDHCb19FKCrq8ZXRH94BfkxnSyCt7VNqqnGxVYqiOKNUKjFv3rzGCwAAcHFxgaenJ4CGYcopKSnNjhGJRDhy5AjMzc0xb948rFu3Do6OjqzFZG1tbVzzhqh2o9UhboSEhCAxMZGT4adKpRKEEHz55ZdITk5G3759IZPJdPo+UM2XUjVEUEdQUBDWrl0LAJg4cSIAYMSIEXjnnXcsFArFcUKIGavBUgaP02SIYRikp6fDw8NDo+Pnz5+PXbt2sTvcIgjN/1WCWthHl6XoyMiGx6Pb2tM9xdISOHfu8e319Y9XiIIJcKO49cqPlnN7CgoKYGVFu1ZSFJdmzpyJ9PR0bNy4EQDw448/YvXq1bh48WJjJ04fHx8cPHiw2XEikQidO3dGYmLiY8mStsRiMWpra1nrgkUZDjs7OxQXF6O6uprrUDoUMzMzeHt7a5QcaOP48ePg8/mws7PDO++8Az8/P8ybNw8AcP78eZ2+tp+fH4qKijRa4+rdd9/FzJkzsXv3bly9ehUAsGTJEmGvXr0C5XL5JrZjpQwbp8lQVlYWbGxsnrimRVvs7OwwadIkDB48WPs/qgOiG7oFLbIAdjbZvsgC2NOk6yKbiVBLyUZ0dPOEua8WUgAAIABJREFUhs9v2NaWlipCj3pShUgHVK0vNf3ZUhTFji+//BIAcOXKFZw9e7axUc25c+fw/fffo1u3brh48WLjsLmmXn/9dfj4+DTePWWThYUFitv6zKKMDiEEnp6eSE1N5TqUDsfd3R0lJSUaLU6qqV69eqF///6NCYmZmRn69+8PhmF08rnRFCEE4eHhuHnzpkbJ95o1a7BkyRJERERg8ODB4PF4OHDggNTGxma0mZnZmzoImTJQnCZDKSkpWve0X716NS5fvsxOB5sB0YBVl4b/D3r4sOoCvFbHXQe09vbT/62FitCj5E3Wy7j18PtpWvlisdtbYWEhrQpRlAEYPXo0AODbb79Fv379EBkZiVdeeQUAGlvyzpw5ExKJ5LE5fra2tkhOTtZJswOjWXyVUpurqyuysrIaF/Kl9IMQgtDQUMTGxuqtmYKlpSXOnDmDpKQkvPzyy6irq2ucn6gPEokEQUFBuHbtmkbf80cffYRnnnkGJ06cQEpKCszNzXHq1CmpSCRaTQjpo4OQKQPEWTJUWFgIkUgEmUzGyvnGjx8PAIiLi8PJkydRV1eH+Ph49X85VBWi9ZENCYM+26m21KWupW0CQcND9f8tdbx7VBCALWwF2rb8/HzaPIGiDMDu3btx7949vPrqq43bmg6JmzRpEmbMmAF/f38UFBQ0W9H+q6++AgCNhzK3xujWG6Lajc/nw9nZWaP2x5R2zM3NYW1tjbt37+r1dVVDbevr6+Hg4KDX13Z0dIREItHoeyaE4Ny5c1i3bh1eeuklVFZWwt/fHwcOHJBIpdKfCSGu7EdMGRrOkqHk5GT4+PhofZ5VqxrWyvrXv/6FuLg4dOrUCYMGDYJQKERwcDB4PB4IIW13nWuadBjimhKqxVb3Cppvb8+dNymABU9YYPkWO5WgR9HmCRRlGHg8HpydnVFSUtK4bfLkyY3/v27dOowdOxbnz59HQEAARo4cifr6elRVVWHRokUA0PhfNslkMpSVlXWYdsAdjWqoHP356l9AQADS0tJQVVXFdSh6ExISgvT09Gafc+r4z3/+g8DAQMyZMwcAMGjQIMyfP1+uUChOEUIeb7lJmRROkqGKigpUVVWxcrFcVlYGqVSKn376CW+//TYAYOjQoZg/fz62bNmC999/H4sWLWpMmtrUtCW1vjSt9DzJGDS01x5b35AAqZoitIaHhorQNouGoX4j9TOOWKlUoqamBmKxWC+vR1FU244dO4bjx48DAL755hvcvHkTL7zwAkpKShAdHQ0HBwd89NFHOHHiBAICAnDs2DFkZ2cDALp27cp6PIQQyOVyVhaLpAyPSCSClZUVcnJyuA6lwxEIBAgICEBcXBzXoTxRXFwcFi9ejHv37rEyzYHP5yM8PBwxMTEaDc8khODrr7/G0aNHsWfPHgDARx99JHj22Wc9FQrFTqLuQpiUUSHtvWtjbW2ddPr0aR821vW5efMmrK2t1V5b6Enq6+sxffp0bN68GUDDYoJ9+rRzqGdr72993dESCNpX4VHX6Ugg93dAINdbIgQARUVFSElJ0ckFFGXcoqOjEdXauleUzv3999+NlfJff/0Vv/zyC3Jzc/H1118DaFiE9dKlSzAzM0NpaSk++eQT9OzZUyexJCcnQyAQ6GQYHsW90tJSxMbGonfv3lyH0iFdvnwZ3t7esLOz4zqUx1y9ehURERGNX8fFxSE4OFjr86ampqKkpASdO3fW6PjY2Fj069cPx48fR0REBCoqKtCtW7fyu3fvLqqsrFyhdYCUQdJ7Zai2tha5ublwcnJi7Zx8Pr9xfopIJMKFCxfYObG+KkTtbZLQVFs/OebhfCc9VoRU6HwhijJcXbt2RUFBAeRyOfr164fPPvsMfn5+AICcnBysWLECS5cuxalTp7Bnzx6dJUIAbaJg6hQKBXg8Hu0ayJHQ0FDExcUZZCOLbt264e+//8a4cePQuXNn1oZTenp6oqqqSuMFaENDQ7Fp0yaMGjUKRUVFkEqlOHHihEwkEi3i8/nPshIkZXD0ngylp6fD3d0dbFcc9+3bhxkzZqC6ulq9sjzDAN9bsBqLRnarub+qYQK/hblAHI/Rzs/Pp/OFKMqAZWRkYPfu3VizZg0AYM6cOaitrcWJEycQFRWFzZs3o6SkROe/x7S9tumji7ByRyqVwsXFBUlJSVyH0qLw8HBs374d165dY60DnarddkJCAiorKzU6x4gRIzB48GBMnjwZDMPAw8MDR44ckYjF4oOEEO0nu1MGR6/JkFKpbEyG2FZRUYG5c+di6dKl7R8ip/Kkyok+22m/ruFrPVpV4jgRYhgGZWVlkDdt401RFOeSk5Nx/fp1ZGVlITY2FsOHD8fx48exYMECAMDZs2dx/fp13LhxA1euXNHLBSyPx4NQKOxQE707GltbW5SVldGfMUd8fHzw4MGDDjU3z8zMDKGhoYiJidG44rR69WqkpaU1LlYdGRmJ5cuXy+Ry+RlCiILNeCnu6TUZysrKgr29PesLcWZmZqKmpgY2NjaYO3cuXnzxRfVPYqwVIoC1tYHYUF5eDplMxnrlj6Io7XTp0gVdunSBs7Mzxo4dCwA4deoUPv30UwiFQgQGBqK6uhrJyckYPXq01mvAtZeNjQ0dKmfCCCHw8vKii7ByhMfjoVOnTnpde8gQ2NrawsrKqnEtNXWJRCLs3r0bCxcuxO3bt+Hr64uqqireK6+84qhQKL4nhHC6TifFLr39MBmGYWWR1ZYUFBRAKpVqfwE+soj7xKK9FaLTkQaR/DyqoKCAzheiKANUUlKC+/fv4/vvv2/2OyqRSGBhYYG8vDyMHDkSADBs2DC9xUXnDZk+FxcXPHjwAHWazI+ltGZjYwORSKTxPBpjFRAQgJycHI0/XwICAvDJJ58gICAAycnJmD17NubMmSP29fXtK5VKF7McLsUhvSVDqoRFImG/XXtYWBhCQkIwadIk/O9//zPuux/tbdpgaOsgPUTnC1GUYSKEwMnJCSNHjkReXh4KCwsBAJWVlcjLy8OMGTMaExNPT0+9xWVlZUWTIRPH4/Hg6uqKjIwMrkPpsIKDg5GYmIja2lquQ2nT999/D5FIpHWsPB4P4eHhuHHjhsbnmj59erOvhw4dis2bN8skEsn7fD5fg2FIlCHSWzLE1iKrT/LNN98gKCgIM2bMwMmTJ3X2Opwz0IqQSnFxMSwtLbkOg6KoNlhaWiI3NxeBgYGN20aNGgUfHx+9XrSqhk3TqoFp8/DwQFpamnHfrDRiIpEI3t7eSExM5DqUNnl6esLX1xdlZWVan0smk8HX1xc3btzQ6L3H4/FQVVWFoqIipKamYtiwYejevTt27dolEYvFuwgh7HR+oDill2SovLwctbW1Or1IdnV1xQcffAAbGxv1hsupKjHGcgFvoBUhAKiuroZQKASPR4fSUpQxsLW1xfXr15Gbm4sLFy4gPj4ekyZNwsKFC/Uah5WVVWOlijJNZmZmsLa2xoMHD7gOpcNyd3dHUVGRwXdw7NGjB+Li4mBlZcXK+VxdXUEI0fgmj0gkgoWFBTw9PbFu3ToAwLZt22BjYyMDcJMQQofDGDm9XLUmJyfrfDJuVVUVhg0bBldXV/Tv3799BzVd/JGFOxCseNJ8JQNpkNCagoICOkSOooyMmZkZbG1tG7+2tLTEd999h6tXr+otBtpEoWPw8fFBSkoK12F0WIQQhIWFaVwlMWahoaFISUnRutpECEFJSQmuX7/emFwpFIojhBABG3FS3NB5MlRTU4OCggI4Ojrq9HUOHTqEqqoq/PjjjxAI2vGeJAQ4d+6fr+vrjatCZIDoYqsUZfxUd2Obrg6va9bW1sjPz9fb61HckMlkEAqFKCrS70Lg1D/Mzc1hbW2NtLQ0rkPRraioZje8hUIhOnfujJiYGCiVyice1h4KhQInTpxovPnr4uLSXSaTrdLqpBSndJ4MpaWlwcPDQ+etli9cuIAhQ4a0LxFqWhF6lKFViIygIqRSUFDAWlmboij9q62tRdeuXRu/vn37tl5eVywWo7q6WuuLFMrw0UVYuRcQEIDU1FRUV1dzHYruXLvWcMO7yU1uKysrODo6Ij4+XuvTe3h4YM+ePQAAhmFE5ubmUwQCwVitT0xxQqfJkFKpRGZmJtzc3HT5MgCAZ555Btu2bWv/Lzef3/K2p59mN7AOoq6uDgzDsL6GFEVRuvPuu+9i165dABpuZkRFRaF3796NN68CAgL0FouFhQVKSkr09noUN6ytrVFRUYHKykquQ+mwBAIBAgMDERcXx3Uo7FNVhJrOi2ry/76+vigpKUFOTo7WLzVw4EAsWbIEiYmJiIqKkorF4q8JId20PjGldzpNhu7duwcHB4f2VWu0NGLECDg5OWH//v1t7xwdDdTVAZGR/2zj8xu2RUfrKkSTVlhYSKtCFGVk9u3bhzfeeAPHjx+Hi4sLLly4gLCwMBw4cKBxnyVLluglFhsbGzpUrgMghMDb25vOHeKYo6MjamtrkZeXx3Uo7FJVhB71sEJECEF4eDji4uJYqYzNmzcPzs7O2Lt3L1avXi2VSqUnCCEOWp+Y0iudJUMMwyA1NVVvq5gTQjBt2jTs2LFDvQP5fFoRYgFdbJWijM+2bdsAAM8//zyqqqrQtWtX3Lt3D+fOncPEiRMBAAsWLMCNGzd0HgtdfLXjcHJyQk5OjlGseWOqCCEIDQ3FzZs3TWt4apcuT37uYYVILBYjKCgIMTExWjeSIIQgPT0do0ePxoMHD/DWW29ZmJub/0h0PTeEYpXOSjb5+fmQy+UQi8W6eonHDBgwABMnTkR2djYcHNqRmNMqEGvy8/Ph7u7OdRgURamhf//+OHToECoqKiCTyWBhYQEej4fIyEg8//zzkMlkKC8vR+fOnaFUKnU691Mul6OsrAwMw+h8jinFLR6PBzc3N6Snp+t0/UGqdVKpFC4uLkhKSoK/vz/X4bAjOvrJC9dbWDT+r6OjI3Jzc1m5ac/n87F3714QQuDo6Ch0cXHpXFFRMRHAt1qdmNIbnVWGdL3IakusrKwwYMAAHDlyRK+v2yEcsAT2kH8eZ6Ian1IqlaiuroZEIuEuPoqi1GZmZoYXX3wRr7/+OoYPH46oqCj4+fkBaJiHOWTIEGzduhUAGitFukIIgVQqRUVFhU5fhzIMHh4eyMjI6HAtng2Nj48PsrKyUF5eznUo7GGY5tMgVNse6WIYHByMzMxM1tZdWrVqFR48eIApU6bIhELhOkKIEysnpnROJ8lQaWkp6uvrYdEkC9eX//znP5g3b55pTgzkypkooPbJHxYlJSWc/KwpitIMwzD4/vvvG9fcOHXqFGJjYwE03DH9+eefYWdnh7Nnz6Jnz56IiIjA9u3bdR4XnTfUcQiFQtja2iIrK4vrUDo0Ho+HkJAQxMbGmlZi2nTkzxOuT/h8PsLDw3Ht2jXU1dVp/ZLvvfcezM3NMWvWLLzxxhtic3NzWhkyEjpJhlJSUjgrfffv3x/vv/8+xowZQ1c0Z8MBSyCnhcmIOecaK0R0sVWKMi5KpRKvvvoqFAoFCCEYOHAgwsLC8PXXXyM+Ph7l5eVYsGABzpw5g5CQELzxxht6iYvOG+pYaCMFw2BrawszMzPTS0xVS5O0sq6VQqGAh4cHKzfQCSG4fv06AGDz5s0CkUgUxePx3tb6xJTOsZ4MVVdXo7CwEPb29myfut1mz56NtLQ0+iGrrTYqQip0sVWKMi58Ph/l5eVYv349RCJR4/bTp09j2LBhmDdvHn766SeEhYWBYRhcvXpVL3FZWlrSBTk7EKlUCrFYTBNgAxASEoLExMQO2dTCw8MDNTU1uH//vtbn8vT0xH//+18AQG5urphhmP8SQmy1PjGlU6wnQ3fv3oWXlxenE2ALCwtRVFTEysJaVOuY/mdRVlYGuVzOdSgURanh6NGjGDhwIKqqqhq7xX355ZdITk5GUlIS3N3doVAo8Nprr2HHjh3o0lqXJpbweDwIhULTXgySaoYuwmoYRCIRvL29kZiYyHUoekcIQefOnZGYmMjK+ldvvfUWevXq1fg1j8e7pfVJKZ1iNRliGAb379+Hi4sLm6dVm4ODA44ePYpp06ZxGofRGxANvM4A9pGPP2cfCbzOoKqqChKJhHZ/oigj89FHHyEgIAArVqzA8uXL8eKLL6Kqqqpx3sCFCxdQVlaGUaNGoba2FjExMXqJy8rKilaHOhArKytUVlbSBNgAuLu7o6CgoEM2MTEzM2ucO6UtHo+Hbdu2QS6XY+LEieDz+TaEkIEshEnpCKuttXNzc2Ftba2XRVbb8tdff2Hs2LFch2G6BkQDAIqKimjzBIoyQomJiejTpw8++OCDxm3nzp1Dt27dkJycjJSUFE4mVKuGyrVreQTKJLi5uSEjIwO+vr5ch9KhEUIQEBCAhIQEdO3aletw9M7e3h4ZGRl48OABHB0dtTqXv78/Fi5ciGPHjuGnn37ijRgxYichxIdhmFKWwqVYxGplKD093WDWmvnzzz/Rr18/rsMwDaoKUdPHQ0VFRbC0tOQuNoqi1KK66ysQCHD58mWUlZXh5MmTWLp0KaysrHDmzBl4eHhwFh+dN9TxuLq6IjMz07S6mRkpe3t7VFZWoqSkhOtQ2u9MVLPlPrQREhKC+Ph41rrLlZeXIy0tDcOHD5fL5fJVLIRI6QBrJZyamhqUl5cbxIVxYWEhzp07h3379nEdiskrKiqCp6cn12FQFNVOMpkMs2bNwtGjR5Gbm4u6urrH1tk4e/YsR9EBEomkQw7T6ciEQiEUCgWKiopgZWXFdTgdGiEEgYGBSEhIQI8ePbgOp31UHW/3kIYh/A9HrmhCLBbD09MTiYmJCAkJ0SosPp+PrVu3ol+/fvj9998lx48fH0MI2cEwzO9anZhiHWuVoczMTLi6uhrE3JFjx46hvLwcpaWlSE1Nxd27d+kdJx1gmIY5Q2KxmOtQKIpqB9Xn4KpVqzBr1izcunULKSkpKC8vx5o1azB8+HDO7wgTQiASiVBVVcVpHJR+ubu7Iy0tjeswKDSs96VUKg1/eZKWKkItLQWiJk9PTxQUFLDyWRgaGooJEyZg6dKl2Lp1q1Qul+8lhNCLJgPDejJkCF577TVMmzYNAQEBiIqKQp8+feDr64spU6bgtddew+HDh2lyxILKykraPIGijERFRQXGjRsHNzc3/P3335gyZQrs7e1hbW0NqVSKmTNn4vDhw1AoFFyHSofKdUC2trYoLCxkZXgSpb2goCDD78ibc67l5OfhGoiaIoQgLCwMN27cYOVaceHChfj1119hY2ODqKgoa5lM9qnWJ6VYxUoyVFxcDLFY3Gy9Ci7xeDx89dVXKC0tRVpaGjIzM7F//350794dUVFRmDdvHiZMmEATIi3R+UIUZRwqKirQp08fEEKQkJCA8PBwrkNqFU2GOh5CCJydnU1v4U8jZWFhATMzM+Tm5nIdimZytRuJZmFhAUtLS1aqlXK5HGvXrsX06dOxYcMGKY/He5sQYtgfwh0MK8lQeno6pxNu26Nbt26YNm0apk2bhitXruCHH37AX3/9xXVYRo0mQxRl+I4ePQq5XI7AwEBs374dUqmU65DaRJOhjsnNzQ3p6elch0E9pJo7ZJQ3jgXar30YGBiI1NRUVobsvvzyy/Dw8MC+ffuwfv16sUKh2E8IEWp9YooVWidD9fX1yMvLg52dHRvxsOLQoUMghODNN9/EnDlz4O3tDR6PB0IIDh06BKlUivXr1+Oll15Ct27dMH78eLz66qs4ePAg16EbFZoMUZTh279/PxiGwcyZM41mSKtEImFl8UPKuEilUhBCUF5eznUoFBoqGubm5oZbrXukuy0AgPAbto3U/maKQCBAYGAg4uLitD4XIQTr16/H8uXLMXDgQBIeHu4sFos/1PrEFCu0ToYePHgABwcH8HisdunWSkREBD744AN8/fXXWLlyJXr06AFCCIKDgxEQEAAAmDx5MtLT07Fs2TL861//Qr9+/fCf//wHSqWS4+iNA8MwqK6ups0TKMqA1NTUYMuWLXjllVfQr18/PPfcc4iOjgYAdOrUidvg1EAIgVgspglRB+Tu7k6rQwbE398ft2/fNp7qEAsVoaacnJxQV1fHynBBX19fjBs3DsuWLcP27dtlPB5vHiEkgIUwKS2R9r7Bra2tk06fPu3TrVu3ZtsvXryI0NBQyOXsvgHZ8Mcff8DCwqJdFwH379+Hi4sLPv30Uzz33HPG01KSIxUVFYiNjcVTTz3FdSiUEYmOjkZUVBTXYZikP/74A1OnToWrqyvGjRvX+EdcqVTimWeeMYrhcU3Fx8fD0tISTk5OXIdC6VF9fT3Onz+PqKgoo6lkmrq4uDgoFAqDWUdS3yorK3H58mX07dsXfD5fq3NlZmYiNDQUGRkZ+Pbbb5ULFiy4XlJSEsEwDL0TzyGtyjmVlZWor683yEQIAPr06dPuu6G1tbWIjIzEzZs3MWzYMJw4cULH0Rk3OkSOogzHzz//jFdeeQWLFi3CiRMnMGbMmMbK0KBBg4wuEQIa5g09uv4RZfr4fD5sbGyMd+K+CfLz80NycjLq6+u5DoUTEokErq6uuHPnjtbncnV1xdNPP40ffvgBM2bM4Pn4+PibmZm9zUKYlBa0SobS09NN4k7BnTt34ObmhujoaOzbtw8HDhzAxIkTsWbNGq5DM1g0GaIow5CZmYnJkyfj0KFDGDFihMncTadNFDouuuaQYTEzM4Ozs3OH/pl4e3sjJycHZWVlWp/r1VdfxU8//QQej4c9e/bI+Hz+F4QQw+5CZuI0ToYYhkFWVhacnZ3ZjEfvcnJy4O/vD5lMhvz8fADAM888gytXrmDt2rXYt28fxxEapqKiIlhYWHAdBkV1aNu3b0dQUBDeeecd9OrVi+twWKWaM2Q0cxUo1lhYWKCiogLV1dVch0I95OPjg7S0NONaB0ogaHiwgMfjoVOnTqysPTRgwACcPXsWdXV1CAwMxLx588zMzc13ElO5k2WENE6G8vPzYWlpCQFLbzRdOnDgAF566aUW2yPa29tjzJgxqKqqwh9//NG43cXFBT///DPeeecdJCQk6DNcg0ebJ1CUYZgwYQLKysowa9YsrkNhHSEEEomElba2lHEhhMDNzQ2ZmZlch0I9JBAI4O7ujuTkZK5Dab/6+oYHSzmGtbU1ZDKZ1u9LR0dHBAYG4vjx4wCADz/8UODo6NiVz+ePYyNOSn0aJ0NpaWlGM0SOEILTp0+joKCgxed37tyJmpoavPDCC822h4aGYsqUKdi6das+wjQaFRUVRjkHgaJMCcMwiIiIgJWVlcnemKBD5TouV1dXZGZm0sqgAfH09MT9+/dRU1PDdSita6kixFJCFBwcjKSkJK3/DaZPn47Vq1cDAIRCIfbu3SsTiURfEkIc2IiTUo9GyVBtbS1KS0thZWXFdjw6MWLECJSVlT02pC8+Ph6zZ88GIQRCYctrXw0dOhTnzp3TR5hGg84Xoihuffnll+jZsycYhsH169e5DkdnLCwsaDLUQZmZmUEqldImGgaEz+fDx8eHlUYCOqWqCD2KhYRIKBTCz88Pt27d0uo8o0ePRkZGBs6ePQsA6Nq1K95++22Rubn5N1oHSalNo2To3r17cHFxMfqJutnZ2Vi1alXjm7Elxv496gJNhiiKOxcvXsSCBQuwcOFCXLhwAW5ublyHpDO0MtSxeXh40DWHDIybmxtyc3ONdw0wFq7pXFxcUFlZ2Tja6Pz582p3PxQKhfj444+xaNGixm2LFi0ys7CwiOLz+S9pHSSlFo2SoYyMDJP4A9y7d28AwGefffbEfY4dO4a+ffvqKySjQJMhitK/7777DoQQvPDCC9i+fTuef/55mJmZcR2WTqnmDNGhUh2TnZ0d8vPzO2xLZ0NECGlciLWjIoQgNDQUsbGxUCqViIyMhL29Pf7880+1zvP6668jNTUVf/31F4CGz7vdu3fLxGLxN4QQ4xh6ZSLUToZKSkpgZmZmEmPUzczMoFQqcebMmSfu89tvv2HNmjX0j/FDDMOgpqYGIpGI61AoqkOoqqrCtWvXEB0dDW9vb8TFxWH48OFch6U3EonEeO9CU1ohhMDR0RFZWVlch0I14eTkhJKSEpSXl3MdimZYqA7J5XI4OjoiOTkZv/zyCwCovQi9QCDAu+++i1WrVjVu69u3L8aOHStVKBT/1TpIqt3UToYMcm0hPml4c6seamhrGNxnn30GmUymTXQmpaKigv57UJSOff7553BwcMDcuXMRFhaGUaNGQSaT4dKlS7C3t+c6PL2iQ+U6Nnd3dzpUzsAQQhAQEGC4nXYZBoiM1PnL+Pr64t69e+jZsyfS09MRHR2t9jmmTJmCX375BTdv3mzctnLlSpFYLH6REDKAxXCpVqiVDCmVSuTm5sLBoeM0u1AoFPDy8qJzhx6iQ+QoSneKi4tBCMG8efOQk5ODgwcPYtmyZbh9+zY2btwIOzs7rkPUO1NOhm7cuIGTJ09yHYZBk8lkYBgGFRUVXIdCNWFvb4/q6mrDbXDRVmISFaX1S/D5/Ma1h1xdXRGpQQJmbm6OxYsXY/r06Y0jkBQKBbZv3y6VyWS7CCH07rMeqJUM5efnw97eHjyexh252aWqCCkf2a5BhehJbGxscO/ePeTl5bFyPmNHkyGK0h25XN7s66VLl+Kllzr2XFpTTYb+/vtvdO7cGWvXruU6FINHq0OGKTAw0HCrQ0BDhYjPf3x7S9s0ZGtrCzMzM62Gck6dOhXl5eXYtWtX47bBgwdj6NCh5nK5fAUbcVKtUyurefDggeENkdMxFxcXjB49GitXruQ6FINAkyGK0p36+nqMHz8e3t7euHHjBkaMGMF1SJwTi8Worq42uXmb9vb2mDlzJvbt28d1KAbPyckJWVlZJvceMHbW1tYAGm6UG6y6uuZfR0Y2bNNgSNuThISEIDEtoa9EAAAgAElEQVQxEbW1tRodz+fzsWHDBsydO7fZPKwNGzZI+Hz+BEJIL7ZipVqmVjJUX18PhUKhq1jUt4u97L41ISEhJnlnUl2q5gmm3sGKoriyfft2nD17FocPH0ZoaCjX4RgMqVRqck0UXF1dsWbNGlhYWHAdisETCASwtramIzQMUFBQEBISEgw7UWUYwMKC1YpQUyKRCN7e3lpVyXr27Ik+ffrgv//9p2+CjY0NtmzZIpHL5fsIIbRrlQ6plQwZ3FwhgRyQtrBdCuB79v7APPXUUzh48CCOHTum1nGnT5/Gjz/+yFocXCsvL6fNEyhKB2pra7F48WIsXboUH3/8MU2EHmGqQ+Wo9qND5QyTubk5JBIJcnJyuA6ldUVFrFeEmnJ3d0dJSYlWn1Pz58/H2rVrUVVV1bhtxIgR6Nu3r61UKv2EhTCpJ1ArGTK4ybsji4ByBtjzSLZfzjQ8x5KIiAj8+9//xv/93/+pddzhw4fxyiuvICoqCleuXGEtHq7QIXIUpRv37t3DwoULMXPmTEyaNInrcAwOTYYoS0tLlJWVoaamhutQqEcEBgYiMTHRsKtDOtZ07SFN/x1CQ0PRrVs3bN++vdl5t27dKuXxeO8SQsLYipdqTq1kSCAQ6CoO7agqRCxXhFRqa2vx+eefY/To0WodN3XqVIjFYuTm5mLIkCH45ptvADQMN/vll18MtwvLE9BkiKJ0Y/HixQgKCsKkSZNo58oWWFhY0GSogyOEwMXFBffu3eM6FOoRUqkUlpaWuH//PtehcMrc3Bw2NjZITU3V+Bxz587FsmXLmiX9zs7OWLNmjVihUOwnhBjohbhxM5C2cFpSVYhYrgip8Pl8CIVCTJ06Va3jVq5ciX//+9+4efMmzp8/j2XLlmHcuHF45513MHToUHh7eze7A2DoaDJEUeyrr6/Hd999Bz8/P8Oak2lATLWJAqUeNzc3ZGRkNN9oaQnIBcCZKE5iohr4+/vjzp07UCofbe/bsfj7+yM9PV3jOY59+vSBv78/tm7d2mz75MmTSVhYmJtYLJ7NRpxUc6aRDOkYj8fD8OHDsWzZsnYfk5+fj59++glLly5tXKDszz//hL+/P0QiEWJjY3H+/HlMmTJF4w4k+sQwDOrq6mjzBIpimepu6vjx4zmOxLBJpVK61kwHJxKJIBaL/xlVYWkJFBcD5fXAs+eAzvRmHVfEYjHs7e07/LwugUCAoKCgZouoqmvp0qVYsmQJysrKGrcRQrBjxw4Zj8f7mBDix0as1D9oMtROGzduxNatW5GSktKu/Q8dOoSBAwc2WzfE0tIS8+fPx8qVK+Hr6wt3d3dIpVK89tprWLZsGS5dumSwdz7Lyspo8wSK0oHevXsDAF5++WWOIzFsdN4QBTRppKBKhJq6WayfCpGlZcODasbPzw+pqamor6/nOhROqZqNZWdna3R8165dMWDAACxdurTZdm9vbyxZskRkbm6+hxBCr99ZRP8x28nOzg7jxo1r97C2AwcOYNSoUa3uo1AocPfuXQwdOhTZ2dkYNWqUwV4Q0SFyFMW+q1evIjMzE0OGDOE6FINHkyEKaFifKffcOdQ3WY+lkRL6qRAVFzc8+ATYQ+f4qQiFQri6umo1Z8ZUdOrUCfHx8ah7dJ2jdvriiy+wefNmJCUlNdv+zjvv8Ly8vIKEQuGbbMRJNaDJkBqEQiH47exTX1lZ+dhq8i2xsrLChAkTsHr1avj4+ODBgwfahqkTxcXFNBmiKJYlJibCysoKu3fv5joUg0eTIQpoGLbu8OefyO7e/ck71ZU9+TltPFoRUgIYAzpfqQkvLy9kZGQYxfB/XZJIJHB3d8ft27c1Ot7Z2Rlz5szBe++912w7n8/Hnj17ZEKhcDkhxI2NWCmaDKmloKCg3atgv/DCCzhy5Ei7z80wDC5duoRNmzZpE6LOFBcX08UBKYplV69eRWFhIcRiMdehGDyRSITa2lqDHUpM6Y/buXPI7Nv38Sd4AIL5wLqndfPCqorQowaeoxWihwQCAdzd3ZGWlsZ1KJzz8vJCbm6uxs0UZs6cicTERBw9erTZ9uDgYHzwwQcic3Pz7YS2H2UFTYbU8MUXX+DSpUtYuXJlm/s6OzurdRczJiYGzs7OCAszzDbyNTU1tHkCRbHsjz/+AAD6u9VOZmZmqK6u5joMimOKu3dRMXgw6kSi5k8E8oG4OmBAtH4DUgL4N2iF6CF3d3dkZGR0+M5yhBD4+/sjMTFRo+NFIhHWrVuH995777FK29y5cwX29vY9+Hz+62zE2tHRZEgNNjY2mDNnTrsWUK2srFTrbm9OTg68vb3B4xnej6S6uhqiR//oUJSeLV++HHv37uU6DFb1798f5ubmdG2hdjI3N0dpaSnXYVAcI4TA3t4eOV27NmyQQrcVIZXIyCc/VwEg93fdvr6REAqFsLe37/DrDgGAo6MjSktLm3WGU8egQYPg5ub22KghMzMz7NmzRyYSiTYSQuzZiLUjM7wrbwN38+ZNBAcHt7lfQUEBrKys2n3eLl264OrVq8jPz9cmPJ0oKSmh659QnCouLsaHH36I8ePHt/g78ttvv2HixIn4+OOPm20vKytDeXm5wV5Az58/HwKBAJmZmVyHYhQUCgVKSkq4DoPSxgHLhoeWnJ2dcX/9eoB5uMagPipC0dEtJ0Q8NCRkVCNvb2+kpqZ2+GGthBAEBgYiISFB4+M3bNiAJUuW4O+//272XPfu3TFt2jSxubn5FjZi7choMqSmzMzMds2dEQqFKG+p280TODo64vnnnzfIidSlpaUwNzfnOgzKSBUWFrYryU9OTsamTZtw8OBBVFdXo6amBvn5+cjLy8Pp06fRv39/BAQE4OTJkwAApVKJ69evo6KiAuPGjcO2bdvw6aef4s8//8ShQ4cwdepUKBQKyOVymJubo6vqLrIBkUgkGDBgAE6dOsV1KEaBVoaM3F4BUFvc8NhDtEqKLCwsUFpaqv82zi0lRDsBHIkE7HRcmTIiEokEUqkUBQUFXIfCOTs7O9TU1PyzPpaaAgMDsW7dOowZMwZVVVXNnluyZImZQqEYwOfzX2Aj1o6KJkNqGjFiBBYvXoxff/211f2OHz+O5557Tq1zjx49GgcPHtQmPJ0oLS2llSGq/QQCgBCAEFx+OGbax8cHvXv3Rk1NTbNdt2zZAn9/f7i4uKB37964fPkyNm7cCJlMBplMBj8/P/j5+WHkyJF47rnnMG7cOIwZMwZnzpxB165d0aVLF4SEhODu3buN53zzzTfx7bffws3NDf/+978bt8fExODYsWOoq6tDXl4eduzYYRAX1gMHDmxM8KjWKRQKg/iZURo4YAkwjyQutRquC2RpCWJl1dBmOzeXlfDUokqIVBUhwm+oSul7rpKB8/Hxeaw1dEcVFBSE+Ph4jY9/7bXXEBwcjBUrVjTbLpVKsWvXLqlEIvmOEEK7XGmItLeEaW1tnXT69Gmfbt266Tgkw/f6669j0KBBGDduXIvPMwwDsViM3NxctSoqJSUlcHJyQllZmUHNIfjtt9/Qs2dPCIVCrkOhjMHD9245gGAAXwIYRoClAKQrVuL92bPx3HPPwc7ODufPn29sK9+lSxcQQpCVlQVnZ2dIpVKUl5e3+Lsgl8sxaNAgeHp6IjIyEuHh4ZDL5U+s2mZmZuKnn37Czp07kZqa2rgY3p07d+Dr66ubf4d2evDgAYKDg5GcnKzW0NqO6uzZs4iKijKoz0iqDXsFjydCTQktgJFqtE1/+LMvyM/H3bt3ua36qpI5mgi16I8//kDnzp3btdSIqfvzzz/h4+MDGxsbjY5PTU1F9+7dERcX17iwq8rkyZOrDhw48H1JScl4NmLtaGhlSAPx8fHw9/dvdR+5XK72HUxzc3MwDKPW8DpdYxgGdXV1NBGi2qaqCD2UDKAQwB8A9jNAFtPQdAkATp06haSkJIwYMQIjR47EoEGDQAhBTEwMsrKykJ2djYsXLwIAqqqqUFRUhPr6elRWVoJhGJSWluLAgQNYsWIFhg4dChcXl1aHr7q6umL69Om4ePEiTp8+jbFjxwIAzp071+a3VV5ejrlz52Lw4MEICgrCnDlzNF5ZvCWqIbI7d+5k7ZymTCqVatyqluJIa4kQ0P4K0SPr/Fi526L4wgVuu5bRilCrfHx8kJyczHUYBiEoKAgJCQkaz6Py8vLCG2+8gc8+++yx51avXi0WiUQjCCH/0jbOjkitytDnn3/uExAQoOOQDFtNTQ1iY2MRHh7eaue39PR01NfX/z975x3W1PnF8e9NwgyQMMJGNqJVKyoOHCC4al24cO+F49e6Fffedqittdrauuve1iqKWtyK4kCwDDdL2SvA/f0REhlJyCQJvJ/nuY/k3ve+90QuyT3vOed74OrqKtf89+/fR7NmzbRm1ZOmaeTl5YHNZmvaFIKSKHpPysz9+1V2FQFIAVAIwAiAsaMj/nvzBhYAcg0MUFhYCFNTU9jZ2cHU1BSJiYlIT09HTUSgMzIykJSUBDs7O1hbixfjKSoqwrt375Cfnw97e3vo6ekhPT0d6enpsLKygr29vUoUILOysvD+/XvU9c9XWSgoKACLxQKLxdK0KQRZ+Vj1s6EKeqaAqfRFRnGfMflWVtBzcCD3gxaTk5MDNputNc81miQvLw/6+voK36/FxcV48uQJGjVqVGWOyMhIbNq0KePjx488mqaLVWFvnYGmaZk2c3Pzl/fu3aPrOkVFRbSnpyd9/fp1qeNyc3NpNzc3+tChQ3LN361bN/rXX39VxkSVkpycTD958kTTZhCU5Pjx4zQA2tvbm3758iX9/Plz+sGDB/SlS5fo2NhYurS0VOr5t27dor/99ls6PDxcsGMfPm9CBLpOUrcrGzfSPwB0V4DesWMH7ezsTO/YsUM0xbJly2jBx1LNEBMTQwOgBw8eLNqXkpJCR0ZG0gMGDKB5PB7doUMHev/+/RXOe/PmDd23b1+6R48eNJ/PV9qOwsJC2sLCgn716pXSc9V2Xr9+TcfGxmraDII8lP+8ELftZ8o2j5jPlNSGDemHhyer136CUsTHx9MvXrzQtBlaQW5uLh0REVHtd640Jk2aRC9evLjK/tLSUtrX1zeboqiRtIzP9mQTbCRNTk709PQQEBCA3377DcXFkh1vY2Nj7Ny5E3PmzMHKlStlnn/YsGE4duyYKkxVCVlZWURJTsu5desWQkNDUa9ePQQEBFQ4VlxcjCtXroh6FMTExKBTp07o3bs3Ro0ahRUrVqBjx45wd3dHWFiY2GLkv/76C127dgWDwUCvXr3A4/Fw5kGVYZ8fT6phAgAmgAkTJqB169YIDAwsO53GkiVL0KpVKzn/BxRHGIk5cOAAxo8fjy5dusDNzQ1+fn7IyspCQkICIiIiMHjw4ArnOTg44ODBgyguLsb48eOVlo/V19dHSEgItm3bptQ8dQEioqCDDKnm70NWFbZ9ZVu515YLYvCJ6VXnJZy1GScnJ7x9+7bmlf+0EGNjY3C5XKV6ME2bNg07duyo0oiVoihs2LDBhM1mr6MoitQ2yIOsXhOJDH0mMzOT7tSpEx0YGEh/+PBB6tj379/TPB6PvnLlCk3TNJ2amkr/8MMPdHp6utjxOTk5tKOjI33t2jVVm60Q9+/fpz99+qRpMwhS2Lx5Mw2AnjBhAg2A/u677+hbt27RYWFhtIODA92iRQt65MiR9PLly+mPHz9WOb+0tJR+9OgRHRoaSnM4HLpbt270pEmT6OXLl9O//PIL3ahRIxoADYB25YHePga0tRnov+eCvr8SdORS6RGiEoB+TYEuLYsMrVy5kgZAHzt2rIIdubm5dOPGjcXaqE6uXLlCjx07lp4yZYrofQKQaSUzJyeHbtWqFT1nzhyl7Xj16hVtYWFR7WdKXae4uJi+evWqps0gyMs//uKjQoog/HwpOz8qKopOTU1Vna0ElfPs2TM6KSlJ02ZoBfn5+fSVK1fokpIShedo3749ffjwYbHH/Pz8cphM5nhaCyIuurKRyJACmJmZ4cKFC2jTpg3atGmDx48fS1yVsrW1xaFDhzBw4EBcuXIF+/fvxzfffIPg4GCx49lsNubNm4dffvlFnW9BZnJycoistpbj4+MDd3d3tGnTBgAwffp0tG7dGvn5+bhw4QLu3r2L3bt3Y9GiRWLVyiiKQpMmTfDTTz8hISEBkyZNQqNGjVBQUIDbt2+jd+/e2LlzJzw9PZGQCpgZAVtHAYuPAM0XAtMr1/2Xd4UARANwogVqLa8BtGzZEtbW1rhz5w4KCwtFpxkbG+Px48c1rqgWEBCAnTt3YsuWLYiNjcX79+9B03S1IimA4O/17NmzOH36NFavXq3U6rSTkxOGDh2KtWvXKjxHXYDJZIq+wAg6RKerVSNE1mIamMpCpQiRnZ2dUivtBPXj6upKmrCWYWhoCBsbG7x+/VrhOaZOnYotW7aIPbZhwwa2oaHhKoqi9BW+QF1DVq+JRIbE89NPP9EODg50y5Yt6aysLInjwsPDaRsbG3rFihV0//79aQD05cuXxY7dtm0b3aRJEzovL09dZstEaWmpKKJF0F74fD7t7e1N29jY0ADoRYsW0YWFhSq/TnFx8edajbJV3X+XCKIoZ86cqTC2qKiIfvDgAf3ff//RpaWl9LRp0+jGjRvTf/zxB12/fn36999/pwMDA2kul0sPHTqU/umnn5TKodY0r169on18fOi+ffsqFdn68OEDbWVlRfLrq+HOnTt0dna2ps0gKMI//oJNhZSUlNDh4eE6/RlSF3jw4AGdnJysaTO0gqKiIjo8PJwuLi5W+HwHBwf60aNHYo/7+/vnsFisybQWRF10Yav1kaHo6GikpKSobf7Q0FC8fv0anp6emDVrlsRxHTt2RM+ePZGZmYnIyEi0bdsWQUFB+PDhQ4VxQhnh1NRUzJ49W212y0JeXh6MjY1lGxwQINgINcr79+/RsmVLxMTEIDk5GTExMVi+fDn09VW/IMRkMuHp6Vlh3z/Rgn9nzpyJc+fOITs7G5mZmfjyyy8xbNgwtGnTBitWrABFURgwYACcnJzQvXt3bN++Ha9fv8ZPP/2E9u3b47vvvsPEiRORkSFHrxEtwsnJCTdv3oSjoyN8fHwQGRmp0Dw2NjaYO3cupk+frmILaxekbkiHUYMUNYPBAJfLxadPn1Q6L0G1EJntz+jp6cHR0bFCw3B5zx87dix27twp9vj69evZBgYGKyiKMlTCzLqDrF6TLkaGkpKSaAB0jx491H6tzMxM2tvbm961a5fEMfHx8bSFhQX9999/0zwejwZQpR5n1qxZdMeOHWkAdO/evdVttlTevXtHP3/+vPqBHM7nxCgOR/2GEUR06dKFBkBTFKWxWpPExER648aNtL+/P81ms2kej0dPnixQd0pKSqINDAxoLpdLP336VBRpLC0tpU+fPk1bWVnR58+fpzdu3EgDoG/evKmR96BKTp48SdvY2NCrV69WKCe8sLCQ9vLyqhJtI3zm7du3dExMjKbNIGgR79+/p6OjozVtBqEaIiMj6czMTE2boRXw+Xw6PDycLioqUuj8hIQE2tLSks7Pzxd7vHPnzjl6enrf0FoQedH2rVY7Q6mpqTQAOjAwsEau9/TpU9rKyopOSEiQOMbe3p4+fvw4vX//fpqiKLqgoEB0LDc3l7a0tKTj4+NpBwcHunnz5hoN+7948YJ+8+aN9EH+/nSFgnkmU7CPoFYKCwvpBQsW0O7u7lolx5yfn0/Hx8dXuG8jIyPpp0+f0jRNV0m7bN68uUiwYPv27TVpqlp5/fo13apVK3revHkKnX/hwgW6Xr16dFpamootqx1kZWXRd+/e1bQZBC2iuLhYu1LlmEyyQCiG5ORk+sGDB5o2Q2uIj4+XbdFZAv7+/vTp06fFHnvw4AFtbGz8CYAxrQUOhzZvtTpNzsrKChRFISgoqEau17BhQ8yYMQMTJkwQeJpi6NChAwYNGoTMzEyUlpbCwMBAdOz06dOoV68e+Hw+CgoKkJeXh02bNtWI7eLIysqSLp7A5QIRERX3lZQI9pXrEk5QHTRN48SJE2jUqBHu37+Pf//9F05OTpo2S4ShoSFcXV0rNNdr06YNGjZsKHb8zz//jOjoaGRnZ2PixIk1ZabacXR0xOnTp7F//35cv35d7vO7du2K/v37Y8SIESgtLVWDhboNm81GTk6Ops0gaBFMJhNmZmbak2orlJHOzCQp5OXg8XjIyspCQUGBpk3RCpydnfHhwwdEREQgPT1d7vM7d+6Mq1evij3m4+ODgIAAPX19/clKmlnrqdXOEADw+XyEhYXV2PVmzZqF9PR0iXmcBw4cwIIFCxAaGoqoqKgKx1q0aAE+n4+GDRvim2++wYULF7BmzRrExsbWhOlVyM3NhYmJieQB5GFEpWRnZ+Pw4cMSezFcvnwZAQEBWLRoEbZu3Yrz58/Dxsamhq1ULb6+vmjUqJH0+0wRtKCGjcfjoVevXrh//75C5/v5+eHcuXNYv369ii3TfRgMBiiKIo4ioQJ2dnZ4//69Zo1gsYByi0EABAuElffVUSiKEinLEQSfZW5ubti9ezf8/eVXV2zRooXU75i1a9eymUzmIoqiVPwlW7uo9c4Qk8ms0evp6elhz549WLhwIc6ePSt2zKJFizBs2DA8evSown53d3c8fPgQDx48wIIFC1CvXj0MGjQIP/30U02YXgHhQwaDIeUWaSelUZ62rM7pELdv38bAgQPRr18/uLi4oF27drC3t4e9vT06deqE0NBQjB49GlFRUejSpYumzdVehBHLiAjBg4kG0dfXl9qcWRpC4Zf58+cjonIElgATExMSHSJUwMbGBikpKRIzM2oEaY1FSYQIgKBp9YcPH0gT1jKcnJzQuXNnfPjwoYL4Tm5uLnJzc6We27JlS9y/fx/5+flijzdu3Bhdu3ZlGRgY/E+lRtcyar0zpAkaNmyI3377DcuXL5c4xsPDAxcvXkRWVlaF/SwWC02aNBE5IUuXLsWhQ4dw7949tdpcmdzcXLDZbOmDrl4VVAqVdzg5HFF/GYJ8BAYGwsbGBqdPn8bSpUvx77//4v3793j//j1Gjx6NJ0+eYNSoUTXu4OsUAQGCtBQhJSUaTdk0MjKS+CVVHf379xf9HBAQQNTTKkEU5QiVYTKZYLPZVb5XtQYSIQIg+D3Z29sr1WenNkFRFPz9/RESEoKePXuK9jdu3BgdO3aUeq65uTmaN2+OixcvShyzevVqYwaDMZ+iKDOVGV3LIM6QAmRnZ1crh9ihQwc8ePAAfD5f7PExY8YgIyMDHA5Hqhwoj8fDhg0b0KVLF8yYMaPGVrzE1gtRlGDbX+nDvHyEiESEFGLOnDmYPXs2mjVrhtLSUlhbWyMkJASRkZGgaRpDhw5Vi1x2rUJcDRsgcI40FCF69eoVeDyeQudWPo/k2FfEzMxMex96CRrD3t5es6lyNA3I2JGiLuPq6orExETNRvG0CHt7e/Tp00dUYpGWloaEhATcvXu32nMHDBiAQ4cOSTzeoEED9OjRg2lkZDRDZQbXMogzpADbtm2Dq6ur1A/ckydPomPHjtDT0xN73MnJCceOHQOAah9yhw0bhhcvXuDMmTM1li6TnZ0NM7NyiwjlV9eHVhosjBCRDzW5oWkaycnJ2LRpE/bt24fz588DALhcLg4ePIg2bdpo2EIdonxEqDIlJTWeolJaWoqLFy+ia9euCs9x8OBB0c+KOlW1FVNTU+IMEapgbW1dpX9fjZMr4buQwwEUqAupjejr68Pc3BzJycmaNkUroCgKTZs2FQkiCaNmLBYLT548kXpuly5d8O+//0ods2rVKiMAsyiKIupWYiDOkJx8+PABu3btAgCJqjWFhYVYtWoVvv32W6lzGRgYoFGjRrh9+3a11+XxeJg9ezbWrVsnv9EKkJWV9dkZoqiqD5riIkQEuVi0aBFatmwJW1tblJaWIjk5GR06dEBaWhr8/Pw0bV7to4brbl6+fClS11OUkJAQ0c/qbB6tixgbGyucgkiovejp6cHIyEjzKZTiIkQZGYLFQwIA0oS1MjweD3w+H5mZmThx4gQYDAaKi4uxfft2qeeZm5tXuzDk6emJ4OBghpGR0WxV2lxbIM6QnNy8eRMvX76Eubk5PD09xY5ZtWoVvLy88NVXX1U7X3p6OhwcHGS69vDhw/Hy5Uvs3r1bHpMVIi8vD8bGxtLrLSpHiAgyQ9M0Vq5cKaoFGzp0KF69eoWIiAhYWlpq2DodhcOpWL9WmRqutYqOjkaTJk2QnJysVCqIsKC2W7duqjKtVkBRFBgMBinCJlTB3t4e796907QZggiRvz+JCEnAxMQELBZLe+TQtQBvb288f/4cPXr0QGlpKSiKwrZt26Se8/DhQ9jZ2VU794oVK4wAfEtRlIWKzK01EGdIToKDg5GYmIjr16+DVakOgaZprFixAitWrMC8efMq9FqRhJ2dncwrvoaGhjh16hTmzp2LoKAgTJgwAd9++y2OHDmCvLw8hd6POEpKSkTStdXKZxN1HLmgaRqPHj3Cs2fPRL13jI2N8dtvv2lVvyCdJCMDkKTcRtOSj6mJJ0+egM/nw9bWFh07dsSZM2cUmkeYKvnw4UOkpaWp0kSdh4goEMRha2urPelXV6+SiJAUPDw8SHSoHObm5mAwGHB1dcW+ffsQHh5ebWRoxowZmDZtWrVzu7m5ISQkhGFsbDxfVfbWFogzpADOzs7YvXs3KIpCvXr10KNHD8ycORMtW7bE4sWLAcie35+dnS1Xr4wGDRogMTERQ4cOhZeXF2xsbDBgwABR/ZEqyMnJ+dz3RZp8NkDUceTkwIEDaNq0KXr37o309HR06dIF6enpRBxBlQgjRBzO531cbo077h8+fEDLli3h5uaGiIgI9OzZU2GZbaEMP3GYK0Lqhgji0NPTg56eXrWyxATNY2Fhgby8PJLyWtGgK0sAACAASURBVI4GDRpg+/btePbsGQICAqptSF6/fn3pbVDKsWzZMkOapidTFEWKUMtBnCEFcXNzg6OjI7Zv347Ro0fD2toaCxYsEK32x8XFyTTPunXrMHz4cLx580bmaxsZGWHMmDGYNWsWvvzyS/j4+GDIkCEKvQ9xVKgXEiefLQ4SIZKJ3r17o3HjxnB1dUVycjLmzp0LQ0NDTZtVuxBGiJo2/bwvM/Oz415D9+qMGTOwfPlyxMfHo1GjRhgxYkSVaLKsNGnSBIGBgSgoKMDLly9VbKnuYmZmRiJDBLFoTaocQSrCJqzx8fGaNkVrMDU1RUpKikhQqToGDhyIU6dOyTS2Xr16GD58OJPNZi9UxsbaBnGGFCQ0NBSLFi1CaGgofH19MXfuXPTp0wd37tzB5s2b4eXlJdM8wcHBmD59Olq0aIFLly7Jbcfdu3fRvXt3mVcFZEGsrHZ1ESKCTLDZbDg4OODSpUuYMWMGAgMDNW1S7USSzDYAXK8ZIQVPT09kZmZizZo1YDKZ2LFjh1LzCfPGW7RooQrzagUkMkSQhK2treZV5QgyYW9vj5SUFImtSOoiU6ZMwTfffCNTvWmnTp0QGRmJ1NRUmeZevHixQWlp6XiKomyVtbO2QJwhJZgwYQJmzpyJVq1a4f79+wAED7vTp0+Hu7u7zPNMnz4dW7duxZw5c+S2wdzcXOUqU1VktQHp+c40TfKhpXDq1CmMHz8eJSUlePv2LS5cuAAA2Lhxo4Ytq6VUbrxamVLUWITo0aNHmD9/PtauXQsDAwOl5vL29kb79u2RmZlJokNlGBoakv5LBLEYGBiAwWCQ9CsdgMFgwMnJCa9evdK0KVpD/fr14ePjI1N009zcHH379sWvv/4q09wODg4YM2YM08TEZImydtYWiDOkJP/73/8wd+5cbN68Wal5fHx8FCqO7tWrFw4fPqxSNZaCggKSuqVCcnNzsXPnTtjb24t6zoSHh8sksEFQI/duqP0S7du3x9KlS6tVA5KVP/74AwAkKlnWNSiKAovFIivKBLGQVDndwdnZGa9evSJNWMvh6emJuLg4merKJ02ahF27dslcg75w4UL9kpKSURRFySZnXMshzpAK8Pb2xqNHj/D06VOFv5RdXV1RWlqKGzfke0BzcXHB6NGj8fXXX4uadCkDn88Hk8kU/6BeubEqabQqEwMHDkRISAhSUlIQExMDAOjYsaOGrarFyBqlzK0ZSeZ58+bhxYsXOHfunNJzubq6okePHgBA0sPKIHVDBEnY2dlJbY5O0B709PTA4/HI76schoaGsLGxkenZrkWLFjAyMsL169dlmtvW1hYTJ05kmJqaLlPWztoAcYZUQOfOndG7d2/07t0bbm5uePbsmdxzMBgMbNy4EX379pVbgnfjxo3o2LEjmjZtisaNG2P16tVyX19IdnZ21XohglIwmUwcPHgQ+/fvR0lJCYyMjDRtUu1Hlp4eNdR3yMDAAN9//z2+/fZbFBYWKj3fb7/9Bnt7exw9elQF1uk+pG6IIAlhhgNJpdQN3NzciMx2JTw8PBAfH19tPzWKojB27FiZU+UAICwsTL+kpGQoRVH1lLVT1yHOkApgMplYtWoVXr58ifnz56Njx4745ptvqjz4PHz4EOnp6RLnGTRoEIYMGYI7d+7IdX0Gg4GVK1ciJSUFv/76KxYsWKBwhEpsvVBlSERIIZYtEyzAyNIcjaAkQhVESdRw36Hu3bujSZMmmDFjBhISEjBz5kzs2bNHobl4PB7Onj2LsLAwhaW6yxMXF4eDBw8iKioKHz9+1Lk0FRIZIkhDI9GhL7mCukSSCi0XxsbGMDIywsePHzVtitagp6cHR0dHJCQkVDt25MiROHv2rMw9tng8HqZOnco0NTVdoaydug5xhlRMaGgojh8/jqdPn2Lr1q0AgOTkZNy5cwfNmjWrViqxc+fOWLFiBfz9/WW6+cvDZDLRunVrpULNJDKkPoSKf6SnUA0iLkJUQxGhyuzcuRMRERFwc3PD5s2bcfLkSYXnatq0Kezs7HDz5k2ZzykpKanSnJmmaXh5eWHw4MHw8fGBpaUluFyuTkVaSGSIIA2NOENPygm4UBRwKUD919xPCTYdh0SHquLq6orXr19Xu/hlYWGB/v37Y+fOnTLPPWfOHL3S0tIBFEW5KWunLkOcIRVDURT8/PywefNmrF27Fv7+/qhfvz769u0LANWqzH399dcAgGvXriEgIACJiYly2/D1119j5cqVOHHiBA4cOCBXak6FhqsEldKsWTMAkNvJJSiBMEJUfqvBiFB5uFwubty4gU2bNqFVq1bo0KEDcnJyFE7hCQwMrLbGMCsrS7RKuHHjRrDZbKxduxa7d+/GmjVrsGbNGowaNQopKSmIjY3F1q1bkZWVBQ6HI1LIVDnccqvm5TcF1f309fVRVFSkWhsJtQZjY2MUFRVVm2akEoQRoco17J1rRs6/NmBubo68vDzyN10OFosFBwcHmfpRjhkzBnv37pV5bktLS0yfPl3PzMxslTI26jrEGVITTZo0walTpzBlyhSkpKTgzZs3CA0NxenTp2Weo127dgrVBaxfvx65ubn4/fff8cMPP2Do0KEyp9MQJTn10bZtW7i6uqKwsFDnUpEIqoHL5aJt27a4ffs2Tpw4AVNTU/z4448KzeXu7l7tYsnBgwdha2uLAQMG4ODBgxg6dCh+++03jB49GmFhYViwYAF2796NqKgoeHp6YsqUKbh16xYAQUHuwYMHVXuvSpM9j4gAWCy5nSKKosBgMGrmYZegk1haWkpNUVcZT6RI+qsrQlQ5IqTjESKKouDg4IC3b99q2hStwtnZGYmJidV+Hrdu3Rpv377Fp0+fZJ575syZrNLS0t4URdVZmVLiDKmRNm3aYODAgaK0qLlz52L37t0ieVxJ3LlzB97e3vDw8MDZs2flvi6Px8O+fftw8uRJREREICMjQ6aeNsI/MiL5rB7s7e1hYWEBAKTbdh1GKPV75coVAAJ5fkWwsrKqVo5/woQJWLp0KY4cOYKoqCicOXMGVlZWWLlyJa5evYqEhATk5OSgc+fOonNatWolUiQaPHgwFixYoJB9VZDWCFdISQkgp6ImIOjvlpubq6BhhNqOtbW1zA0plaI6VePeJEIkC46OjjJFQeoSBgYG4HK51d7HijiTXC4Xs2fP1jczM1urrJ26CnGGahBnZ2eEh4dj0aJFonoicfj6+uL58+cYMWIEnj17ptTKrIGBAcaNG4fIyMhqx+bl5cHY2FjhaxGk88UXX4iayskroU6oPdSvXx8AYGRkBBcXF+zbt0+heTIzM8Hlcqsdt2TJErx48QJ//vknoqOjERkZiQULFsDf3x8uLi5gs9lVzmnXrh0mTZqE0aNH4/DhwwrZV4HqGuGWp6RE7giRiYkJcYYIErG0tFSoj5/cVFePqA5RuyG0YJP0WgcxNDSEnp4eEUaphKz1VDk5OXKr1n777bdMmqa/oiiqgaL26TLEGaphvL29ce3aNWzZsgVt27bF4cOHJTo7wpSqlJQUpa754sULnD59GhHVrMrm5uaKfTAiqAYPDw80adIEAKqNDhJqLw0bNgRN08jNzcXy5curFVWRxMePH0WRxurw8vLC8OHD4eTkJPP8xcXFuHr1KgoLC2Vu5CeR6iJClSkpAaKiZB5OIkMEabBYLLBYLPVLbBcXA9LWExtx1Hv9WkS9evVEi4cEAUKl3+oEY3g8ntzOv5mZGebNm6fP4XDWKWygDkOcIQ3g4uKCJ0+eYNasWVi0aJHEB2MGg4EvvvgCDx8+VPhaf/75J37//XfMnj0bDg7SGw0TZ0j9LFu2DCwWS5QiRVAAYU585U3HoCgKgYGBuHLlikLFwvI4Q4pAURQSEhLwzz//iJQQawxjAE2byjycOEMa4jBXsAnRYjlpHo9XM6lyuXTVCBEDAvGWRxnqu24tiAiVx8bGBikpKaS+thLu7u7Vptl7eXkhSo7FJCH/+9//mAA6URTVWEHzdBbiDGkIPT09BAcH48cff8TmzZsl/sG7uLjg3LlzoChK7g/yx48fY9asWTh//jzWr18PDw8PqeNzcnKIM6Rm2rZti5YtW8LKykrTphC0AAcHB7Rt2xZr1qyR+9yioiK1ybTv27dP1Lyv2r5j0lD04fhXCJQAZYTNZiMnJ0f+6xDkp7IDpCNYW1srnWUhM5UjRCQiJDdMJhOWlpY19zvTEXg8HjIyMqSqBI8YMQI7duyQ25E0MTHBwoULDTgczgZl7dQ1iDOkYTp37oySkhJclfDF/+LFC2zZsgUA5FZLun37Nnr27IkGDWRLAc3NzSWy2jXAgQMHqvR7IchAdREgHY0Q/fTTT9i5cydGjx6NqKgomb/AXr9+rTYHwNLSUrUTytOouSET0JPv4ZHIa6sALlewyQI/U+AQ8TMFW2Wnt/zr/RTApmSfW01wOBxkZWWpN9JQPlJ90h/4x1/9EaFajJOTE16/fq1pM7QKiqLg4uKCpKQkiWO6deuGjIwM3L17V+75J0+ezKAoqgNFUT7K2KlrEGdIw1AUheDg4GrreZ49ewZbW1u55s7Pz5dLEIHIatcMiYmJaCpHChChduPo6IinT5/C3t4e/fv3R4MGDaqtbSguLsaRI0dEynSqplu3boiJicGOHTtgZ2cn/wTSHo6lsQ/AgpLPD9syRiAoigKTySTy2upE+Pvglwlh8GUUxNAUle4fiqJgamqq/qL8lWVbSoRgIygMl8tFTk4O+Hy+pk3RKpycnPD27VuJtZwMBgNDhgzBkSNH5J7b2NgYS5cuNeRwONVLENciiDOkBXC5XGRKUFry8/PDvHnzZI7ulIfJZIo6b7969Qr6+vqYMmWK2LFEVrvmuHbtGnGGFKGW5cSXx8zMDKtWrUJcXBxsbGywY8cOqeMPHz6M1q1bY9u2bWqzqX79+hg/frza5lc1xsbGpG5IEYQRocxMwSZrhEgYvdPjVI380bTAsWVTwHgAeRDMreEIEY/HU0/alTAaNBzA87JNyKUA9fQXqgNQFAVHR0fSc6gSTCYTNjY2Uv9fBgwYgEOHDikkfjNx4kSKxWK1pijKVxk7dQniDGkBnz59knjDTp06FTt37hT1/ZCHESNG4Pnz57CxsYGzszP4fD64XK7Y1VMiq10z5Ofn45dffsG4ceM0bUrtoxY4SxRF4ffff8eaNWukRos3b96MJUuWgMVi1aB1Akf+n3/+qX5g5YfjvziCh2NJKuLGZdsQWvBwrccBBmQINhkh8tpqRvj7KP/7kTOdsUYoH8GqFGGUu9+QPDVvw1Gxz9BQkAiRCnB0dCSpcmJwdXVFQkKCxLTPJk2agMvl4tq1a3LPbWhoiOXLlxtxOJxNytqpKxBnSAvw8PCQ6OF7enpi06ZN6Nevn9zzmpqa4tGjRzhz5oxo3+rVq3Hv3r0qY4mSXM2wevVqtG7dGj4+dSodV7UInZ5a4PyIw83NDT///DNCQ0MlpoekpKSI+hXVJIGBgejSpQumTZsm34rjgIzPjo6Q8opbv5ZtSkAU5RQkI0OwcTiCTfhaFio7rOWd4CG0QFntVwgcXQ5H8FrWudWAkZERCgsLVZ9OWdkREiKMEFHV9B8iSIT0HBKPkZER2Gw2Pn78KHHM4MGDFUqVA4Bx48ZRBgYGzSmK8lPURl2COEMapqSkBFeuXEGHDh0kjhk0aBByc3MVKpZmsVjw9fVFRkYGiouLsXr1aoSEhOD48eMVVhSIM6R+nj9/ju3bt+OHH37QtCm1i1roFPXu3RvJyckwNzfH/fv3KxxLSkpCcnIy4uLiatyuhQsXIjAwEFu3bgWTycTw4cOlP1iKE07YB0GkqLj48wN4+d+hnBEhIcQZqiEU/P3UGOIiWOXstbS0lPoACUC+mjcuV7wjJGQogMHFMptPqAoRUhCPu7u71CaswcHBOHr0KIqL5b//9PX1sWrVKmMOh7NZGRt1BeIMaZigoCDs378fffr0kThGX18fzZo1w61btxS+DofDAZPJxPz587Fz504sWLAAo0aNEjXmIrLa6mfq1KlYvHgx7O3tNW0KQcuhKAoMBgO5ublo0aIFoqOjcefOHYwbNw5t2rRBYWFhhYivokRGRuLkyZMyr5QvXboUly9fRmxsLPr06YO9e/eCxWLJvmorjBAJH04lRSECAgSbHJiYmBB5bWWQJyIkD8IIkQYjQuVRW90QQW3Y2toiOTmZ9ByqBJfLBZ/Pl7gIVL9+fbi5ueHs2bMKzT9y5EgYGRk1oijKXxk7dQHiDGmQkpISREREwMLCAvXq1ZM6NiAgAIcOHcJff/0ld2fhynTq1Al3795FYWEheDweBg8ejLS0NCKrrUbu3r2Lly9fIjQ0VNOmEHSEIUOGiNQdBwwYgCFDhsDNzU0kirJ+/Xqlr7F+/Xr06dMHzZo1Q3p6umj/kydP8Oeff+LYsWNi0+E8PT1x/Phx/PvvvwCU7EUkjqgowSYHenp6RF5bW5FHtltVSIhgWVlZVf8dKoxYSnpdHi1x8mozTCYTFhYWNdM0V8dwdXWV2oQ1NDQUP/74o0Jz6+npYe3atWwOh7OZquXqWsQZ0iCXL18GAJkUm2bMmIG///4bISEh8PVVXuCDzWZj5cqVAICDBw/i7du3RFZbjWzbtg1Tp06t8YJ3gu7y/fff4/nz58jJyUFMTAzi4uJw6dIlAMDDhw9V8vc6YsQIdOrUCS4uLti9ezcAICsrC40bN8bIkSPRr18/PHv2TOL5fn5+qk37FEaEhMpmckSIiLw2QRZYLBZYLJbUppVVomTSomZEKa5GqFevHl69eqVpM7QOOzs7pKWlSawvHThwIGJiYvD48WOF5h86dChMTU3rAwhUwkythzhDGoKmaXTt2hWAQC2lOszNzREWFgZXV1ckJiaqJFzs4eGBiRMnokmTJnBwcCCy2mqiqKgIp06dwpAhQzRtCkGHEDbXY7PZSElJweHDh3HlyhWcOnVKZdLsb968gaWlJVauXIk1a9bg5cuXMDMzQ3R0NE6ePIn379+jUaNGEs8vLi7G+fPnVWILgKoRITkjRKRuSMtQVLZbzVhZWckWZZAWERKSekOySiIge7NhglRIzyHxUBQl1VEUtlT5/vvvFZqfxWJh3bp1tT46RJwhDfHgwQMAgjDksmXLqhRJi8Pa2hqurq54+fKlyhyXH3/8Efb29iSHWo1cvXoVXl5ecHBw0LQpBB3g2LFjiImJAZ/Px9q1a+Hl5YVmzZohLi4O6enp6Nmzp0quk5ubi5UrV2L+/Plo3Lgx5s+fj0GDBiE5ORmNGjVCr169qm30fPToUVy4cKHCPpqmFU9Xa9pUsEl6XQ3EGSLIgrW1tWzfedVFhC4FAHRZJFKcQ0QcIZVBURQcHBxIzyExCJ0hSYvk48ePx7FjxxSuqQwJCYG5ubkbgK5KmKnVEGdIQzRr1gz9+vUDn8/Hzz//jG7duolqASSxbt06hIaGwt3dXWV26Ovro3Pnznj79i0pTlQTx48fR3BwsKbNIGgxpaWlSE1NBUVRCAsLQ4MGDfD48WPMnz8fcXFxePjwIRYsWAALCwuVXC83NxczZ85EamoqsrKyAAhScZs3by5Kn5WFgQMHon///hX27d27FwYGBooV7V69KtiEK/LC1zJCnCEtQxnZbjUibHSu1Hde6o2q/YPKO0Tk+1TlODk54c2bN5o2Q+vQ09ODlZWVxGdIHo+HVq1aydYjTgxMJhPr1683MTMzq7XRIeIMaQiKorBw4UIAQP/+/UFRFLy9vaXerI8ePRKl1qmSoKAgREdHo3nz5li6dCkOHjwoPZ+aIDOlpaU4efIkcYYIEikpKYGenh6mTJkCANizZw8OHDiA5s2bg6Zp0DQNHo+n8mv+8ssvAARKkrm5uaAoCt26dUNCQoLM81AUhYMHD+LRo0eifUFBQQCAHj16iBwtuZEzIiSEOEMEWaAoCiYmJurpXbMPwD+1XnxLIxgaGoLJZBLVSDG4ublJ/exu164dbt68qfD8/fr1g7W1tROAHgpPosUQZ0iDNG3aFOfOnYOenh5SU1PxxRdfYOTIkYiOjhY73t7eHh8+fAAAlUZxGAwGVq9ejYcPH2LZsmVKNeoiVOTOnTswNzeHl5eXpk0haClMJhP37t3Drl27QNM0fH19MWjQILVe08zMDMnJyRg5ciS6d++OdevW4dOnT9i1a5d8zVQhsL9Jkyai1/b29oiNjQUg6IKu0GeVnBEhIUReW0vRkohQeaytrZVTJ+O1U50xBJkhQgriYbPZ0NPTQ4aEvzMTExPk5eUpPD+DwcCGDRtqbXSIOEMa5quvvkJ2djaGDx8OfX19bN68GUFBQThw4ECVsfXr18e1a9fA5/Ph4uKCbt26ITMzE/PmzROtKitCbm6uqDjR3NwcgKC7MUF5rl27hs6dO2vaDIKW4+PjA1NT0xq9prW1NXbv3o3nz59jxYoVsLCwAJPJROfOnZVu6Orp6YmjR48iKSkJLVq0qLEUXH19fVJgTZAJpfsNdboq6KFEMT/vs/YX7Ot0VVnzCBIgPYckI60Jq7e3N2JiYpSav3fv3rCzs7NlMBiSG2PqKMQZ0gL09PTw559/4urVqxg0aBDOnz+P5cuXY8iQIfj06ZNo3MqVKzF79myEhITgzZs38PT0hJ+fH16+fImffvpJYa+/oKAAhoaGYLPZSE9Px7Zt2zBp0iScOnVKVW+xzvL48WOVKX8RCOrA29sbJ0+eBADExcVhxowZ8PLykhihlpW+ffvC3d0dDx48wJw5c8SOKS0tVTyVTgIMBkOz8tpaophGkI6xsTEKCwuVv1dIhKhGIT2HJGNhYYHc3Fzk5+dXOda4cWOlP9MpisLGjRtN2Gz2JoqiapX/UKveTG2hefPmuH//PiwtLdGiRQvRH71w//Hjx9G7d29s2bIFbdu2RWFhISZMmAA9PT25ryVMiRFGPSmKwuTJk3Hq1ClMnToVYWFhpG+HEjx+/LhCChGBoI306tULI0aMgJubG5o1awYAWLx4sdLzenh44Msvv5Qo+jJp0iRwOBwUFxcrfS0hpG6IICsWFhb4+PGjcpMII0QkIlRjODk54fXr15o2Q+ugKAqurq5ia4ccHBxQVFSktBP59ddfw9nZmUdRVP/qR+sOxBnSUoyNjbFlyxYMGjQIffr0EeWBurq6Ij8/H0ePHgUgaMz44cMHNGvWTCFnKD8/H8bGxlX2t27dGvfv30dkZCTGjh0rdx0BAeDz+YiLi0ODBg00bQqBUC2//PILcnNzMXnyZCQnJ+Pvv/9W+u/+woULiIqKwqRJk8Qej4yMBCCI5qgKjTlDWtpThyAZHo9HIgw6iLm5ObKzs0lKrBgcHByQnJxcZYGJoihYWFggMzNTqfkpisKGDRtMTE1N19Sm2iHiDGk5K1asgK+vL4KCglBQUABAoKgivAeNjY3x3XffYf369QoVDufm5oLNZos9xuPxcPbsWcTGxmLjxo2Kv4k6ytu3b8Hj8Uj9FUEnMDQ0xJw5c7BkyRJYWlrCysoKL1++VOs1jxw5glevXtUOZ4igc1hZWSEtLU01kwn7DhHUjrDn0Lt37zRtitbBYDDg4OAgVoI8Pj4eO3fuVPoaXbp0gbGxsQ2AFkpPpiUQZ0jLYTAY+O677+Dh4YHBgweL1OTK07ZtW7i4uFRpfigL0pwhQPBgsWfPHqxfv54ouMhJbGwsbGxsNG0GgSAzX331FZhMJlq0aIG8vDy4ubnJdX5WVpbYaJJwIacy3t7ecHJyUshWSWjMGdLSnjoEyejp6YHBYKiulURKBEBRgo2gVhwdHUmqnAScnZ2RmJgoVmRi3bp1Ss/PYDAQGhpqaGpqOlnpybQE4gzpABRF4bfffoOHhwcaNWqE33//vcrxdu3aYf78+Th+/Lhcc+fk5MDExETqGHd3d0ybNg3Tpk0jCi5ykJ6eDhcXF02bQSDIxZ07d7Bjxw5cv34dLBZLrnM5HA6YTGaFvkOAQJ1yxYoVqjRTIkRemyAPSqfKCSNCKRHA8HL7D5MUSXViZGREeg5JwMDAAFwut8p9/dtvvwGASv7PRo8ezeTz+QMpiqpaZ6GDEGdIR2Cz2diwYQOuX7+O2bNnV4nSLF26FNu3b8f48ePFRo8kUV1kSMjcuXORnJyM5cuXy217XSUuLo70FyLoHDY2NvD19VWo1k2YgtG0aVOMGzdOlNP/1VdfYfHixWpPuwO0QF6bRIR0CpXUDaVEAEMBlA+KDswkESI1Q4QUJOPm5lZFZnv06NFo164dbty4ofT8Tk5OaNmyZQlFUbWiozxxhnSMBg0aoHv37ti/f3+F/RRFISgoCK6urnL1CBHKaleHoaEhTpw4gZ9//hmPHz+W2+66SGxsLHGGCHWKsWPHorCwEEOGDMGuXbvw/PlzAMDhw4cBCPoP1UR0WePy2gSdwdzcHBkZGYrfl73LHCFJkAiR2rCzs8OHDx9IxooYzMzMAKBK64Lu3bvj3LlzKrnG1KlTTTkczrcqmUzDEGdIB5k+fTp+/fXXKvvfvn2L//77D76+vjLNU1lWuzpsbW0xa9asGkt30XXi4+PlrrkgEHQdfX197Nu3DzRNi2Tl2Ww2/vnnHwDAlStX1G4DEVEgyApFUWCz2epLt1qinHoXQTLCnkMqE8GoZbi7uyM+Pr7CvqCgIFy9elUl8/fq1QvFxcWNKIrS+Qcd4gzpIA0bNsSbN28qrHympaVh2rRpGDJkiEyRHkCyrLY0QkNDERkZWSUyRagKn8+X+XdBqEVIkVSmaRoRERGYNGkS2rdvD3t7e3h5eaFjx44YN24cfvjhB5w4cQJ79uzB9OnTcfnyZdA0jczMTLx//x7//fcf3r9/X8NvSDXcu3cPABAWFqZ8b5dqIM4QQR6sra2RkpIi30nsMqEExXqdE1SEk5MTEXeSAI/HQ0ZGRgWBkGbNmiE+ZFs/DQAAIABJREFUPl7UrkUZDAwMMGLECIahoeE4pSfTMPJVxxK0AgMDA5ibmyM5ORn29va4efMmgoODERISgtWrV8s8j6z1QuVhs9n4+++/0a1bNwDAkCFD5DqfQKgL0DSNV0lJSExMRFJSEl69eoXExERcuXIFRkZGGDVqFAYNGgQ3Nzfk5eXh7du3iIuLw+PHj3Hp0iVwOBz8999/2LlzJywtLZGWlgZTU1MYGRnh48ePWLVqFSZOnCi3wIEm6du3L65cuYKLFy/C0tISt27dQqtWrdRyLeIM1WGEaWkDZH/Y4/F4iI6OltgcuArySGgv48g+liA35ubmePz4Mfh8vkK9FmszFEXBxcUFiYmJqF+/PgCAxWLBz88PJ0+exMiRI5W+xoQJE/T/+OOPCRRFLaJpWmdzk3Xnm5RQAV9fX2zZsgV8Ph9//PEH9uzZI3JQZEURZwgAGjVqhPPnzyMwMBBNmjRBo0aN5J6jLlBcXCxzCiKhFsDlIq6kBDtzcvAHAKarK1wZDDiHhMDZ2Rm+vr6YMmUKmjZtWuW+8Pb2RlBQUJUpk5KSkJeXB29vb9E5MTExmDBhApYvXw4fHx98+vQJ1tbWmD59OrhcLnx8fLTyvvPy8sLff/+NT58+wcLCAq1bt1Zbrj+bzVZ79IlQe2Cz2SgoKEBpaalsPa8+RQG7OcCozOojQ3I4ZQT5oSgK9vb2ePfuHZydnTVtjtbh5OSEa9euwdPTU3RvT506FT/++KNKnKEvv/wSTk5O+jExMZ0A/K30hBqCpMnpKOvWrcOTJ08AAFFRUXI7QoBsstqSaNy4MTZu3Ijg4OAaUYjSNR4/fox3794ppMhF0CEoCvkUhb0UhYCcHLTLzQUNIALAWzMz3DAxwb59+7B69WpMnDhRbkfF2dkZDRo0qHCOt7c3rl27hps3b+J///sfvvvuO/Tp0wdTp05F8+bNceDAAQQHB6ssL1zVmJub4+LFi/Dz86uwf8eOHWjfvn2VHHdFIPLadZDDXMHGzxRswtcyYm5uXr0DLZTRFl6jaukuQQMQVTnJMJlM2NjY4O3bt6J9vr6+iIqKEtsTThGmTZtmyuVyp6lkMg1BIkM6SsOGDXH69Gml5sjLy1MoMiRk5MiRyMrKQqdOnXDr1i3Y2toqZU9tYvPmzZg9e7ZS/78E7SYuLg4/AtgPwBfAtEOH0LNnT+hbWwsGlMvJfvfuHXbs2IGSkhIwmcwqm56eHlxdXfHVV1/JnOrh5uYmEujw8/PD2LFj8ddff2H58uWIiYnBiRMn4OjoiCdPnoDD0YJUnYAAwb9Xr6Jz587o3LlzhcMlJSW4ceMG3N3d4e/vj4iICFy8eLHKOFnQuLw2QecQSmxbWVkJdghT4Tpd/TzoU5TsExKFsxrDyMgIDAYDeXl5ctdB1wVcXV1x7949UYNrOzs72NnZ4ebNm2jbtq3S8w8ZMgQzZ87sRFGUJU3T6UpPqAFIZKgOk5+fr3SB/7Rp0zBq1CiMHz9eRVbVDsLDw9GrVy9Nm0FQEwcpCm28vMAFcB/ABQD9+veHvoFBhXE0TePs2bNo3bo1kpOToa+vD5qmUVhYiOzsbKSnp4uEEdatW4fAwEClVusGDhyIO3fuoGnTpggKCsKbN29w8+bNKuOSkpLwzz//4N69e7h//77C15PIfgpglhWYC7eICMFGVdpfVvc0ceJEnDx5EuPHjxc9kD548EApM4jkbh1iQIZg0+MINuFrGbGwsMCnT58EL4RNVFMigAOV1oz5Zepw4yFdUptQo9ja2srVY7EuYWRkBBaLVaGOMiQkBH/99ZdK5udyufj6669LmEymzv5FkMhQHUcVtQWzZ8+Gg4MDkpOTYWNjowKrdB8TE5MKCi6E2sOePXswD8BVAGKr5coiQsXFxZgwYQL+/fdf7NixQ2Iqa2FhIW7dugV7e3uEhYXh06dPsLS0VNg+Y2NjnD59GgMGDEC7du3A4/GqjOnduzcePXokej19+nQMGzYMzZo1U/i6VZDVpytTxWQwGOjVqxd69eqFhw8f4ujRo7h161aV4Xm7mTgwuhR+ADwAVIij+fsDZemBRkZGKCgogJGRkRJvglBXMDQ0RGFhIeh/OoJKjfh8gC4ROPdDaMC8qcBBAqqvFboUUDGqRFArtra2iIqKIu0sJODo6Ig3b96IhBS6du2KceNUJwIXGhpqfOnSpW8oitpC6+AqFIkM1VH4fL7KlKjYbDZ69uyJQ4cOqWS+2oC3tzeePXumaTMIKiYhIQEzZszAJUhwhMrS0d68eYNBgwYhKSkJDx48kOgIpaWlwdDQEMOHD8f79+9x7do1pRwhIXZ2doiIiMDQoUPRu3dv2Nrawt7eHpaWlnBxcYG7uztGjhyJJUuWICgoCN999x2aN2+OrVu3ori4WPELCyNC8q4PCqNEAJ4xmSKn7McTJ6oM/XtiKcYBaAhAH8AAAOIkjIyMjJCfn/95h5w1JAQdRc6IUHlMc+8gOy1B8GIlBPex8F7eTwmcGz0ZU05nypFSR1AaY2NjFBcXk/RYCdjZ2eH9+/eiaHnTpk0RHx9fpSmronTs2BEGBgY2AHxUMmENQ5yhOkp+fr5KV0xbtWqFp0+fqmw+XcfHxwcPHz7UtBkEFRMVFYVWrVqhAU1XqAmgASQlJiL82DGcPHkSzZs3h6enJ06fPi21bszS0hJLly5FcXExmjVrBg6Hg/j4eKSkpKC0tBS3b9/GiBEjFEr3YjKZmDRpEl6/fo179+7h3r17iI2Nxblz5/D1118jIyMDP//8M/z9/XHhwgVQFIVp06aha9euyMtTonmKEjW5p0+fxhdlaYLhAJzKHzzAAigK3YuA8wCOAhgB4AgAUfJHuTQ8IyMj5d4Hoc5hkX8DH5leAkcoqdyBoRDs208JokOykFT9EIJqUahfVB2BxWLB1NS0Qn+h0tLSCv0qlYHBYCA0NNTQ1NR0skomrGGIM1RHUbUz9ObNG9SrV09l8+k61tbWSE/XyTpCghQaNmyI+/fvi75AwgFYQpBv3Lx5c4SFhWHdunX4888/sWbNmmqLeSmKwpIlS3DkyBHs378fQ4YMQVBQELy9vdGpUycsXLgQe/bswZkzZyqcx+fz8fvvv8tUX0RRFBwdHUWRoYYNG2LMmDE4ceIErl69isTERAwePBj/+9//YGhoiPDwcISEhHyunxDC5VaI4IhFydLB6716wRlAFoCOn9+AYBsn+D83ANANQF8Af0DgiJqJmUsUGVJSZYxQdzCn3uBTdH3gOaqmwT0v+/dTlCBl7q9qIkRNZXSaCCqD1A1Jx9HRUaS6x2KxZJORl4PRo0cz+Xz+YIqidC43mThDdRRVO0OvXr0iGv/lMDU1xc6dO1FQUKBpUwgqICoqCqGhoRg7diw+fPiAtLQ0AMD3PXti3a+/oqi4GGlpabh16xYiIyPRtWtXueb38/PD33//jejoaCQkJCA1NRVBQUFo3rw5/vrrL0yePBmWlpbgcrkwNjaGvr4+xowZgzFjxiglEtCgQQPs2rUL0dHRKCwshLW1Nezt7XHmzBlYWFhg7ty5nwdnZn7+uXJRuRAlAzHrASQCMBV3UNb0pDKMOndG3oYNyhlEqFNwVr9CpqWr5AFDASwtk2w3bwrsEzOGAaAJR1S7Rqg5OBwOsrKyVCYZXdvg8XhIS0tDaWkpKIpCixYtcPv2bZXN7+zsjObNm5cA6KOySWsI4gzVUVTtDFlaWpK0sHIIZca/+eYbDVtCUIYbN27A09MTPj4+2L59O4qKihAeHo4NGzagSZMmuHnzJoKDg8FkMsWeHx8fD29vb7Ro0QJDhw7F8+fPxY6rDJPJxIIFC7B27VoMGDAASUlJiImJQWJiItLS0sDn85Gbm4vY2FiMHz8emeUdFQVwcHDAzz//jM2bN6OgoABeXl4AgKysLJxgs0FXjgYNKakYIRJGjdRJRoYgNbEa5dw8CKJFr9PScMjKCtMHZiJtbClolplCKmOEOsKlADAefgQrrwBF0vrvPStLK+p0VRAhqrwY0d4feETuL01AURQsLCxIVoYEGAyGSEIeANq1a4cbN26o9BpTp041NTc317kHH+IM1VHy8/NVqse/aNEi/PHHH0hKIonSANChQwcAgkaSr1690rA1BEWJiIjAy5cvMWbMGPz444+4e/cu+vfvDwDYtWsXEhMTpQoezJs3D/369cO2bdvg7u6O/v37Izs7W247hF9iwsgQi8WCsbExLly4AJqm4erqivHjx+PGjRtKrYr269cPT548QWBgIExNTbF9+3YE5+UhGIDYdpTCCJGSzphcCCNEHI7gQbTSt5g5BLtOffwIVwsLfA+Al50NRkgW+CGZVaW9KepzDyRCncc8NhafyhYDZIamBdEgEhHSOHZ2diRVTgrlU+W6dOmidL/KyvTp0wdFRUVfUhTlotKJ1Qxxhuoo8kSGrl69iqZNm0qN/FhbW2PgwIHYu3evqkzUaVgsFlq1agVAEDqWNSJAkAxN09UWe5aWlqpUTSgsLAwFBQXYtWsXhg0bhnXr1uHx48fYuHEjfH19pYojlJSUwMfHB0+ePEGrVq2wbNkyfPHFF/j+++9VZp+ZmRl27dqFJ0+ewNPTE6GhobC1tcWwYcOwd+9e0Qpgear7P7Jr0AA/b9+OhOxsbAOwGkA9CBrL/goxym1sFUaEaDEr7ZX3CSNER5p+boxZjmUQpNm1Ky2FJ4OBOABzAQwEwJCUURgRIep3JJEvuYAJizhOtZXOAsls85gYfCyTH5aLRxkkIqQFWFpaIi0tjfQYkwCXy0VOTg74fD7atm2LtLQ0vHjxQmXzl6mjUgYGBqrT7a4BiDNUR+Hz+TJ3uo+KisKjR4/wxx9/SB03evRobNq0Cb///jv5IAIQFBQkarzasGFDJCQkaNgi3eLdu3fYsGEDxowZg3HjxsHPzw8sFgv16tXDoEGD8P333+PmzZsoKSnB4cOHYWpqCiaTCQsLC2zbtk0lNlAUBYOyRqrm5uaYM2cOHBwcZDp34cKFCAsLw6lTp/DgwQNQFIXevXvjl19+UYlt5bG3t8ecOXMQHR2Nu3fvon379jh69Cg8PDzQsmVLzJw5E1OnTkX79u1hbm4OCwsLTJ8+vaJTFBAg2MqiPJYAJgOYD4GgQTyACQB6AxDFgQYrIcNdGQ5H/M8SePviOrbtu4a8PyrKJ8yDwN5AAMzCQrgYGmItgEMAxCczllFSItnR+ZILPM4Ecks+K9ZJIiBA4FgJo05cNYk1CK+jrvnrKBYvXuCTNGeIfLdpNUwmEyYmJgpF4OsCFEWJZLYZDAb69++Pw4cPq/QaEyZMMGCxWBMpitIZH0NnDCWoDnkdlWHDhmHMmDEYPny41HG+vr64fPkyNmzYgA2kcBmTJ0/GvXv3RIotwqJ7gnhomkZycjLCw8MxZ84cNG7cGC9fvoSfnx9atWqFGTNmIC8vD+Hh4ejevTtiY2MxadIk2NnZYeDAgcjJERQ2HzlyBBs2bMC8efM02vh24sSJop+PHj2Kdu3aYdasWVi9erVar+vs7IyJEyfi+PHjSE1Nxfr168Hj8eDm5oZly5YhPj4eCQkJePLkCebPny84iaIED/kREWLn3ArAveznTABNecCV8HDBjpP+ihsrjPrQtKhZLYDP0R/hZ9UBlkDWeD8liAZdCsDaU6WYupvGo4+Smywap6Yi38pKdnvERYiEjlBlxDlOAQHAjRuiRrIABM5lw0ppeaqipKRmUxRrM2VPQ4YZGSjkcKrWyQGCpr4ErYeoyklH2IAVAAYOHIi//vpLpfP7+PjAwcHBAII1KZ1ANV03CTpFYWEhDA0NZR5vZWWFXbt2yTTWx8cHrq6ucHd3r35wLcfBwQGbNm3C4MGDAQianBGAzMxMxMXFITY2tsIWFxcHfX191K9fH+3atcO9e/fg6lpV2cnDwwMeHh4YMWIEACApKQmPHz/G69ev4eLigq5du+L69evo0aMHfH190a9fv5p+iwAAFxcXpKam4ujRo3j37h1mz56N7t27yxyRVQX6+voICAhAgJgH9/0Tc1F/0GZM37QJ1cW6TAA8BpADwBrA3s17EBgYiICAAKwOzkRrAAo94u+nBEXo0rgUANDlnItUQcHvqA5Ac1egtdVjYD8TYJkAAys6BkZlzpBp2Re/3EhyhIDPESKhwxYQINGZROUs2UsBggJ8RRDncLFYgIlJRYeSIB9GTEHkD4Dp69fIdnKCWeV6zyjSSFUXsLGxwe3bt0VCMISKsNlslJaWIj8/H23atMHHjx8RExMDb29vlV1j6tSpJosXL54G4JLKJlUjxBmqg6haSa4yqampsLe3V9v8uoQwTW78+PE1+hCsbRQVFeHgwYPIzc1Fjx494OnpCS8vL3h5eeGrr77CN998A09PT1hYWMg9t7OzcxVZdycnJ/j4+KB///64ceMG2rZtq6q3IhdWVlYVIkRaQ0MKvOdAMIC/AEyX4RRjfBZyCxk+HFnTPMD8YhC6z5uHLAYDDpZ6aJ9aiAkAROvnDcr+rewMiJMkFscBlsgR4hcDl58CHOMSNHMB5h0ELj0BRgWVCXEPyEBll8woPV2+yBAAFJdL/XspY9RF6KDISucIAJTiKVeVa+dIhEh5copFUTvzFy/wsX79qs4QQSfQ19cHg8FAQUGBXAu/dQkHBwe8ffsWHh4eCA4OxrFjxxAWFqay+YcOHUrNmTOnC0VR5jRNf6r+DM1C0uTqIOp0hvLy8vDixQt4enqqZX5dw9jYGPPmzVOr86nNlJSUYOvWrXBxccHevXvh4OCAzMxMPHz4EIcOHcKKFSswfPhwtGrVSiFHSBp+fn6oV6+eSgUVagWXAoAy0cduAC4rMIUegMkRqZg4cSI+fvyIwsJCXF7fBG0BjAXQEsAoAN9kOWD5FxTE9oTX4wDWUtKOykWEol8BQauBuQeBMTsAs3HAq3TA0gQVpbIriS0YpaUiz5on35srX4PjUU3tkvAbNCqqqoMiC2IEIKqFqJWpj38E96PEuiESedMZbGxskJycrGkztBYHBwe8e/cOANC3b18sWLAA//33n8rmt7CwQLdu3UoZDMZQlU2qRogzVAfJy8tTy8N5SUkJxowZg549e8JK3tXYWszUqVOxd+/eOlczVFhYiI4dO+LQoUM4f/48Ll68CDMzM4k9eVRNZmYmunfvLjZFrM7SkBJEJcqaowYCiARwDoLePHLxWCBTTV3uCBaLBc9RdzCZphHD52PNpUvosGsXXGfNwjvLCfiSCxT/CUFESBgVGpAhc6rYxWjgvxTgygLg+mLgzCzAxZqF6T0MxJ9Q5hQZ/XMJ+cE82SNRlYUbHknpbUTTQEnZ/xpJga0ddLoK0DQ4iYnILJ+iy2aKHCWCbiAUCSCIR19fHwYGBsjKykL79u0BCFLQVcnkyZONTU1N/6fSSdUEcYbqIOqIDNE0jSlTpiA1NRW//vqrSufWdRwcHNC/f3/88MMPmjalRrl06RKKi4sRERHxf/bOO7yp+vvjr5uke6SDtkChWLbMsmVICy1lCUVQpoAyRLH8wI2KoCiooH7BiSIgyJClKDJboQWVvacgZc+2dNBSOpL7++M2pXveNO3tfT1PHkhycz4nacY9n3PO+9CyZctyXVsURZYvX541E0glf9yB9cBkpJHhpdr3fjVnH4VOpyMwMJAxY8YwZcoUnnnmGW7Fg5ApJFJkRsiEaailpz/t6sKNOKjxEjSY6sJbYW3wfWwsr/1YeGmYvb09KTaZP/CPZrvYZ/u/6VdQr5d2/vPb/c+dIcr9yxkRUbLm+keRArTS9g3llhvPT5JcpdRotnRG9+ABaSbp/KSM0v+tVCyCg4MDDx48ICNDRsVLhVG7dm2uXbuGLptozJ49e2Sz3717d6ysrLwFQajwu0VqMFSZCQ+QaupX6UpUbiH3wFWADz74gO+++44XXnihypaEFcYbb7zBN998Q1paWskfHBAAWkG6VKIsx7p16xg6dGiWml55smTJEqysrOjWrVu5r12heTdvVq4bcBppllB7IAJpllDWqbUpcCiI/AQGMhXfUgWB/pm7jhc7/CsFNyXICJno+igYl0PqUoiLi+PgwYMsWLAgS/a8IHQ6HelOzaV1T2e7JIvSazEN2OZftJT3sficyneGfAKPkgREX/gXLRyhYjmCInANCSFu3SA1I1SJ8fT0zHfWmoqEqZRQFEUWL14MwDvvvCPbaBStVssLL7xg4+jo+KIsBs2IGgxVVta6wJ1IqaZeNEj/LyYpKSmyNxUOGzaMWbNmMWXKFHaYJHdVsqhXrx7Ozs6FDq4tkKNHwYh0iYysFAFRamoq69atY/DgweW+9p49e5g6dSo//vijRQKxCo3OMd+SLyvgS2AGEJp53QaoZW1N60ateMy5A08DnyEpyhVJ3FHoGYkAOCPtQDZr0AAnQcBFEHAUBNoJAmOtNGzbtq3wH9/MDJEwQixxACFkNsTna39YhmQvKKLgjFBJMQVEev3DSwu9lAUyZaLKkhHKjZoRMhuurq7EPfKWmhGqxKgS24Wj1WpxcXHh7t27PPfcc8TExLBz5040Go1sAdGYMWO0GRkZIwRBqNBKFuqZQmUkPADS89mNLWaGSBRF2U8S9Xo93bp1o1q1arI24SmJ9957j2effZbY2NjiPcCUEcqtElUJAqJz585Rq1YtqlevXq7rrly5kv79+/Pxxx/zzTff0L17d7VMIjuufrCQ/Htg7GHECji5Ro9RFElMSeGf8+dZuHAhn3/+OQOWL2dz9+78nyBgND0m98l4ZkaIwQlgBGvgEnDl6lVSgGtIw1uvAV8ArTJEXn31Vbp06SLrFPTs2NjYlO+8qYiIh8FVfDx85ieVBZqyUmpGqFLg5ubG3bt3Le2GShlwdXUlPj5eHQJfCLVq1eLq1asAuLu78+233wKwefNmWez7+vrSqlUrI9BfFoNmQpXWrmysdck/EIJiZYgMBoOsgVBKSgqjRo0iLCwMHx8fRo8ezbPPPiubfSUxevRoTp8+Td++fQkPD8fR0bHwB5gyQvlhCogqqLJUcnIy+qJKj2Rm48aNTJ06la1bt9KvXz8SEhJkf79Xeky73FYu8GxClpACAD/qH6qyAba2tvj4+ODj4wNI6nw9e/akV/XqfGUwkG9XbNxRGJr/95MAZH9HdMy8TDx1igXWAo8//jhr1qyRXfDC3t7eLNnwYqNmFioltra2pKamIopiVoZRpXIhCAIuLi7ExcXJrlaqFKpVq8bJkycxGAymsjZcXV2ZPXs2ffr0keW9Hxoa6nT27NnJSJMcKiTqWUIVQ+5+oV27dhEWFsbNmzc5fvw4r776apWep1MUH3/8MU2bNmXQoEFF9w8lFasgqUKi0+nKVdL61q1bjB8/npUrV6LRaLh58yb29vYcPHhQDYbyI3uGyJ7iq60BQqtWOPzwQ/7lWa4l75PVABPTRH7++WcGDx5MSEgIM2bMYP369SW2lR92dnakpKTIYkulauHk5MS9e/cs7YZKGahevbqqKlcIgiDg6emZQ4b8qaeeIjY2lu3bt8uyxpNPPklaWlprQRB8ZDFoBtSzhMpGUScbQuGyxXIryQUFBeHp6cmxY8dks6lkBEHgu+++w87OjtGjR2M0FpT6QZooXxgVNCsEUmbIwaTEVA5MnDiRcePG0aVLF5o0aYKbmxvfffcdzZo1KzcfKhUmpbbkzItJ2KAQNm/eTMuWLQkMDOS5554r2K5BhDX6Ev+6dA8MJCoqioEDB5KRkcGUKVPYtWtXyYzkgxoMqZQWV1dX4uIq/LxIlULw8PBQRRSKwKQqZ0Kr1TJ79mzZhrDa2dkxYsQIwdbWdqwsBs2AGgxVRqwKKD8aLkpNwYUg94whrVZLYGAgBw8elM2m0tHpdKxatYrLly8zd+7cgg+Mz1Swyj2Xx9+/eE3TKwXpYiIgQBooWQ79RqaUe3lw+/ZtduzYwTvvvANIPSKxsbEMHDiwXNZXOqmpqbzwwgtMnDiRlStX8vHHHxedbStFhigaOHv2LNWrV6dRo0ZkZGTkrxbn4gKCkHXJWK5l+USB78cJXL9+Pc/hdnZ23L9/P68dE2uz2avgvXgq5YvaN1T50el02NnZkVSJKy3MjbOzMykpKTmqVZ588kmuXbtGVFSULGs8//zzNjqd7gVBECpk3KH2DFU2giKkBuW4owX3DhVCSkqK7L0crVu3Ztu2bYSGhspqV8nY2dmxevVq2rVrR5cuXejcuXP+B+ZXrxsZKd1eWEC0Kp+PdmRkzn/NiEajwWAwFO9g0/vZ1a9U/RXXr1+nTp06qqS7mfjkk0+4cOECx44dy/PdYTAYuH37NvHx8cTGxnLlyhWuXLnC/fuPo//kCdzd3alWrRqN+venAVLfEMB1YAnwEvAVsA64DNR9/nmqVauGvb098+bNo0OHDnkdyiUocvqakZHfZl5ZVIslS5bk6FssNDO01iVnj5Pps2XC379CZ2BVzIterycht4CNSqXDpCon91BRJVGzZk1u3LjBI488AkhVLE8//TQrV65k2rRpZbbfunVrvLy87JKSkvyBnWU2KDNqMFQZyR4QlfAEMiUlRXaFryFDhjB9+nQOHjxI27ZtZbWtZGrXrs0PP/zA8OHDOXr0KK6urvIYXpkrgGoiSGea2XFxAT8/s5zoGQwGfv75Z+rWrVu8B5hEP+5ESr6eyXafPVIZVyHUr1+fs2fPEh8fj4uLS6l8Vsmf//77j9mzZ/Pee++xcuVKoqKiuHbtGkajkdjYWPbu3YuDgwNubm64ublRu3ZtfHx8cHR05ObNm5w4cYKYmBiOWVvjlJZGGyRNkD1IKnPvAaOAb//+m/bt2+cY/pcHF5esQOg+sBwIB869Ba5Ic5HsXWHzgudo27ZtVolk9mBIFEWWLl3K5s2b0cduoMeOdOKBMOAi0CHTJw/TmkczB8qaAiRVlar1efEVAAAgAElEQVRKodFo0Ol0pKWlYW1tbWl3VEqJl5cXhw4dUoOhQqhVqxaHDx/OCoYA+vTpwxtvvCFLMCQIAqGhoY7vvffeJNRgSEU2TAFRCTHHwFVnZ2c++ugjJk6cyJ49e8qtPEoJPPHEEyxZsoTffvtNHhW+/DJCZ/LeREKCWTJEoigyfPhwoqOjWbOmCOGY8ACI/gtGFHLMfSR58Z/1+fa0REVF0adPH3x9fcu1R6mqEB8fzxNPPMHx48dxcnLC19cXPz8/tFotTk5OdOrUqVhBvCiK7Nmzh4udO6NBygh5AC6AJ0CnTkU7kxkIiUgqdI8ATwNNAW+kIOtyHGzdB8HNm+OTeb9feDhpaWncu3ePHTt28OGHH/J+nxvErktnOeCEpPlaD1gPNAH6IsmCD0xIoFf2TJGLizzziFQqDaa+IS8vL0u7olJKbG1tMRqNalBbCKbKivv372edI167do1Tp04RHR2Nh4dHYQ8vFiNHjhTeeuut3oIguIiiWKG+SIXi6q+7ubn9FxYWVq9NmzZmdknFnERERODv7y+7VKjRaCQgIIC2bdvy6aefWkbBq5Lu3n777bfs37+fJUuW5L2zsL9Tfs9zlU6SWM9OYcGGzK/VmTNnCA4O5sKFC/n+6ERERDyUTjZlsArzz0Q+GSKDwcDjjz9O//79efPNN1X528pAQAD89ZckDlLSoCLz75sIVEeaU1QXqAXUJ2cDbDrS1uMvwLlu3RgwYADTp09HFEWWLVtGSNpoaRZSPvyX+dgHSENmOwHdgb+Ax4AXQOrj69JFLaGrAty4cYPExEQaN25saVdUysC5c+ews7Ojdu3alnalwnL58mVSU1Np2LAhAFevXsXHx4cFCxYwYcIEWdbo379/8qZNm143GAzfFn10+VEhG5lUzIMp8DXHSaNGo2HDhg3s27ePKVOmyG5fyQQEBPDnn38Wv8fm4QNzNJIjCJKAxnAxp6pgflPqzTS5PioqimbNmhW9+xYeIAVBxQmE4GGGaO3DMrjY2Fj27NnDL7/8grOzM+fOnSul1yrlRkQEZGSUKbvijJTB2QXMBIKRsjnfA6b2X6vM2xcAO3bupOPVq1y6dIlbt24REhJSqHJefWA8MAk4BrQDIoGWwCykEj8MBqlMWUXxqCIKysDUN6RSMKa+IdO5Yu3atXF0dGTHjh2yrTFx4kQHZ2fnfMfUWRI1GKpCmDtF7ObmxubNm1m+fDlXrlwx2zp5MAUCBV2v4DRu3JhatWqxcePGnHesFOBR8v+UaigXIYSScunSpRw1x+bE09OTnTt30rJlS5KSkhQpoGAa+qhCjgC+N7AMiAAuLofvkLJAjYD8dC3to6NJT0/P+R4RxSLnK+mBl4GfMv8djhSIAXA8AXQ6VYFO4WQfvqpSeXFyciI5Obnkm45VCCsrKxwcHEhMTMy67csvv2TNmjUYZTqv6tGjB1qt1kcQhOZlNiYjajBUhTBHv1Bu9Ho9L7/8MmPHjlWH1RUTQRAIDg5m48aNeX9wpyGdiWXnUaQGifyN5cwQDc9mz3QyaaYfdaPRyI4dO6hXr17RBwdFSH6E+RfP+KNI82ty7ejPnz+fH374gc8//1yR5Q96vR6tVosgCEyaNMnS7lQ8NCCMEPHXatmq1eIDXMvnMLvp03Mqyq3SSWIdHxZtPzv/BywF/ocUgM02GHj91B527qxw/cAqMqIOX638CIJAtWrViImJsbQrFZratWtz9erVrOs9e/YEQK4QUqvVMmHCBGtHR8cXZTIpC2owVIWQe+BqQUydOhVvb2/q1avHxx9/bH59/9wn+GY84TcXL774IocOHcpZYpg9kDFliDTkL4hgYdLT0xk5ciTR0dGMHz9e/gUKELO5fFmSyatQP3C55zuVgb59+yKKIi4uLri5uclis9KTPag3ZH5GMjIgI4NLPj40zef4PPLaokH6HBX1Wcq16eCNpDx3AHgNeAf49l4a3bt3r1jvQRVZUYevKgO1VK5oPD09iY6OztqYrV6zJp2RSo4BWSpvxowZozMYDM8IglBh1CzUYKgKIffA1YKwsrLixx9/JDIykmPHjuHj48OoUaM4cOCA2deurHh5eREZGckff/zBihXZandMAZEpQ5Q7S5QfRZT+yM0///xDhw4duHfvHtu2bSvZHKugCGhRjOMn6vMtR9q9ezfe3t48/fTTxV/TnOSn5lcG1q9fjyiKxMXF8f7778tqW2mIooibmxunfv01+41AMQavlgA/YCVg2uLRauCjjz6iWrVqsthXqXiofUPKwPR3VEseC0aj0eDm5kZ0dDQgzYZbgjRyIO9I69JRr149mjdvDtBPJpNlRg2GqhDllRky8eijj7Jq1SpOnjxJmzZt6NevH5MmTcrazZedSpgRyo5er2fFihW8+eab/Pnnnw/vGF7C51RcUYIyEhUVxfPPP8+TTz7J1KlT2bBhQ+neX28WY6hhAVLgJ0+eRK/X07Jly5KvKzcOAgw3PHz9ZcwQqeTPsWPH2L9/P2lpady/f59r165JO/i5vgtyZIYEQZbPSDgwH+jf1orPPvuMmjVr0rVrV0JDQwkPD8doLKiWVaWyoQ5fVQYajQZnZ2f1b1kEtWvX5tq1hwXHDYDngI9lXGPSpElOrq6uFUZtSw2GKgC3b9/mwYMHZl+nvIMhEzVr1mTy5MkcO3YMOzs7WrduzUsvvWT+8rlKyGOPPcbrr7/O6NGjic+uuGXq/ylpYGQGjEYj7du3p169enh5eXH69GkGDx5cOjn1Es7KSktL486dO1nX//rrL7p162Z5WW2ZM0IqRXP//n38/Pzo0KEDPj4+zJ8/n02bNjF16tSc2VXA2tqatLS0AiyVjsAV8H+iyE+7pPfknj17mDFjBj4+Prz22ms0adKEbdu2Fd9geAA01UFLdXBwRSP78FWVyo1aKlc0rq6uJCYmkpGRkbWx9DJS0UlyUpIsm84DBw4kNTW1nSAItcpsTAbUYMjCiKJI9erV89a0mwFLBUMmvLy8mDNnDhcuXCApKYnHH39cLT3Ih4YNG3L9+nVcXV0ZNWpUlvZ/iZAxOEhPTwcgIyODxYsX07dv36ySxxdeeAF3d/eyLeDpL33LFlHelwB07doVLy+vrDKHHTt20LFjx7KtX1YcdVJGKHsVVklkwysa4QGlGuhcLpjq1cMDsLe35/vvv8fb2xtra2veeecdnnrqKTZs2MD06dN5+eWXsz43giDA4cOIcgbNVg/LOwVBoE6dOgQGBvLGG29w5MgRPv/8c8aMGcP7779fvCxRj0g4bZBU6gRBCrAr6t+hCuLq6ppzg0qlUuLp6cnt27ct7UaFRhCEPEGjN9AZWLdunSxr2NvbM3ToUNHa2vo5WQyWETUYsjCCIPDOO+/QqFEj2WraC8JoNKLVaos+0My4uLjw448/EhgYSHBwsPoDk4vevXuzatUqAH766SceeeQRHB0dsba2plq1anwgFCwmV1oMBgN79uxh7ty5DB48mODgYB577DFcXV2xsbFh8uTJWFlZMXbsWM6dO0dsbCwDBgxgwYIFRRsvjKAI6eJZhKpcmD/vTZlCrVq10Gq1pKamcuDAAY4dO8aTTz5ZNh9UJMIDpFlOPSKly0pBUlzLPscq9/FrXcxywn5fEFgkCLwpCCxatIhrudfvEQkOAuPHj+e///5j1qxZ9OvXj6tXr+Lr68uBAwe4fPkyTZo0kX7QV+mwvnePdCensjmWXbyhkFlFgiDQp08fDh48yI4dO+jRowfJycn5H2zKCOVmuAFCIvPOEivo76FiVlxdXdXNOwVgZWWFtbW12c+3Kju1atXKUSqHKDJuwwa+++472daYMGGCrbW19UTB4qUdajBUIfjwww85e/Zs2XfYC8FoNFq+lCgbgiAwd+5c2rRpw4QJE9SGxlwMHToUURS5dOkSd+7cIT09nXv37rF//362duxEt65dmQ/kO82phL1TGRkZhIaGMmzYMK5cuUJISAivvvoqn3/+OefOnWP9+vV88cUXTJkyhX/++Yd///2Xr776il27dtGoUSO5nrIUEK3Rw0ot5FKAT+64iV9//ZWuXbvSoEEDbG1t2b59OyNGjDC7XHyRJGWWEjhk22hYgXRbBShrLDYhkTmi7IwRsOsMnOChWEAW4QFwJxLSE6R/ZS4TfA/4EWnOz44dO2gJNAaCgBeRFN3O3ofE37pgY2PDyJEj+f333zEajej1eubPn4+Hhwc3btzI2t20i4khpSCRg0eLcEiD9DctYQ9YjRo12LFjBxqNhjVr1uR/kCkjBKQizU46AMQAhqLO13TFf92joqK4dOlSsY+vUKx1ediDZ6FePFVRTjl4eXnlKLdWyYujoyNpaWlZlSEgqZtevXqVo0flGTjdrl07PDw8HICushgsA2qhexUhNTUVGxsbS7uRA0EQmDdvHm3btuXHH3/kuecqRLa0QlGnTp2s/9vY2FC3bl127tzJL7/8QtiuXcxFOll1LcSGKIqcPHmSbdu2kZCQQHJyMoIg4OHhwcmTJ9m9ezd169bl8OHD+co3N2/eHB8fH7Zs2cKFCxeIiYnB3t6eAwcOULduXXmeaFBErht0kvyxpz8ERfD1nDm0a9eOLl26MH36dLZt20ZUVBTt2rWTZ30TppOsyhTElJXwAOgpBUJ3gfeBRGAv0g+EEbgIOAHegoAD0CII/B+FR76EpoADBhgnQHIZXzdBwAgszly/PsDKlRiAU8AtYD8wG7gBXB/wN6ChZoMG1KxZE19fX65du4YgCAwcOJCn3H/Ar00rAGyGx/PAxYU82oUrgOe1FDpJI1uQeOjQIbZs2UJsbCw1a9bE29ub6OhoEhISaNOmDW5ubtSoUSNr+HBSUhInTpygbdu2RT79GUiCkV5Ir3kCUhxmm3mxyXzeDsBQoK/BwOOCQLV8Nj/S09OxsrLiq6++Yvfu3axZswZ/f38iIiKK9KPCkWH5/lJbW9ty6e1VMT/u7u78999/5TYgvLLi4eFBdHQ0NWvWBECn0zFu3DgWL17MF198UWb7giAQGhrqOHPmzFDAolPkheLuyLu5uf0XFhZWr02bNmZ2ScUcxMfHc/HiRVq1amVpV/Jw+vRp/P39mT9/PgMGDLD8Tn8lYtKkSdy9e5fly5fnyfwlJSWxZs0aPv/8c+7du0e/fv3w9PTEwcGBjIwM7ty5Q7NmzWjbtq1J5rJADAYDR48e5cqVKxiNRvr164e1dclHBERERBCQj0R2HtZmNpFnliI5OTkhCAI9evRgxIgRjBs3DqPRyKFDh4o35LW4VMVgyEHI6nfqg3Qi3hkpE9MZSVrVCNxGOhFPAvYOhb3/weWDcAdYBPQEKbAoy2snCIhAGyQJ67FARwovYbgH3Dh7luvXr3PhwgVSU1MZM2aM9D2ySgfPSEHOhd59sbp/H5/sA1JN/gYEwF9/EWcwEAFsALTAW0hKSgD3F8OQL+Fk3CMMGjSIGjVqcPXqVW7duoW7uzvOzs4cOnSIhIQEoqKiePvtt+nevTv9+vVj0KBB/O9//yvwOQP8i/SaHwVM2ogikAE8QMoapSC91iJQDfgN+BM4qNHQxvAwmHvjjTeYO3cuQUFBhIeH06RJExYvXoyfn1+xN8VEUbR8NcFaFyn7WBjl+Fn966+/6NChA1ZWVuW2por8iKJIREQE3bp1s7QrFZq7d+9y5coV/Pz8sm7777//6Ny5M9evX0dXgsx0QURHR1O7du0HqampXqIoJpbZYClRM0NVhIqYGTLRpEkTfv75Zz755BMmTpxI3759GTZsGL169ZLlw6ZkPvnkE9q3b88333zDkCFDuHnzJqdOneLXX39l69atPP7448yfP59u3bqVTu0tE61WS5s2bSi3zZBc/Rj79u3j9u3bTJ8+HYPBgJ+fHw0bNpQvEMpddlOVgqJspViXkSrGbABfpEAIpGCkBlAj8y3k//PDx4Qhla7pgZAR0G+sgN/90pflCsAWYCHwPFIg9gnQHykg+wrYhxSE2SAFDl327aNNmzZ07doVjUbDf//9x+rVq7l9+wXSx6WT/u9CasbH08LLE++MDLSrM79XTL1qERFsad6cp0+epAMwCIgDOgH9/eF2Apx4XcqGnd9/vsjvpWvXrtG+fXs+/fRTpk6dyqRJk4p83vWAbsBmHgZDAmCVeTF1O72X7TEvAiHATlGkcXIytra2aLVa3nzzTWxtbWnevDldunRh2rRpxe4XTUlJoX79+ty4cYP09HTLfgdXgIxQdpycnEhMTDRrSbuK+REEIWv2mLr5WjAuLi4cO3Ysx8ZI/fr18fX1JTw8nF69epV5DQ8PDwIDAw3btm0bCnxfZoOlRO0ZqiKkpqZia2traTcKJDAwkO3bt/Pvv//SuXNnZs2aha+vLzNnzuTixYtqT1F+CAL2Dg6sWbOGr7/+mkYeHgxt0YKff/6ZwMBAoqKi+OOPPwgMDCxTIFQutHR52BSuFfIMWG3SpAndunWjbt26xMfHs3PnTrp2tXiZsTKwJ6tHazVSgPE7UkYmT7t4I/IM/u0BnAU+BeKBkAfQzc+1dDLEmf1uXkhzhk8izfKZAkxGCk5igJeRBgH+D2hqLbBp0yaefPJJHB0dsbW1JSgoiJs3b9KwYUP8/Pzo3BDqJcRzXO9CUFAQMcHRUqCbrTzzwoQJPONmzZ8amGgP7wC7AL86ML4bbHwNlr6oKVZwUKtWLXbt2sWbb77J888/X/jBmb1muszn9VcJXq43BIH7AQFs6dYNR0dHdDodR44cwd3dnZkzZ/L0008zY8aMEgnnJCYmEhMTQ3BwsOW/Nzy65LxuYZVGZ2dnEhMttnmtIiPu7u7ExsZa2o0KjUajwdHRkXv37uW4fejQoaxdu1a2dV566SUHJyenybIZLAVqmVwV4dy5czg4OODt7W1pV4rNsWPH+Pbbb9mwYQNJSUl07tyZoKAgOnfuTFpaGikpKbRu3RovLy9Lu1r+BAQ8HELq7w8REQ/VpSpw4FhgmVx+WYQWejj2MEOUmppK7dq1WbBgAYMGDWL79u306NFDXgerUkYoN7n+Bq8AvwA/IAkXANBEK/VynXl43FWkhv++SIGUCPRz0tEi9HVmz55ddl9EkbuCQHek7Mju7Mfleq+npKSg0WjyzYLfu3ePs2fPsn79etasWcOvv/6aNaxXFEV69erFwIEDmbBqFUT/Be/k6iEy93tCENiC9Lp/CdRFKpmLzrz7EaQSxupIWbFfkLZRT8TEEBYWxqlTp2jWrBkDBw4scxlX79692bp1K7Gxsfn2EZY7q3QwLpt8fXYZ/nL8rMbGxnLt2rWKMeRZpUzkVwKmkpfLly+Tnp5O/fr1s267cuUKrVu35ubNm7KUjGZkZODp6ZkSFxfXVhTF02U2WArUYKiKcOLECWrUqEG1gtSUKjh3794lMjKS8PBw9u/fj729PTY2Nhw6dIgffvihaskrF7f8qAIGRXmCoZYu0lyVgjAFesDatWv59ttv0el0hIWFmUchsSoHQw6Zz/1HSWJAfCqO7RoNI4HPagp4Lt6Cra0tzXoH4JYilavpgO+AY5km3kIqsztVuzafXL1KfHw8en0eyYLSkdlPlPUXd9BKSn7FJD09nf3799O5c2cWLlzIkiVL+OeffwD47bffeOuttzh27Jj0425Sy8taWwvDir9WqXDUEZdsYCKSUMQFpICoIZK0w2kgFkjw9MTNzY22bdvy8ccfm2WDKyMjg3///ZemTZvKbrtUFPQ5NwVF5fR5TU9PZ9++fXTp0qXog1UqNEajkV27dhWvh7UKk5KSwpEjR+jUqVOO2zt06MCHH34o24bkxIkT0xYuXPheenr6R7IYLCFqQ0YVoSL3DBUHNzc3nnzyyTxBz5EjR+jZsye1atWSX1msIqK0L+7CAiGQsl8tXeBYPBs2bGD48OH07NkTBwcH8zR3V8UgyIRJCS5TvEIQBHoi9e6sSIL4zz7j/v37nEyVBA6OAE2Ax4DDSMmiZTrYOng4bm5u/BoYiLOzs3z+iSJl+YvrdLosmdjhw4czefJktm7dSnBwMG+//Taff/75w13OPOqG5UBSBq7AqsLe1xqgBAMjV6xYwdatW2nfvj29evWiQYMGRT8I6bWqMIGQY8U5TbGysiI9Pb1iiEuolAmNRoOVlRUPHjyo0C0ElsbOzo709HQyMjJylAj379+fLVu2yBYM9e7d23r16tVPAhYJhip4I4GKXFT0nqHS0qpVKxYsWMDTTz8tm/a9YlDQj7Uoivz999906NCB2rVrV4zSHaXydPxDAQtRJEQUWZNgZPv27fz111+cvnqd/3x8mKiT+lsWIP2QNAU+6ezPihUr+PLLLxkwYECFOmHM7ouDgwOLFy9m0qRJ+Pv7Y21tTc+ePcvHkbXZ+uPyO9HPPtg198VQsmB93rx5LF++nP/7v/9j8eLFMj2Bh1y5cgU3Nze+/vpr2W0Xi+HlP8vLzs5OldhWCO7u7uog3WJQrVo1YmJictwWFBREWFiYbGv4+/uTlJTUUhAEO9mMlgA1GKoiWFwVyIwMHDiQV199lSeeeIJ3331X2WILERHSSZG/v6U9kQcHbc5hpflxPIHbTfXcvn07qyTIYDDwyy+/KPtvXUGpWbMmly9f5oP62W5soZfelxV8ho0gCBiN0tCgoUOH8tdff1G7dm2++eab8gnctAIMzpYNTTYUnfnQ6QoOnIogMjKSqKgo7t69y0cfyb/h6uHhQVxcHKGhobLbzqKgocYrCnyEWTEpyqlUflQRheLh5eXF7VwZ6bZt23Lt2jVu3rwpyxrOzs48+uijDwCL1KCqwVAVoiLt0srNpEmTOHz4ML/99huBgYHs37/f0i5ZnsoQMCVlFKvvo7qVhmbNmvHnn3/CSoHvxukYNGgQly5dejiRPjzA7O6qPEQ4ky1jcSy+6AdUAGxtbUlNTc267uXlxcqVK+nYsaP5F1+lyzG8NYvCAiIXFzDND0ouZChsAdjb2+Pr64ura2FjmQvHaDTmeM2yY2dnx7lz5zh+/Hip7ZcKC2SETKiKcsrB1dVVzQwVAzc3N+7evZtj81Gr1dK5c+esvks56N+/v6OdnV1v2QyWADUYqgIYjUbLS6SWA56enhw+fJhhw4YxYMAAZs6cqdzMQVEZokqwS5+DIjJE548ncO3gQfrNHEeGAV76EVr6kHOCePaGdxWVfLCxsSnwxN6saAUYXkgwk19ApNNBQq6eulJmiMrChx9+iK2trbQRkQ8NGjQocmizLJgyRBb+TleDIeWg0+nQaDRZvYQq+aPRaLC3tyc5OTnH7W3atOHQoUOyrdOzZ0+NjY1Nf9kMlgDlnyGrVHrxhJKg0+kYP348hw8fzpqxExERkVUaozhMQVF2KkNGKDdFZIiOIzXq2xoSScs8bMc7IKzK9RWmZohUCsEiwVB4QP4Zodxkz/xkzwgVdlw50Lu3tFEbFBTE9u3by3XtioijoyNJSRVrGKxK6TFlPZTA9evXzfb9VlCp3OHDh2Vbo3379qSmptYSBMFDNqPFRA2GqgAPHjyoMsGQierVq/P3338zfPhwQkNDqVOnDq+88gr79u1TZrbI31+6VLaMUG4KkGEWAKMjMA3sbUBcAW6OBdhQM0QqBWBjY1M5mt9zZ4QsSLt27TAajYSEhNCzZ0+uXbuW4/69e/fi6enJrFmzLORh+aLVahFFUbkbbFUMpfQN3blzh1q1avHUU0+Zxb6npyd37tzJcZufnx/Hjh0r4BElx8rKik6dOqUB3WUzWkzUYKgKUJUyQ9mxsrJi3LhxnDx5kq1bt+Lo6MjIkSNp3rw5CxcuVMQXYBYREZU7CDLh55fvt1J94HxauXujojAskhkqrkx39k0a+0KOs8CvtiAIfPXVV7z77rtUr149x33//PMP0dHRTJs2Lc+keqXi4OCQp2RIpXLi5uamiHOBQ4cOUbNmTbZt22aWDV97e3tSU1MxZMtYe3t7k5iYKGvZaEhIiJNery/3Ujk1GKoCVNVgKDtNmzZl5syZ/Pvvv8yfP58tW7bg6+tL9+7dOXjwoKXdUzERESHJB2fPELXQU/32bW45uFbtOUAqZSa3gEK5IYqS4l5BNMnVL5dcQG9MmD9ss0wZbK1atZg5c2YeVdKXXnqJJUuWsG7dOpycnCziW3mj9g0pB2tra4xGY46T/MpIYGAgN27coF27dsyfP7/A48oSKOWW2NZoNDRo0IBz586V2mZugoKCMBgMPYVyVvxSg6EqgDpU7CGCIBAYGMgvv/zC7du3GT16NE888QQvv/yyWgdekTBliDK/oS5duoSvr2/OY/JTlLKgypRKxceiZXIFKe6JIpwqoF8ue4ZIg5RlssRA2HxYsmQJBw8exMbGhmeffZZBgwY9nJ8kCFLfk0JxdnauMlmwqoCrqytxcXGWdqNMWFtbc/PmTe7du8fLL79cYNBTv359lixZUqo18iuVa968OSdOnCiVvfxo3Lgx1tbWdkgFIeWGGgxVAdTMUP7Y2dkxevRoTp06RXx8PL6+vgQHBzNlyhR++OEHzpw5o8z+osqAKUNkkGSbz58/T8OGDaX71IBHpZRYTE3ORG4FyNwZodyYMkQWzAgVxJgxY2jXrt3DGwICch5Qgfqe5EbNDCkLpfQNVa9enY0bN7Jp0yYEQSAyMpIdO3bk6G+LiopizJgxpbKf3+vk5+fHkSNHyuR3dgRBoFevXoIgCD1kM1oM1GCoCqAGQ4Xj7u7OkiVLOHToEFOmTKFWrVpERkbSu3dvqlevzpAhQ1izZg379+9Xm2bNhYtLoTvJmzZtws/PL/87TcFRKQMkNeCtOuh0OjIyip5rZVZMCpCFZYRyU4EyQibOnDnD5s2bpSuCAJH5CJcoNENkb2/P/fv3Le2GikwoJRgCqFOnDn369AHgiy++IDAwkK5du2bdv2rVqlLb1mq12Nra5uiX8/Pzk1VRDqBPn/BjHYIAACAASURBVD52rq6uT8pqtAjUYKgKoAZDxcPHx4c+ffrw2muv8dNPP3Hp0iX2799PUFAQP/30E8OGDWPcuHEVIiBKTEysMmUaa9eu5Z9//inzlHujXs8RrZbfHBxI02rBxYWJEyei0WjySIaqKBMlD54ubxo3bizJbufKCL2LNEI+q+hYgRkiQRDQaDSWD6xVZMHW1pa0tLQK8dsuJx988AEA48aNy7pt6NChZQrkc5fKtW/fnqNHj5KSklJ6R3MRFBREcnJyZ0EQym2omhoMVQEyMjLyNL1WCUy162WgTp06jB8/no0bN3L8+HEuXLjA+PHjLdpsefjwYRo0aEC9evVYsmQJixcvtpgvZcaUEUpIkC65MkSnT5/mxRdf5Ndff8XBwaHUy6xfvx5tYiKtjUYG3L/PaaMREhLYtGkToaGheA4enLfMR0WRaDSaSt8sXRHZA8wHDgB/A68AStZbc3JyqjIbUlUBvV5PgsIC9yZNmnD37l2effbZHLfb2dmV2qaXl1eOYMjJyYmGDRvKKrHt5eVFzZo1M4A2shktAjUYqiIodkc0IODhSWz2/2dHpjINBwcHNm3axLVr1/D09OSpp57i22+/5cqVK7LYLw6iKNK1a1fu3LlDdHQ0Y8aMYezYsfzxxx8IgsCiRYtIS6v8GtQZGRm8+uqrBAQE8PHHH9OqVatS2xL1ep566im0wC7AAJgK7i5fv86XX32FsGuXVOajBkSKx+J9Q0ojs+xvpqsrnwJhQF9gIeAIiArbbTeh9g0pCyWVymXH1dU1z22pqal8/fXXpaqIcHBwICUlJceGUuvWrWVX5e3fv7+tlZVVT1mNFoIaDCkcg8GARqPQP/NaF+kENjLyYc266f/Zg7+EBOm6DNkxR0dHtm3bxvHjx+nfvz979+6ldevWfPTRR6Snp5fZfkGIoshPP/2Ej49PjnrdsWPHAtCvXz9ASofb2Ngwbtw44uMLUK+qSMTHSxe9XrpkXn/rrbc4duwYf//9d44Uf2kQkpMRgQzgcXJ96eXOEBw9qgZECkcNhsxDWycnRgLVkT5rLwCffvqpYjfiVEU5ZaHUYCg/EhMTCQ0NLbWQgpubG3fv3s263q1bN8LDw+VyD4BevXpZOTk5DZTVaCEo9CxZxYRi+4Wa6mBoCVPaMpbGeHt7M2rUKJYuXcrBgweJiIigffv2sjcSApw8eZKAgADmzZvH2rVrMRqNiKKIKIr88MMPiKJISkoKP//8M3Xq1AFg0aJFuLq6smPHDtn9MTfr1q1j/fr1rF69mgYNGpTdYJcu+d6cAYxFKu3ZkXmdhIQcGaKMjAzOnDmjnjwrCIvNGlI4wcuX82vjxjQJCmL0ypV8mZ7OoEGDFCtQ4uTkpGaGFIRJFEOp79fseHh4YG9vz+bNm0v1fHOXyvXo0YOIiAhZN4Qff/xxkpKSHhUEwVE2o4VQBRtJqhaKnDG01gVOlzKwEQTQakHGxtdHHnmErVu38tNPP9GzZ08EQaBmzZpZF29vb5588smC1dByIYoie/fuZePGjWzZsoWrV68yc+ZMJkyYgFabvxSvra0tQ4YMYciQIcTGxrJ06VI8PDwYOnQoCxYsYODActtgKR3ZsljTp09nzpw5uLq60qJFC1577TVGjhyZY4c5OTmZ3bt3c+rUKRwcHHj++ecLzoBGROTpHTsM7AQWA3UBd+ASMAhoDiRcuULcG2+wdu1aRFEkISGBPn36MGjQIIKDg9FqtWWqu1axHBadNaRgunTpQoMGDTiycSOdw8NZMnw4zwO//vorAwYMsLR7sqMG1cpCEISsPjBnZ2dLu2N2Pv/8cw4cOFCqzK27uztnz57Nuu7p6Um9evXYs2dPDuW6suDg4EDLli0fHDhwoCuwWRajhaAGQwpHcZmhtS7wbBmbHM3QPC0IAqNGjWLEiBFER0dz48aNrMvFixfp06cP7du3Z8aMGQX2v6SmprJ69Wrmz5/PvXv3GDx4MF9++SWPPfZYiQQw3N3deeWVVwBo2rQpISEh/PPPP8yePRtra2tZnq85GTJkCM899xzbt2/nxIkTjB49mhUrVvDll1/SsGFDdu/ezahRo/Dx8cHPz499+/YRFhaGTqfj1q1bNGzYED8/P1q1akVGRganTp0ixdaWtNRU3ESRMGAf0BvpG7YnUoo8ClgNnAD0N27g6urK8uXL6dy5Mzdv3mTDhg18+OGH0nBJoEaNGowaNYr3339fWZ8xhWNjY6OWN5kBQRD47bffQKNBADoAffr0oV69epZ2zWxYW1sr7ze2CmMqlasKwdCECROYMGFCqR6r0+mwsrIiJSUla1MwODiY8PBw2YIhgP79+zuePn26D+UQDAnFTZG5ubn9FxYWVq9Nm3ITd1CRgUuXLiGKIr6+vpZ2RR7kqj8v51R4SkoK33//PXPmzKFRo0b06NGDgIAAbt++zZUrV7h+/TrLli2jefPmTJkyhV69esnW6xUTE8PYsWO5ffs2v/76KzVq1JDFbmmIiIggoBg9OXFxccyZM4c9e/awevVqVqxYwezZs2nVqhVnzpzhq6++ytptTk5OZu7cudSpU4c6depw9uxZjhw5wpEjR9DpdLRo0QIHBwesra2JnjOHekhKV4XmdUz9S7l48OABc+bMISYmhmeeeYaPP/6Y69evs27dOmrXrl2al0SlnImNjeX69eu0aNHC0q4oi8K+mxVaenTixAlq1KhBtWrVLO2KigwkJiZy7tw52rZta2lXKjwXLlxAp9NlleavX7+eZcuWSRsiMrF//36Cg4Mvx8fHPyKb0QJQgyGF8++//+Lk5ETNmjUt7Yo8yBEMyVwmVxJSUlLYvn07O3fuJDIyEg8PDxo3boyrqyuDBw+madOmZllXFEVmzZrFd999xy+//JJzcnw5UtxgKD+io6MJCwuje/fuVK9evXQOmJQFTSWLuQdFFhAEFYQoisydO5f//e9/LF++nMDAwNL5pVJuJCcnc/r0aYt9BhRLtu/mE4A/8BrwFiAoNBi6fPkyBoOBunXrWtoVFRkQRTHrN0qpwh9yce/ePc6cOUP79u0B2LdvH6GhoRw4cEC2NQwGA87Ozqn379/3FUXxpmyG80Etk1M4Dx48wMPDw9JuyEcTben7hUw4lks/Xr7Y2dkREhJCSEhIua4rCALTpk2jWbNm9O3bl3nz5jF8+PBy9aGseHh4lN3n3IHOSgFGlN6cIAgkJSVx69YtgoKCGD9+PN999536Q1qBUXuGzE8MEAesQ+rJG2pZd8yGk5NTuY5WUDEvgiBkCSmUZa5dVcDR0ZHk5GSMRiMajSaPqIIcaLVa/P3907ds2RIILJfVeC5UNTmFo7h6ZrGMgZC/f4l2/pXGgAED+PPPP3nrrbf4+uuvLe1OxWAFUhmPKJbqvbFnz56s/y9cuJCJEyfy9ddfK26auVLQ6XTq0FVzYJLHB7oCrZGESbY/95wlvTIrqry28qgKEtv3798HJLXU0iIIAm5ubsTFxQHSZuXt27dlV+Pr37+/o16vN/vusRoMKRzFBUNC/mpqxUKvl5TFqjjNmzcnMjKSzz77jFdeeUURQ1pLzEpBuhR0vQSsXr2aw4cPM3PmTNzd3VmyZAmhoaFotVqWLVsmj7/hAWXyUUXF7JhmhgFaYDLwD3B9yRLFzu7S6XRkZGRUCTnmqoLSg6H09HQcHBzYu3cvVlZW7N69u9S2PD09swa3Ojg4oNPpZN8cCAoKIj09PUgwc7mFGgwpHIPBUCIlsgrPqQxpB//REj6uimeEcvPII49w4MABzp8/T9++fUlKSrK0S5ZnJKUazOvm5karVq149913mTJlCq1bt6Zly5Y4OTkxffr0ss960grQI1Iq5ytDSZ/KQ7RabZl2RVUKINv5SgjSkOMJkLc3T0HY29uTkpJiaTdUZEKv15OQUEbF2gqMlZUVAP379wdg8eLFpbZVrVo1YmJisq7b2dnJXoJcr149HB0drSj5WV+JUIMhlcpJWTJEKoC0A7Zhwwa8vb0ZNGhQ1coQDRelC8B4pCDDiCS7XoYNqGnTpvHPP/9w9OhREhMTmTVrFi+++CIHDx4sncHwgLy3qRmiMmNjY6POiJGbtS45ruqBrUDWhDNBUGSGyNnZWR2+qiA0Gg3W1taK7CvcvHkziYmJDBw4kOjoaIYOHcozzzxTantWVlZotdqs18rKykrWwasgleP17t1bq9FogmU1nHudkqjJffTRR/UaNWpkTn9UZCYpKQlHCwoGmJ1Dh4p3nJMTNGxoXl8qMRcuXECj0eQvwZ79NS6jmmSFez/ePQQXC7hPBuVMg8HAtWvXiImJocRKnEW9t1Vlz1KTkpKCtbV1gUOMVUpBYZ+l7CjsfZueno7RaFRWOXoVJzU1FY1Gk5VFUQJGo5EjR47g4eGBm5sb//77LzY2NjRr1qxMdlNTUxEEAWtra06cOEGjRo1kn2e4c+dOli9ffv7ChQtmO4lTpbUVTHJyMqdOncqSPlQsAQEFl2GUUCq5qvLgwQN69epF06ZN+eqrr3KqoeXOlJShPr4s0tqy4+ICRZVDlOG53rlzBy8vLwAWLVrEmDFjSmZAK0jZqoII84egiFL7V5U5e/Yser3eojO3FMdaFxiakOc9exZJZrsT8A1QQ2H9NepsGuURExPDjRs3FDWLzGg0Zm3+iKLI//73P4xGI6+++mqZ7CYkJHD+/Hnq169PnTp1uHr1quxDa2NiYvD29n6QlpbmLIqivKmnTNQyOQWjOPGEgihMFME0T0alUGxtbfntt9/Yv38/r7/+utQQLAj5l4ypstHFInvWYfTo0SU3sM0f7Au5P/qvkttUAaT3u2xlMKayxZVCnlKxKsXT8fB43vdsGpAE1AFaAjdvmnVcSLnj6Oio9lwqDFdX1yyVNKWg0Wg4fPgwK1euBODll18ucyAEDxUVFy9eTGJiouxlciD1Jj3yyCNpwGOyG89EDYYUzIMHD7C1tbW0G+WDSRpZr5eGqvr7S9dV9bhio9fr2bZtG2FhYUyfPr3wg5UQEJk5Y+ju7k58fDxOTk6lUycKioBkMe+39IrMi64ClRtWMszSMzQCGJwAqxQkWFNSIiLgR32O92wL4CngSNeu6GrU4JNPPrGQc+ZBo5GerCqlrxy0Wi0ajUZxfbStWrVi2LBhstoUBAEXFxdatmwJwEsvvSSrfRMhISH2NjY2Pc1iHDUYUjRVJjOUnfh4yMhQg6BS4ubmRnh4OBs2bGDsmDGkKCDmKTWZM1PKZkJPcHAwmzdvLr2R3BkiQSuJPzwtQzBXRbMasgRDBQlZiIaH91XFwMiUIXJ4mBn9Fti1axd+fn7Mnz9fcdLFTk5OanZIYbi7u3P37l1Lu1Ep8PT0xNvbm9jYWMLCwswyiDg4OFhnb28/QHbDmajBkIJJS0uTvZFNpZIRHpC/IlkheHh4sGfPHu4vXUInES7kd5BS6v6zDYrMQSkHsOZHv3792LhxY+kNmDJEakZINmTNDOWWPM9+XTRAUx04CNCkCgWcERGQlJGVsbcXRd566y2io6MBuH79umX9kxlHR0d1+KrCUGKpnLnw8PAgJiYGNzc3xo8fz7vvviv7Gl26dCE5ObmBIAhl36XMBzUYUjBqMFSFMfX79IiEkMgSB0SOjo6stBEYC3QEfjOHjxWBbIMis5AhI5Sdjh07snfv3rIbMsmBy5kRyk56QpXJEMkiATtcBKtivFdOG+A+cAapjK6KMnv2bA4cOKC4xnSQBk7ev3/f0m6oyIher1cl04uJtbV11vDht99+m99//z1rGKtc2Nra0rZt2wdAgKyGM1GDIQWTnp6uKGlIlVJyH4g7WuKASEg2ECqKbLTVMBlpeGJ8XJxyskLZMWWIZMwImVi6dCk9e5qt1FmlFMg2D+Pp+IcZOxOm6x8izbDKTVXKEOWDEhX87O3t1WBIYdjZ2al/0xJgyo46OzszYMAAli5dKvsa/fv3d3J0dHxCdsOowZCiSU9PVzNDlQ3Tjn0JA5csClKAG5xQqgwRQAetwDGkL4tHH32UOXPmKG/HLL8MkQycPHmS77//ng8++EB222ZB0MqTeargCHIKgBSUITqDtBGR3+1VNEN0+/ZtZs6cqbiBlmowpDwEQUCn05lFHU2JZC8rDA0NZfbs2bL3BgYHBwsajaaPrEYzUYMhBZOWlqZmhiobpn4Dc8gml/a3OikDvSjyrSiybds2jh49St26dRk/fjzr16/n+PHjHDt2jCNHjnD48GEOHjzIjRs3ZHW9MpKSkkLv3r2ZN28e3t7elnYnJ6aSu+xY6WFYhmX8qezklyFSycPUqVOZMWMGkQXNhaukmEWdUMXimGSjVYrGxcWF+MwNxTZt2pCQkMCLL74o6xotW7bEaDS6CYJQW1bDQBWUuqk6GAwGdcJ6ZSF3/4ZJkcpTxsGaGspsq0WLFqxcuZKLFy/y+++/s2jRIq5evYpGo0EQhKx/L1++jJeXF6GhoYwcORJHx6rX9B8ZGUmdOnUYMWJE0QdbmiqSEcqOIAgYjcYsaeSyG9RKn1sTplK5M7mOs0caulPFSEtLY+XKlQwYMEBxAgqmTKMoivJmHVUsirOzM4mJibi5uVnalQqPXq/n1KlTWddfe+012TfjNRoNgYGBGb/99lsQsERW23IaU6l4qF/MlYSCFKlKmiFaqc1/d3oF8FNpncuLr68vkydPZvPmzZw4cYJjx45x9OhRDh8+zKFDh4iOjubrr78mPDycOnXq8Morr3DhQr66dIply5Yt9O7d29JuFI4pQ1QFM0Ky9Q2ZGJaRN9s2LZ/jkkU4rcC+uyKwsrKiWrVqnD59Wr4AtAIh6yBflQqBs7MzCQlVs6S1pOh0OkRRxGCQNoRGjRrFokWLZFfk69evn6Orq6vsEtvK+0ZSUanKDMuQdqizY/qUF0f5SiYEQSAgIID169dz+PBhrKyseOyxx7h69WqVOWE4cOAAjz/+uKXdUCkA2YMhE7k/f2v08ChSRuhR+ZerLAiCwLZt22jXrh39+/e3tDuyo/YNKQ+1TK5k6PX6rOCxefPmBAUFsWzZMlnXCAoK4sGDB90EQZA1flHL5BSKWiKnEDy6lPwxwzIAXc6Sndw71uVInTp1+OSTT3j77bdZv349LVq0oFu3brRs2ZLGjRvj6+tL7dq10emU9XV07tw5GjVqZGk3VArA2traPBPm88uyPS3/MpWRZs2asXz5cku7YRbs7e1JTk7G3d3d0q6oyIRpw0Qtfywepr4hU1nhkCFDmDdvHpMnT+bu3bsIgoCrq2uZ1qhTpw6urq5CSkpKc+CYDG4DamZIsajiCZWMzOGEWazUStdL2+OTPUNUjhmhwtDr9dStW5clS5bQvHlzjhw5wvvvv09AQADVq1dn+vTpxMTEFNvepUuXuHPnDnfu3KlwO7KxsbGkp6fj6elpaVfkw6R0mLu/rZJitsyQSpVEzQwpEzs7O1JSUiztRqUg96Da2NhYdu7cSbNmzXB3d6dPH3mE4Pr06WOl1WqDZTGWiRoMKRR1xlAlpzQZodyYehgqWGN8586dCQ0NZeHChURGRnL58mX27t3LrVu3aNiwIVOmTOHChQvExcVx5MgRMjLy72d56qmn8PLyomHDhjg7O7N9+/ZyfiYFc/78eRo0aKDuJlZgrK2t1WCoHJk5cyZ169Ytkera77//TlRUlBm9kg918KoyMYkoqBSNk5NTjrLCW7duAXDq1Cl69uzJb7/JM769T58+Nnq9/klZjGWiBkMKRZ0xVEkxZYjkUpCrJNSvX5/vv/+eEydOoNPp6NSpE25ubrRu3RorKysmT57MunXrOH/+PBcuXGDbtm1cu3aNvXv3cvfuXSZMmMCGDRss/TSysLa2Vo7Ubn7ZIAVkiKysrMxTJqeSB1EUmTFjBhcvXiyRkEpISAj16tXj0KFDZvROHtTMkDJRg6Hio9Focsxmat++fdZ9c+bMka1Solu3biQlJbURBMFWFoOowZBiUcvkVCoj3t7efPrpp9y8eZNDhw4xYcIENBoN9vb2LFu2jODgYHr06MH06dP5+uuv6dChAxqNhmnTprF69WrWr19v6acAQOPGjfnvv/8KzGqpWB61TK78EASBZ555Br1eT8OGDYv9uCeeeAK9Xk+nTp3M6J08WFlZqZ93BaIGQyUj+7yhrl274uLiwq1bt2jRooWsazRo0OABINsXgxoMKRS1TE6lMqPRaGjdujULFizAYDDw0Ucf8fvvv3Px4kWioqLYt28fgwYNIj09nZEjR9K2bVtmzJjBa6+9ZmnXAWmX2NvbWxly4sNFad5Vdjz9895WyVDL5MqXZcuWcfv27RIJpXz22WcEBASwcOFCM3omH6bZVSrKwdHRkaSkJEu7UWlwcXHJ6huysrKiS5cu7Nq1S/Z1QkJCHGxtbXvJZU8NhhRKWlqaWiZXEgICQBCki0ql4ejRo2zcuJEJEyYwefJkGjRoYGmXsqhXr16l6Xcoktxlm0ERlb6UUy2TK18EQcDGxqZEj2nYsCEbNmxg1KhRZvJKXtRSOeVhGiRump+jUji5RRQ6duzIvn37ZF8nODhYa2trGyKXPTUYUihqZqiEREY+/H9AgMXcUCkZrVq14plnnmHRokWsXLmSP/74w9IuZZGamoqtrWwlzaXDxQV0Onne06YMUSXPCJlQM0MqcqMGQ8rEyclJzQ4Vk9yfgXbt2rF//37Z1+nYsSMpKSmPCILgJoc9NRhSKKqAQjExZYSyExmpZogqCTqdjq+++ooFCxYwZcoU1q5da2mXAFi+fDmRkZE4OTlZ1pGEBDAYcgb7ZUEBGSETas+QityowZAyUfuGio8gCNja2mbJkT/22GPs3r2bN954Q9Z1rK2teeyxxx4A3eWwpwZDCkUVUCgmhZ0kqhmiSkPv3r3ZsWMHU6dOZd68eRb15d9//2XkyJEAltuQMGWEsiNXhkghaLVaWRree/fuzejRo9VeEZWswasqykINhkpGdhEF04bg3LlzZZ/XFBIS4uzk5NRPDltqMKRQ1DK5YlDUieHRo+Xihoo8NG3alL///psFCxYwd+5ci/nx8ssvZ/3/qKXeQ6aMUHbkzBApgOwzoNLT09mzZw+///47p06dKpEdDw8Pli1bxgcffCC3i5UfhQ3qLQo1M6RM1GCoZOTuG3riiSfo27ev7GXjPXr0AJBFREENhhSKKqAgA35+lvZApYT4+PgQFhbGokWLGDJkCDExMeXuQ1BQUNb/LbYhodVaZt1KyI4dO/Dz8+OFF15g4cKF9OzZE39/f8LDw4v1+KVLl/Liiy8W+EM/YcIE3nzzzXzvE0Wx1H6rVDzs7e1l3/1WsTw2NjY8ePDA0m5UGrJnhgAGDRpkFtn5pk2botFonARBqFtWW2owpFBEUUSjUf+8hRIRIQ049c/VEK7XS7dHRFjCq5ITHiBdVACoXbs2R44coVatWrRo0aLYJ7VyMWnSJNzc3Dh9+jTDhg0r17WzyMiQ3sPZMQ30VQHgypUrXL9+naeeeopZs2ZlKRNevHiRiRMnMnToUM6fP1+kHUEQ+OabbwoMeE6fPs2cOXNYunRpnlI6Nzc3GjVqxOXLl2V5ThWGzGxQ0gMIPwlJD6gSGSKtVquWSyoQQRCUNUjbzNja2pKampq12TN06FCuXr1K9+7dc2SMyoogCAQHB4uCIPQoqy31bFlFJTeVJSMUHiCdXNyJlC4qWdjZ2fHZZ5+xYsUKhg8fTmQ5lodZWVlx7949fH19y23NAlEzRAUSEBDA/fv3WbNmDQMGDMgqm7OysmLIkCFMmzaNyZMnF2ojKiqKCRMm0LJlywKD7g0bNgDw7LPPUrNmTY4fP5513+uvv865c+f48ssvZXpWFYvp66DHRxB5xtKelB9y9aKpVCzUUrmS4eDgkNU/Z2try+rVq4mIiGDnzp2yrtO3b197FxeXAWW1owZDCkQtvSghpgyR6VJZMkJxmf0oH2ZeTDuvapYoi27duvH999/z4osvlpty2LPPPkt6enqJZ6qYBVOGSP1OyMH169eJiYmhdevWtG/fPt9jBg4cSGRkZIHfp6Io0rt3b9zd3ZkxYwbDhw/nwIEDeY5zd3cnLi6O8ePHc/v2bTp27Jh1n0lhydHRUYZnVfH46S/pXytTTC4oPzhX+4aUiRoMlYzcfUPNmjVj7NixXL9+XdZ1goKCSElJeVwQyvblogZDCiQjI6NEU75VKhmmjNDgBBgBnMm8fJh5v5olykFISAh16tRh5syZZl8rLS2NpUuX8sYbb+Ro0FepWLz33nu88MILBcprJyYmEhISwksvvVTg3/H06dOkpqYya9YsBg4cyNtvv80333yT77EuLi58//33REVF5QiYdDodf//9dw7RDUUwXIThIsM6woyB0L1p5m3DlJ8xyb4jrqIc1GCoZOTuGwIYPHgw//d//8f48ePx9fWlQ4cOZV7H29sbV1dXEWhUFjtqMKRA1BlDVYAP87ntcrbb1QxRFoIg8OOPP/Ljjz+yadMms64VkZlVrFWrllnXUSk5RqORXbt20atXL3bv3s1bb71V4ODV2bNn8+ijj/LJJ58UaO/WrVu4uLhkXe/cuTMHDx4s1AdfX1+aNGmS47ZOnTqh1+tL+GwqB1+Mhvf+n70zj4/pXv/4+8xMdpLYYq0QRaKWoKg1U6UUtZaSXG611VJVrWp1UW57lVra8nNd1dI91L60qpZeCYoWtTSVUm5RRV1LQiI0mZzfHycnmUxmO7NkkvF9v17nlcyZs3znTDLzfc7neT7PIDAY/F8RUhHKkH9SsWJFrl+/7uthlBusBUP3338///jHP1i8eDGnTp3ymLvcXXfdlQ/EuXMMEQz5IaLHkJ/TPVVRgiy5gVCIbFC9enWWL1/OyJEj2bFjh9fO0717d9asWcOLL77o8XQAgWv89ddfTJ06lejoaJ5++mkefPBBjhw5QqVKAsi+ogAAIABJREFUlQgICOCvv/4ClNS5zz//nKFDh7J8+XLmzJmDFBCgNGBWF7Pg59577+XmzZvs3r2bW7duERgYSFpaGsePH/fVSy17FChEVhUhG9e1vCOCIf/EYDCQn58vyhCcJCAgAJPJVMJQ5OWXX6Zhw4YAPProox65ni1btgzV6/UiGBIUR/QY8mNE00yX6dChA5999hmDBw9m/vz5XvlSkySJjh07UqNGDTEpLgOcOXOGLl26cOjQIb755huOHDnC2LFjC5XzgIAA9u/fT1xcHM2bN2ft2rV06dKFw4cPUysxsWSvpqyswl91Oh0DBgzA2KkTkcHBPPyAYrzy1ltvldrrK7dYqtaZmT4ZhjcQwZD/IprqasNaamFgYCDHjx+nT58+PPLII3z99ddun6dJkyaG8PDwu905higs8UNEmpwfo6WJZ4B/pt64Q48ePdizZw8DBgxg//79vPfee4SEhHj0HKNGjaJfv34kWFq2C0qVLVu2MGLECCZMmMALL7xgtfYnMDCQTZs2MXPmTPr06VPUjsBgKBkIgbJOkhT7/YwM3kj4joC3YC3w3Hn4B/DRRx9RqVIlMjIyuHLlCtevX6dz58707t2bRo0aER4e7s2XXfaxVUtndl3LMyEhIaLXkJ8SERHBtWvX/NbwxNOoqXKRVpTfmTNn8tVXX1GvXj23zxMXFwdwlzvHEMqQHyLS5PyY+HgI9fUgyjcxMTHs3r2b3NxcOnXq5NEeL9u2bSM9PZ0ZM2aIPl9eJCcnx6Z9cX5+Pq8HBzOyRw+W//mnXTOLgIAAoqKiCA8PL3q/jEbrgZA5WVnkSxLfPrCT94CngGSgAbDtZWUM7dq1Y/jw4UyYMIGrV6/y6KOPUrNmTZo2bcqWLVtcfOXlHEd1jH6gEKl/ayKdyv8QJgrasHSUM0ft2XTHHXe4fZ7Y2FiysrLqSpLk8peuUIb8kNzcXEJDxYzZL0lJgZWR8EimUiNkThww2exxJQ/3S1InMt1SPHtcHxAWFkZycjJz586lffv2bN68mWbNmrl93C+//JLHHnvM42rTbcNSSal5C4iAw9YVgrlz5/Lqq6+i0+lo06YNXbp0ISQkpFCJOXLkCAG3brEfqAlKcGPDLj8wMJBmzZrxz3/+k4SEhKKgKSLC6sT8FnAE2Gwy8SFQEfgI6A2MUTeaAfcxt5idea9evQBlgvzVV18xZswYWrduzb///W+qVq2q6RKVG9RraR4UXC2pbKcBjxb89JfkssDAQP7666+yYa8v8Bjh4eH8/vvvvh5GuSE8PJxMGzc4mjVrRkhICMePH+fuu93KcCMiIoKwsLC8jIyMOsAZV44hbl36IUIZ8nMGZ0CbBNsKUUCEUrTsjaDl6qGifkbqsrJ8Fj9LksRzzz3HO++8w/3338/JkyfdPmbt2rU5d+6cB0Z3mzIcxQTkSCY0sd43a+7cuezZs4fff/+d5557jtzcXC5fvkx4eDitPv2UF/fu5VsKAiGA1FSbqVkBAQHUrVuXs2fP8uWXXyorU1Igt/gX+B6gJ1AJeBy4AKwADqEEQs4iSRIPPvggP//8M3Xr1qVFixaFDoRljQ0bNnDhwgXPHtTiBs0fQDNgH/AI+E0/LFE35J+I91Uber0enU5nVcU3GAwMGDCAKVOmFKpE7tCwYcNcINbV/YUy5IcIA4XbAFUhys0sqg1SJ3DeUoRsudPllu/UlqFDh3Lx4kWGDx/O7t273TpWt27dGDBgALNmzRJ3hbWgKkIFxkP/A/6eDhmPQ//+OxgQ/SsNGzbk5s2bXL58mbotWhAJPAg8aD6BfuUV2+ewohAFBASQl5fHkiVLGDBgAP/61794+I2kQoniADAF+Al4DVgNhHng5QYHBzNnzhy6devGsGHD+PXXX31eh/Drr78yb948mjRpQs2aNRk4cCB9+/Zl/fr12g5kGXiaK0TdUkBG+ewakkkkMAcYCNT3k0AIiibNlSpV8vVQBB5EkqTCyb3o5egckZGRZGZmUqVKlRLPvfjii8THx/P6668zffp0t84THx8fvH///jjApRxkoQz5IcJA4TZhcIaiAA3OKPrdm4qQOcMLFpVyrBDdunWLW7dueaR2qFWrVsTHx/Paa6+JImotqIoQSiDUFUUxmJoD/90k0za+EZIkERISQocOHbD6l+aoyW1qyWBer9eTn59Pp06deOihhxg6dCjHbpp4FGgJ9AUeAH4FRuGZQMicnj170qxZMzZv3uzhIxfn1KlTPP744yxcuNBmLcvAgQNZsGABY8eOZeDAgcyePZtvv/3Wc4PYZiy6sVJwwyYMeB7/CoRANF71Z8LDw0W/IQ1ERkbarBtq0aIFADNmzODSpUtunadZs2ZBFSpUcPlOsAiG/BCRJifwKN1SSqo/+QVLUsEC5VYhmjdvHi+++CLvvPOOR463cOFCduzYQf/+/T1yvNuCAkXoN+A+lCDkLaAH8F4GzHgYggs+0p62NB9Qe9W4SadOnbjnnnvIeQy+ARYBJ4GnAW9qfMOGDWPWrFlePAP89ttvLFmyhKeeeopffvnF6jbz5s1jwoQJ3HvvvQQHB/Puu+8ybtw47SeT5eLpbrIMWxOU/mjdU8ltoudi8xWsXrWKrzduLN+pcUaj4jyo/g0WtD4Q6VT+izBR0IbqrGmLXbt2AfD222+7dZ64uDgCAwNdDoaEzueH5OXliWBI4DnMazaG29gmCcVOqxwybtw4bt26xdixY7l16xYjRoxw63i1atVi586d1KlTh1OnTnnEOvR24DfgHuBlYDxQGN7ooH1D0OugKkqwZJWlepBNRcG5OQ4m3LIs06dPH15++WXaTDUwLCKPtq7G9qFAtvMT/Ly8PGrVqqX8n6mpqFEJHlV47733XnJycrhy5YpyLit07dqVrl27AnDy5Elu3rxJkyZNSmx36dIlfv31V3Jzc8nNzeXAgQNkZWURHR1duNy6dYvfgGNA4hftuTpsLwuAXcDR9HwqxNQirlkb9u7dS3Z2dvk1/Nm1q7jzYIH6KIIh/yU8PJzz58/7ehjlhgoVKthV0uLji/qzvfDCC1SuXNml88TGxpKTkxPj0s6IYMgvkWXZppWsQOASARGK8pNvZ5skILG0BuQ5QkJCeO2112jQoAHLly93OxgCpRalV69efPbZZ7z22mseGKUN/MThb0dqKsOGDWPyuXOU0CLyocUrcDREh+Ff+YQ+beMgwwqKdJOsfPYtMxQ9b4HBYCAvL4+IiAgWLVpEr169SHh7MTz+uGsvRkMgBNC5c2emTp3KjUHZhDrI1ZBlmSNHjnD+/Hlu3rxZYqlTpw79+vWzejMsODjYZiCk8s033/Ddd99x7do1/vjjDzJWr6YiEFm9Ovo+fdi7dy9nzpwhNjaWgIAAdDodrVu3JiIigp07d/L555+XMIToPmwvK4CFwCTgMCBlm3jz5Pc0GjGifAZCRmPJQEhFkghMSOCvf/yjtEclKAXCw8M5duyYr4dRbpAkicDAQG7dumW1jjYsLKzwuX379tGjRw+XzlO7dm1MJlOwJEmVZFm2npdnBxEMCQQC+6gT7W1GwIaJgookwYoIpYapnLF582YaN27sseO99NJLdOrUifHjx3uv0aYVq+LyxrVr1xg0aBCfffYZPR94wOZ2dW/lKzlr9thmLFIoVYUoDkUxahEJp1F6dZlN2AMCAgpNZ/78809Aadj62NYEeCa1sJapkFDse0Bbs5Q2x2gsap4cH0/sZOhU9zxPL4Y3B0PVipD7eypHXpc4dBp++x/8XnEYZ86c4cSJE1SsWJGYmBiCg4MJDg4mJCSk8Pe1a9cybdo0Dh486NINsVWrVrFkyZJi6x4COkdEcKt1a5588klatmxZWDyemJjInj17kGWZihUrEhoaSlRUFKNGjaJGjRr0GDeOhkALIAF4AiX9ESDkf3L5bUBrKxAqQCpQiMSNSf9DtU0X763zqM1Xq1evbvX5wMBARowY4VbdriRJxMTE5KSnp8eiGIBqQgRDfob4BxX4nHJYO/TZZ5/x/fffs2/fPo8ds3HjxnTv3p1Zs2Yxbdo0jx0XKFKE1GtdjhWiLVu20KZNG3r27Fk8gDDv+ZORoVhtWwYm5qjbW6ZrqvscKbhWqtV2wbkCAwPJzc1FlmXWrVvH9OnTefvttzkz+0fq/t8IpdZFPW5UgvL7NGBfqmuNcXamFimsO1PhagSLH4dRiyH+FbiSDQYdNKkN8dFwZ3Vo1qsXd5wcTb3B2URHXYJqtaFbSdMFWZapU6cOK1euZMiQIZqH9swzz7B8+XIis7LIAjKAVcDnx48T9NRTkJBQGEjKssyPP/7IsWPH2LVrFzk5OVy7do3FixdTs2aBsblZzVEn4KLZuYKg/JqMVKhgv0GsXk9ISAg5OTnlU/kS2CU4OJibN2+KfnJOojZftRUMgeLEumrVKp544gmXz9O0aVNDenp6HCIYEghbbYHXUG1x7zLAUSt3RctpzRDAm2++yZIlS6hYsaJHjztnzhxatmzJgw8+SLt27Tx3YEtFqBwrRN98801hrYpdjspQwQDZtu/IA9ZrhqytK7DaDggI4K+//mLmzJmcOnWKzz77jPPnz/P+++8zbVoKbDUW1fKowWY3FAdFa8e1haoImaea5gMjswiP1rP8VeV15eeDKR8Cin07D4d/qL+bINm6QitJEl9++SV9+vTh+vXrPPbYY04NLTc3l3fffZdZs2YxefJk7nvpJW6hNJm9G+sGEpIksXHjRga0aMF7nTrxGZRUw2S5MEi9BZh7nHY9epQ3jEYuX75s1Xa3TJORAZGR1gOigmsQ+tNP3LhxQwRDfojqKCeCIeeIjIzkzBn7vVD79u3L2LFjuXbtmsuKccuWLcO++uorl7qnCzc5P0P43wu8zrxOvh6Bx7l58yYRERHF1q1YsYLo6GibtqDOUKtWLRYtWsRDDz3k2aLbSvHF+0lZPi4nrFy5kiVLltCgQQPFlcv8s0t1JTN3IsrKU9LePEGBQmQwGDh//jyzZ89m48aNVKxYkTFjxrBo0SIOHTqkBEBRCUWqkEqibH8sli53O1OtT56zTfCLqbBfmE5nGQjZYJmhRENaUOzdU1JSePPNN7nrrrtITExk27ZtNi219+3bR5s2bfj222/54YcfmDRpEncDHVEszotNSyzqgRo0aMAPrVqxHngUrNvjyjK/Ah2A6mbr4uLiyMvL4+bNm0682DJIfDzo9TafDg4O9kgzSUHZQ1inayMkJMTh/3lERAQJCQl89tlnLp8nNjaW0NDQVq7sK2bNfkZeXh56Ox/QAoHbmCtEsgkmmz2XWD5tcgcOHMjHH3/MnDlzCtcFBQVx5swZGjRowKhRo5g6dapLd3n79+9PWloa/fv3JyUlxTN3E1WFQu3tVA7T44DCVC5p4MCilWYpbFaxpRDJshIcdHdQ12aBLMvMnTuX8ePHU7t2bUCxaV24cCE9evQgLS2Naraur6QHncm+sYhKiN62qpWPEsxePaT87JZS5C5nU+myrRA1atSI9PR0fvnlF/bs2cOzzz7LpUuX6Ny5M7169eKuu+4iPT2dvXv3sm7dOubMmUNiYmJRirV6/dXHZulxhRiNkJpKMHAd+Ai4VK0aG8z2N5lMPPHEE3wIPAy8CBycWYGc3bv56aefuHLlSvmtG1KvR2TB/6CFfbBaNC7wP0JDQ93ui3M7IUkSkiSRn5+PTmdbg5kxYwbNmjUjMjKSpCQtsrtCXFwcubm5LhX+CmXIzxDKkKDUmNepeCBUjpk4cSKfffYZBw4cKFx33333ERsby7333suuXbto3bo1+/fvd+n4r776KjExMXTr1o2jR496atjlVhFSycnJoSrQ3vIJR59hWXlK75qtFmpNtxTlbr0z32wJCSDL7Nu3j4iIiBKufw899BD9+/e333/q5zww2VCILPvt2FK1dCimDN1SFOMRDwW2QUFBtGjRgtGjR/PTTz+xd+9e+vTpw9dff81TTz3Fpk2bqFatGmlpaSQlJdmvNbUMhMy4UPDzJWAf8BPK+7pq1Sr27t3Lhx9+SG0UF7lhwMhJWTz//PN8++23fPvttx5PTS114uOVxYKgoCARDPkpaj2YwHmcuWZNmzZl0qRJLF261KVzNGjQgBs3blSVJClY886yLDu1VKpU6cT+/ftlQdnm4sWLclpamq+HIRBYZfv27b4egk2WLVsmR0dHy4sXL5bPnTsny7Is//HHH/L48ePlypUry40bN5ajoqLkefPmuXT83Nxcee7cuXL9+vXlq1evenLo5ZabIIeCfK0odCi+uMrWhOLH2Zogy3p9iWPn5eXJQ4YMkTdv3mz1MGfPnpWjoqLkvXv32j9fE70s61AWR2MPKzkOpzDfJ9mNa+NpEhIKxzVz5kx58ODB8j//+U8ZkKtUQF5d8Nw+kLeZv4YVEb4euVe5cuWKfPDgQV8PQ+AFcnNz5R07dvh6GOWKtLQ0+c8//3S43ZUrV2RAHj9+vEvnqVOnzjWgmexkbKMuQhnyM0SanEDgGkOHDmX+/Pls3bqVJk2a0LZtW3Jycpg7dy579uzh119/ZceOHcyYMYMff/xR8/ENBgPjx4+nd+/ejBw5ktzcXC+8ivLF90As4HFtQFWI9Hpl6t0tBfLyFDWoQBEC2LFjB7m5uURHR1s9TO3atZk/fz6jR4+2fz5VITKZhSy2UBUiVRHyI8aOHcuePXt47bXXkCSJzVkwBqgDtEPxnXhf3XhI+XOd1IJQhvwXg8GAyY61uqAkztZZVapUiYceeoh58+a5dJ4mTZrIKF8rmhDBkJ9hMplEmpxAYA2jUcnvNxptbvLggw/yxRdfcPHiRYYOHUrv3r05ePAgiYmJTJgwgcaNG9OoUaPCfjSuMGfOHG7evMmwYcPcOk655S5DobnATqC5t86Tl6cs5qSkFEv5atWqFTdu3OCXX36xeZhBgwZx+vRpz75XRwsCJy0NWs21obJUm5eSUjiusLAwVq5cyerVq7ly5QqtUUzw/kAJin4teLzGZ4MtPdR+NAL/RK2BETiHFtOJJUuWEBoa6tL1bdmyZZjBYLhL634iGPIzhDIkELhPQEAAEyZM4IEHHqBVq1Z06NCBWbNmAUr/oPfff5+zZ8+6dOygoCBWrFhBUFAQjRs3ZvTo0aUyaZJlmXnz5tGvXz/Gjx/Pe++9R1paGqdOnbLpNOYVThXdUX0EZWJs1WeoFL6dIiIieO6559izx3ZbCr1eT1BQkLgT7CT33HMPAwcOJLLAWOAJIB6oD9wJbEQJjAb078/s2bM5deqUr4bqVYR64N8It0BtaAmGwsPDkWWZY8eOaT7PXXfdpQ8PD2+tdT8RDPkZQhkSCCxQFaHUAmvj1FSHCpHK22+/zcaNG5k5c2Zhgfn8+fOpV68eTZs2pXnz5jz99NP8/PPPmoZUsWJFkpOT+f333zl37hxGo5GjR49y5coVF16gY/Lz83mlmo5Pnn2WxA0biI6OZs+ePQwcOJCOHTvSrFkzDh48yJEjR0hLS+OGagvtyQbOqiJ0A7IBtetEEHDO2vauO6xqom3btgQEBLBo0SKb22RkZBBRu7bnr4m/Ewr6UDgIPF+wqiXwy/swqM5mTp06Rdu2bfnmm298OEiBQDshISHcuOFK1+XbE62mE82bN2fmzJmazxMbG0t+fn4TrfuJYMjPEMqQQOA5dDodvXr1KmaHHRQUxLvvvsulS5dYvHgxNWrUwGg0Mnv2bK5du6bp+BUrVmTdunUkJCTQqVMnqlSp4lGVRpZlVq5cSc+ePUm9DJtQLI4nNN/AJ598wvHjx/njjz9ITExk6NChJCUlMXjwYKoALYAFQKa13jiuUKAIrUJRCO4BmgGDgRjLbeMo7LvjbQIDA+natStvvPEGr7/+eonnZVlGvnlTfFm6wscR8IHFumSoFAZ/6xLIggULWLNmDSNGjODw4cM+GaI30el0Qh3yU4SjnDbUm4nOfr+tXr2a9evXa86aiI2NJTs7+w5JkjR9ZIvPdz9DKEMCgQUpKUoPkIQEiIhQfmZk2LULdgaDwUDbtm2ZPHkyqamp/Pjjj8TExDB37lxNAY1Op6N///5UrVqVqVOneiwYys/P55lnnuGfw4cweOtWUjBretk9tZjC8corr3Ds2DF+Sksj/ZdfyALeBVKBepGRjJIk9y3B2ySwChgPrEdRg64ACyy/hZJRamoGZ1Aa6PV6QkJC2L17NzNnzixx/efqdDRCUbAKEQqRcwzOUOqbQlGWZJQgN7Ho/a1RowbVq1fnp59+8uVIvUJQUJCoG/JTQkNDRTCkkaCgIKebLNeuXZv69evz3XffaTpHxYoVqVChQi5QV8t+IhjyM0SfIYGg9GnSpAnLli1j7969fP755wwbNkyTW1zr1q2RJInXX3+dzz//HICdO3dy8uRJTeP466+/2LJlC0899RR33HEHR48eZectGAUEWtthm9HqcfRAV2AFkA7UAxISEpg2bZrLLnh5L8tMqq7jiyBoq65cqleMBFRKURFSMRgM5OXlERUVRXBwMH/88QegBJObJYk3gS8RX5ZuYU0hAn777Tdat25NWloaw4cPL93atVJANF71X0SanHbCwsI0XbPExESWL1+u+TyNGzfORaOjnPh89zNMJpNIkxMIrKEqRG4qQva488472bVrF9nZ2Y7tmM0wGAykp6cD0LFjR0BpBHvnnXeyYsUKh/tfunSJiRMnUr16daZOnUp0dHRhU8sIK5/yvwPfAd/+eJWTJ08WufZERCiLGTUiInhVlvnxxx/ZtWsXnTp14vr1606/NpU1PXdQ4898OqtzQx1QrZPyu+qSVoqKkIper8dkMhESEsK4cePo1asXY8aMISYmhueATwDrxtsCp1EVosTi7+/KlSupVq0aoaGh7N69237j13KIsNf2X0SanHbCwsLIyspyevtmzZpx4sQJzeeJj48PliTJWotrm4hgyM8QypBA4FuCg4P54osvWLduHefPn3d6P0mSeOyxx2jfvj3jx4+ncuXKADz88MN8/PHHNvf75ZdfaNeuHVlZWRw+fJg9e/YwadIkYmMLboyZivreyMAUoGW4gRfat2fapsokJCQQHx/P5s2blWAxwyIYKXh8xx13sGnTJpo2bcoTTzzh/F38pRL76ktMBF42X785Qen/42MkSSp8LVOnTuWNN94gNjaWDRs28HN+Pr2tvU5HvYQETrFu3TouXLjAjRs3CAsL8/VwPI4IhvyX4OBgp1O+BApalaGWLVty4MABTQEUQLNmzYLCw8NbatlHzJr9DKEMCQS+JywsjLp163LhwgVq1qzp1D6SJLF48WJ++OEHUlJSaNu2LQ8//DAtWrTggQce4Pr16/Tq1YsqVapw8eJFfvjhB1avXs327dt59913GTlypN3jn5egp6zUvvzyYVuqDlJysWVZZuPGjTz66KMkJSXx0ksvUVlVhywCI0mS+Ne//kWnTp0YMWIECxYsIDw83OY5ZVnmX0nwT2Ah0Mf8ye6p0MSgNCwtI6j1W5pZWqBoRJWNAK+8cOLECbKzs+nWrRuNGzf29XA8jpYaCUH5wt9UzNIgLCxMU0uKqKgooqOjWbBgAZMmTXJ6v9jYWPR6fQstYxPKkJ8hlCGBwPfcvHmTCxcukJeXxwcffKDJfKBt27a8+OKLJCUl8cgjj9CyZUu++uordu/eTUJCAtHR0fTs2ZM1a9bQr18/Tp065TAQApjx9DgSxo3j+/z8wkAIlC/1Pn368P3333Px4kXatGnD6tq1lScjI8FgUJYCK/KQkBB27NhBSEgI8fHxNnv0XP1Az5AAHR8De4BB1jY6Wk6ctswbnloqQkslSEJZuqcWBUYCu5w+fRqTycTu3bvZsmULQUFBjncqZ4iaIf/GYDC4XEN5OxIaGup0ryGVRo0aUalSJU37xMXFkZOTU8Kk1B5i1uxnCGVIIPA9EyZMoHPnzly7do0nnniCsLAwEhMTmTVrVmEzSi3cfffdLFu2zOXxHD9+nPnz5/Prr7/avKNZp04dPvrtN7b897+MBdKAqeYbHDpU+GtYWBjvv/8+a9eupX///kyfPp3HHnsMUOqXpkyZwsqF+QxDaRcUbG9wRqNX67i8iq3AZ5tRKERW+OGHH/jvf/9LQEAAX375JUOHDqV9+/ZkZ2eTlpZGdHQ01atXZ9WqVezYsYOoqCiSkpKIidE0rykziDQ5/0atGwoICPD1UMoFer1es0lKnTp1ePLJJ2nfvj3NmjVzap8aNWoABEqSVEWW5cvO7COUIT9DlmUh3woEPiY/P5/Lly/Tvn17HnvsMerUqcO5c+eYOHFiqY8lNzeXjz76CMBuzxNZlpG++44eKJba7wBrUOqMLgLHMjOLKUQAAwYMYMeOHUyaNInTp08D8OWXX/LBe++xE/g/HARCAPt3ufjKPIdOpysykXAWc0XIHKEQ2WTy5MkMGzaMhx56iKysLFq1asXChQtp2LAho0ePpmnTplSqVImXXnqJmJgYLl++TJs2bZg0aVK5dJoT1to2iIxUlnKOsNfWTkBAgKb/iV69egHw559/Or2PJEnExMTkoPiTOoUIhgQCgcDDLFiwgPr16xMdHc2JEyc4duwYHTt2tJlS5i3S0tK45557OHToEGfPnrVZl/FL27bodDqeKwiWagM1UFLbdCj9iWIpCKbMFCKAxo0bM2XKFNq3b8+2bdtISkqia2QkThuiNqjgeJttRmgiFfX30RcsHkKv15OXp6F2SZJKBkECh2zZsoXt27fTqFEj9u/fz4IFC0hJSWHt2rUcPHiQS5cu8euvv3L48GGee+455s6dy/Hjx9m6dStvvvkmaWlp5aqJqUiTs4IkQWamspRzhL22dsLCwjSlyqlNv+vXr6/pPM2bNw9Ag722CIYEAoHAw+j1ehYvXsyBAwd44YUXmDlzJn379uXs2bP85z//4caNG0yfPp2HH37KuzlaAAAgAElEQVSY119/neXLl7N27VpeffVVLl92StW3ydmzZ3n77bcZPnw4RqORMWPG8PXXX1NbrQOyIC0tje0FDS9/MFu/CCWP2lzLGg3kNm9e4hjPPPMMycnJJCYmsnv3bl7/+mtWNGnieLDNI+CwE1ba/9sFp80e5xcsyzyT6W0wGJyfZDcRio87GI1G9u3bx/Tp09m/fz/Lly+nXbt2hc9Xq1aNChWKAuQqVarw5ZdfMmfOHJo1a1YY3JcHdDpduVS0vIalGlTOFSJhr60drcGQ2mqibl1NPVRp0aJFaGhoaMkvKxuImiGBQCDwEnXr1qVu3br07t0bUKyEhwwZQp06dahVqxbDhg0jLS2N1atXk52dzW+//cbu3bvR6XTExsYycuRI4uPjnTZFuXz5Mu3ataN379507NiRt99+m6ioKLv7PProo5gKHK8eNVtvBHKBO4HFwJaCn4t37uT3s2epU6dOsePce++9fPHFFwwZMoQjR45w4sQJbnXuTNDOndZP7EwgtM0Iz6QqnV+t8TcT/E0q3rjVBdTGqw7RkoLsbPPYyMiiu+RxKL2W/Jzw8HASExOd3r527dpcvnyZa9eusWbNGu5v2ZLxwEt5eeWiRlakr2P9f6ecq0OhoaGa3NEESjCkpU9djRo1aNasGatXr2bo0KFO7xcXF0dISEgrZ7cXwZAfkZ+fj04nxD6BoKxy77338v777zNw4EBGjhzJ3/72t2LPX7hwgbVr13LnnXeyZ88ehg8fztWrVzl8+DDVq1d3ePxTp05RtWpV3n//fafHlJycTOXYWELz8wkxW58P/AfIARoBjwHPAh1Qeg5Zu+PdtWtXRo4cSbt27QgMDOTMkiU0bNiw5ETIVUXIErXMZ5kBhrlu0e1UmpxZrZRdtAY05hPCdGBlZKk3ni0P6PV6KlWqxGOPPcb9jz/OcGBL164sXbrUpupZFlADbVFk73+INDnthIWFceHCBU37TJ06ldmzZ2sKhmJjY/nrr78aObu9mDn7EcJWWyAo+wwYMIC33nqLnj17lniuRo0ajBkzhu7duzNlyhTS09Pp27cvCxYscOrYsbGx3Lx5k1deecXp8TRs2JAqklQsEAIlBukODEEJgADaoxgq/AU2VZL+/ftz9uxZatSowZkzZ5SVltbUzgRCALIJnJlryCZFRXIRp9LkUlOdO5gtFcuSyEjr13BIpkjFs0VBzdgdwLfAfTt20KlOHU6ePOnrkdlEmCj4L5rSawWAa/baDzzwAEeOHNH0fxQTE0NOTk4lSZIsv9qsIoIhP0LYagsE5YNJkybRqJFzN61efvllFixYUBRYoChAY8eOLbYOlLtue/bsYcWKFaxYscL5AVUoaWJQD6iP4hNg+ali7x53ZGQkwcHB3Lhxg5YtNTUBt04pfEtpNlBwhDMqkr0UIVUhEthED0wBJgEJCQmaenmVJsJEwQHlvKZKkiTtTpS3MQEBAZoDyNDQUOrVq0d6urN3mpRAtVatWmpig0NEMORHCGVIIPA/6tevz7hx43j++ecL1z3yyCP8+9//Ztu2bSW2r1y5Ml988QVPP/201eetkpGhTErMbqZIwIT583nBaETOz4eEhKLtrTUfLSAuLo4///yT06dPU7lyZefOb4uoBKVRUbKN55OBFRGQKLvV18epO7zmr99dnAmW8rI8dz5/YUWEspgxekUEb731Fl27duXAgQM+GphtRK8hB5TzWqrg4GDx/mrElZtPHTp0YNq0aZoMK+666y5w0lFOBEN+RF45KSYVCATOc+PGDSZNmsRPP/1Ex44d+eSTTzh8+DDjx49n7969Vve5++67Wb16NYmJiWzfvt35k1koRKNHjyYjI4MvvvhC05grVKjgmRsz3VKUQAdsf1tVinf7NE59OWtpDOtoW2fd0NxI/bPLysjiypPq6qUvsC6vUIZvqg3JLPH4b8OH8+9//5vevXtz6tQpnwzLFiJNzr8RdUPaCQ0N1XzNnn32WVatWqUp46FRo0YhgFM2dCIY8iNMJpNQhgQCP+KZZ54hLCyMQ4cOceTIEV5++WU++eQT4uLimDhxIqtWrbJpxd25c2c+/PBDnn76aeftfVWFqGAxGAwsWLCAF154gWsbNthVhLyKuUKUDCzVw9YEtxUhFafd5GQZIpx0ibOF0ejYRSsUpQ7qqpcspIdkFtUmtYgs6vuiZvtkl9E6CDvGEgMHDmTSpEn06tWLc+fOleKg7COUoQKsfXb46vPEgwh7be1otdcGaNq0KYmJiZrMFwrmw05Jj2Lm7EcIZUgg8B+uXr3KokWLGDhwIAsWLODzzz+nT58+9OnTp3Cb/v37s3DhQiZPnlxs36ysLA4cOEBOTg7Hjh0jMzOTSBf7eXTo0IG+ffsyfPhw1qxZ45vPGA8EPPbQ6/XcLLAXd0hGhv3UHnuTO2dSgtSe6ZLeI6pXMSzrkNIBbARmkgRhesjyYC2VJ9iaoLgMJpqKHhfw7LPPkpGRweDBg0lNTS0TNwdFzZB/44rKcbvjSjAE0L17d/7zn/94YURCGfIrhDIkEPgPERERGI1G1qxZQ3JystX0nxEjRvD1118XW3fr1i1atWrFSy+9xMcff8zSpUtdDoRU5s6dy/Xr15k0aZJbxymrOK0Mqciy9Roie4GQM3VCOmAy8HqEYhXu6SBQVYScpSwqRN1Situod0spvE6SJDF16lTCwsKYN2+eL0ZXAqEMWWDuKukHiDQ57bgaDFWtWpX09HSvGFaImbMfIZQhgcB/0Ol0rFu3jvfff5/Nmzdb/QKoX78+x44dY/369WRlZXHw4EG2bNlC69atWbZsmcfGEhgYyKpVq7jnnnuoX78+Y8eO9dixywJ6vV67Ra5aF6SqPe4qQoXbekERcgdJKpsT160WwajRCKmp6ICJwJtbt/J8iy+9rio6QgRD/o1Ik9OOq8FQz549mTlzJvPmzeO5557z6JhEMORHiMZuAoF/ERISwvjx4xk/frzV56Ojo3n11VdZvHgxoaGhNG/enHnz5pHgSeezAipXrsymTZvo1q0beXl5NsdUgoJJKlA2J9W4oAyZ48nXFIxSK+SJCbyaEmdeZ5MMTMP5XkhlGfNr1CISjhQpXtUoSP7rkQqfu9eQ110CAgLIzc312fkF3iU4ONj5FFsBoNxcc8VUxGAw8PHHH9OuXTsGDBhAvXr1PDYmEQz5ESaTiZAQp/pLCQQCP2HChAlMmDChVM7VoEEDUlNTadu2LW3atKFDhw6OdzJ3TtNLihECFLnEmbNUsv2cF9GkDG0zwkWLBqxRCZ4JYKJd3M/yum0zwtRMpXPuUAkqRii1TlEJgJPNY1UsA2s1uNXrwZO9mVzFIhACqEhBMJSPUltUzegzhUgq59bRAvuI91c7kiQV9mfS6bRV6zRo0ICnnnqKGTNmsGjRIo+NSdQM+REiTU4gEHibunXrsmjRIkaMGGFfTTEalRQrc+e0fJQurmUMt5QhKBkcWeKoRiIURbU5KrsWCE4DhqNYYq+MLBrPDZRrnpmpvBfdUpRz2OrbZElCQkmb8F27lJ9a0wq9gZVACGAvSnORfEAGRSFa5tt7v047OgrKHQaDQah/GnHHeGL06NGsWLHCo7VaIhjyI4SBgkAgKA369etHzZo1efPNN21vZK+XznAUNUNVNMx/t/bYyzjVdHWbURmTrcBnaUGPHnXRYlrhiiJkNCpKm16CYxTM/E2KIjQK66lwWsZkGQipwa35dZIkUL9zjEbnTCI8xTaj1UAI4FOUjMOqQGNgUj7setl3wZuraUGC8oGoG9KOq3VDALVq1aJVq1Zs2bLFY+MRwZAfIZQhgUBQWqxcuZL58+ezYcMG66pKvAYTgCR8qhhp7oieZLZMK1g3zWKbrKyS+5k7aZkvWhQho1EJQFJTlQBIXUBRgtILflpDVYiiEhQDAmsKURO99UAo1UYQaDIpx0xNVRY1EHTTwdAhdnowfQ+sAzYDi4EwYOgZ+OCDD7w7JhsIEwX/JjQ0VARDGnEnGAKlrcT69es9Nh4RDPkRQhkSCASlRY0aNXj33XeZOHEiM2bMKLlBSor1BqWhFNUN2SLRxXQxF9HpdPbTmNTUs+GUDNrSC9ZZKjFqkODpoCA11f0UNTM76hL8nOd8IGQLtYmrN6kUDyusN8C9BvQE2gBdgCnAdmDq1KmsWrXKu+OyglCG/Bthr60dd4OhgQMHsmHDBi5evOiR8YhgyI8QypBAIChNhg8fzpYtW3j77bdLBhNLJfh3ZlETUVC+cdSb84myEkSYFyD7WCEqwTajsuRmKsqPK+0trClErqAqQs7QRK8EnZZY1i6pCtGKCGWxfA+NRtipMRAyx2BwHAxaphc6myLZLUVxyrMxiylm7RGmp2Gonq+//ppx48axePFiJ1+AZxDKkH8j0uS0ExYW5lYAWbt2bZKSkpg1a5ZHxiNkBD9CKEMCgaC0iYyMtJ9iNhmlhgWKAqHywv92KXU4w3EtEALo1MkzY9Gizvxigs/1ipOaPew5rBmNilmCO/0NTSbtCpEaDCc6uX2sXnm9BeM8XbC6ufk2WcrfZzywY8cO7r//fqpWrUr//v21jc1FRDDk34hgSDvBwcFuX7Px48fToUMHZs+e7barn1CG/AihDAkEgtJmwYIF1KtXz/6X0QcUD4QSZfvF9k08YJ7gTt2KqgjJJtcVIb1eUVos3dhKA9VSGpT6H1lWfqrqizMcOuQ5xzhr77WqCNlSAp1ViH7Og6ZF6XJBwCygr7rCYpbTsGFDFi1axOjRo3njjTe4cOGC43O4SVBQkEiT82PccUa7XVG/L9xxWYyJiSE/P5+zZ8+6PR4RDPkRsixr9mwXCAQCd5g8eTJ/+9vfSj5hre7HfJ09pSMdxSXNHTTWrah9LwqxU6DvFJ5ShNxFNTUwv96OAiJLS3RfoCVl8nAGNI8AHdQAXgCk5gVpf6aSk63777+fDRs2cO7cOdq1a8fx48c9OPCSBAYGCmXIj3HKjVJQAncb1kqSRL9+/fi///s/t8ciZs4CgUAgcJn77ruPgIAAbTttMzrextX0LEtFyEmFSKfTFQVD3VKK6oSsWVRrZWVkkdKhLisji18HLaqNJ7B2LtU+29M8YdHnx54i5CqHM4opRI5o27Yt7733Hk899RSvvPKKhwdTnICAANGHRiCwIDg42O2bBNOnT2fJkiX8/vvvbh1HFJgIBAKBwGUWL15MmzZt6N27N7GxsSU3sFSHDAbvNuy0VDScVDiKOco5E6w5QlVkSpwIxU0vN9N99cldJKnINCEy0rtqkFwKd84PZ2jeJTExkXnz5vHVV1+xceNGoqOjqV+/PjExMTRu3Jjw8PDCba9cucLy5cv573//S82aNalfvz4nT57kp59+ApSg54477qB169a0bt2amjVrAop1u1AO/BtVWRbZOc4TEBDgdvpoVFQU/fr1Y+3atTzzzDMuH0e8awKBQCBwmXr16vHcc88xc+ZM53bQMil0RS2JiChu6W352AbFlKGrh0DSK+YPniafohSwqZklX6Ot16y6vnkatVmqNwMhSa8412nB0vnOS9SuXZvz588zcOBAGjZsyOXLl1mxYgVPPvkktWvXpkOHDsyYMYPTp08zcOBAtmzZQpUqVTh9+jRLlizh9OnTdOnShXvvvZe2bduSk5PDvHnzuOuuu6hduzYjR44kNTVVWx8rQbkjICBAvMcaCQwM9Ihi2rt3bzZu3OjWMYQyJBAIBAK3GDNmDNHR0cyZM4cqVar4djAZBeqAGlBkOKcWFAuGKhU0jL3ohq20pyl0fit4XTqgMUX2aa7Wb+/apV2pU9Ut81Q3tYGrtdTCRBMkpyqpgZXii4Kc0kwLtIF6J//+++9nwoQJxZ7Lycnhu+++Y/Xq1bRu3ZrLly9z+PBhmjdvbu1QxZBlmZMnT7Jp0yZeeOEFJk6cyLJly3jsscdo2bKlV16LwHcYDAZyc3MJDAz09VDKDZ5QhgC6d+/OyJEjyc7OJiwszKVjCGVIIBAIBC4jyzLJycnUrFnTuS+iBI0Kgas4qQipFDNQUJuSBnhBiTFHDRrMezFZKiKqs53K1gQl8PgMRbn6AFhcyi6im+28h7bUtCQgz4meSwkFvY88kaqogc6dO5dYFxISQrdu3Vi4cCF//PEHgNPuc5IkceeddzJu3Dj++c9/cuXKFa5fv06PHj2YMmWKcJfzM0RdmHY8pQxFRETQpk0bvv32W5ePIZQhgUAgELjE1atXeeSRRzh16hTr1q0jODjY8U6q1bS3VQEnFSGVYsqQSqV4RdEA3zSDtbSWtmU1vagTYEXFCsWxYmQyKcGXvfdDDc7U83dLUYKVZI3KWaIJ5BTld1vBTmpq0UvZarTfC8kDqEGJWt9ji6CgIK5fv+7SnedLly4BsGTJEi5evMiTTz7J3XffzbBhw2jdujX33XefaItRzjEYDCJNTiOeDCDVVLm+ffs63tgKQhnyE9zxahcIBAJXOHnyJFu2bGH27NnExcU53sEcZxWiUpokFjNQUOmWUtIiPBmldmdFRHFFx1WSgaOydUXIHFvBQxK2bcrrabh21lQ0yzGZXwsvBykA9Ev1ukIUEBDA8OHD6dGjh8NtK1So4FJzx3fffRdQJsy1atViw4YNvPHGG1y5coVXX32VevXqMWXKFM6fP6/52IKygVCGtOOpNDmAXr16sWnTJpfnwiIY8hNEjyGBQFDa3H333Xz11VckJSVpnwikpCgTbXupbLIMpXS31aoyZE5cwZIEDMlU3OAmo6gvrhKKdWOBpVLJeiX1sfn2jkwJfs5zHEyq1z8jQ7ne5ttHRto3sUiUS44hUVYCxWSLbS0Dq5677I8LFFWre6pzzVddRJIkPv30U6pXr+61c6Snp1O1atVi5+zfvz+zZ89m34SDfPXUWS4cWMx9991HVpYTqYSCMocIhrQTGBjosWAoNjYWk8nEyZMnXdpfzJ79BGHpKBAIfMF9991HVFRUob2wZuy5mJVi3UiJpqvFn1Tqe8yNAYYXLB+4eMJQIFvWprAkoQQHqhtdtxTrrmvm6xw1f42PL/44L69oX/P3xlavJmvjrxTv2XorX6QoepDt27dTt25d63etZRMtouH9385zz9WrDB8+XEyqyyEiTU47ngwgJUmia9euLtcNidmznyDLskvyvUAgELhLnTp1+PPPP7XtpKoO9uhnI/1LVSs8+JlnUxkyGq3vkE+RTbZWmkfAehuqzkorQcc0YISL6YKqAmepEEVEKOvVGi5zrAU+mZn2FSLLFLrBGUVBmbUgwDzocgZJKt64tRxhNBpL/n0tMxQpXsOBdFh44QKmdet4qGZNt5tRCkoXoQxpx9MB5P33388333zj0r4iGPIThDIkEAh8hclk0l4A7qm+Nh5Sj6wGQ5Jkux7H6QOjpIwlo6hBERFKc1AtilA61u2vzQNCe4EHlFSILBUh82Pae29sKUSlQWL5bVxaovGq2oR2GkpQDQQBq4DAy5fpFxzM1atXS3mUAle57ZQho9HtG1KevoH/wAMP8J///IecnBzN+4rZs58ggiGBQOAratWqVWg97BS21BZLsi0m9ta+fLunekQhKmag0ERSFndRLbBVsmXbLncrIxWlINcsEJmGohp4grGHiswftChClni6pkUN4PzcTc1gMBQPhqBQETInEFiG0kIqrnp19u3bVzoDFLiFUIZ8T9WqVWnXrh0bNmwAKPn/Zgcxe/YTRDAkEAh8RUxMDOnplp02bRAZ6Vht0aEthQrcVogKlSGjsWR9kEsHdHN/UBqq2vF0KGSp5Pj152YWmT9Y2zYy0jm1zlENkqs4e1xD+UyV0+v1JZUDG++tAZgHNMrNpW3bts7/bwl8xm0TDKmKkPlnuBsKkU6n0xS0OGLEiBF8+umnAFy5csX5cXhsBAKfkp+fL2qGBAKBT3j44Yf58MMPHaeJGI3OTbglF1SCq4e072N+SkkiP+mhkoGaK/bZloqQpT23NQZnKNuYGw+0cdJ+PImS7nMqquJkjqqmqd8ZzgRCer1tRckTqLVNjoJgD06cSpMSypAjJ0AgC2gL9OjRg3PnznltbAL3ue3S5DyEpxqvqgwYMIDdu3dz4cIFzp8/7/SkWARDfoKw1hYIBL6iZs2a3Lx50/ENmUNOBiwVKlhfb683USUbNTBOonvvPfJNVlQHrTflPfkxnJICYW6mj6mKkC2jB2dvonlLETJnm1EJ3CxtuVV0lNtZSwllyImasR+B74HE33+nd+3aDBo0iGvXrnlriAI3uG2UIQ/fDPFkryGAsLAw+vfvz9KlS/n999+d/rQopx8rAktEmpxAIPAVx48fp3Hjxo5NFGwV7Vtiq65GVQ/MUWtg3GkCajSiO36cfHspWHE4/sbUoRR7qCTK8FSENtMBVSFSlaSsPPvqVDLK63ekPNkjM7NkzydzQwZZVgJZDzv42UV9X83fb5OsLOWQEgYKGtI6nwEOAWvWrOGjjz7y9NAEHkCv19vvU+ZPNNEX76/WRK8sLuCNIHLUqFHMnz+fy5cvC2XodkMEQwKBwFccOHCAhg0bOt7QmUarzmCuELmpCAGQmoouNxfZXjCUjuP6nc9QGrFCUapfZqayuFPrclR2TyFypjGsL9OsVUXIPNUvN7OoFqocK0IqJYKhi6m2FTALqhT87AFsfPZZTw9NINDGz3nFzW1+zlMWF/B0mhxAhw4dqF27Nv/73/+c3qecf7wIVETNkEAg8AXbt2/ntdde41ktkzRbCpEzNSNQvL7EHUUICp3tpLw8+8qQI8zVm0QZxlQorgiZTO7ZUmflwVJ9kU23+vqdUYSinTxHRkbJ90DtB2VeU1SaCtHVQ+VaEVIpUVOioS5OvfLvA3uAd955h1GjRnHp0iVPDlEg0IYbipCKp9PkVCZMmEDVqlWd3l4EQ36CUIYEAkFpk5+fT9euXbl8+TKtW7d2fkfzYMZeHZC3MXNF0plM7gVD6Sh1OZaKkDnuKkTD8pwzY7BksoPnExK0u/dBUVBkMDhvl24NewGtJ5S/MkAJZUh9L51Qh6IAGagLdAWef/550tLSaN++PRm2UkoFpY4kSbdPqhy4pQipeEMZAhg4cCB///vfnR6cmD37CcJAQSAQlDY6nY4vvviCatWqce7cOW7duuV4p5WRECYpyzaj8y5iXkbnrjKkMqyMOUqpwVMytmuP7BVFq2qRZT2ReRBrMilBpTsBUaJc3GEtIEJZ567y52sK/tat9hkCbc6JskzlRx4BYOfOndx///08//zznhmnwG2Eo5x2vKUMaUXMnv0EoQwJBAJf0L17d0wmE/Xq1eOdd96xv7HRCEMz4QbK4msSEgrraXR5efZrhpzB/CPYmuqVkFA6rmy2sFSI3FGErPWKcjcgMg98/EQRUrHaZwiU4FnDV/ff//53Zs+ejcFg4M0332TlypVkeboRrsAlAgICRDCkEW8pQ1oRs2c/QdQMCQQCX1C5cmWmT58OwMcff4xOpyM7O7vkhisjYWdqcROCfqlFCpEvmExhPY1HlKFgt0fkPVSFyNwhTotNrqoQOUpr9IRC5EeKkBr46/v3xDTnLevbfq4vmS6nQ1HyzN8vwGg0MnHiRAAiIyNp164dW7Zs8darEGjAYDCUiYl9eUIoQwKPIpQhgUDgK5588klOnDhBVlYWkiQRGmphX6YqQpbp9L5WiMbvgmPKr24ZKOhQJqvZclEdjaqebE2A5hFKEJGS4r2mpaXFPhvNXQV2Mdy6RV5QkPUn1foh869wc2dCO/Tr14/169d7YogCN7lteg15kLJyzTyQIC0oC4iaIYFA4EtiYmKoVq0aixYtKlKpVfe0+Hj7ttRXnWzG6mkMFSAkC7JNSpqcoz5JoAQ2RyyMEewpQv1SoZ6bjVPLG0/u8vUIfI9qPRym/C/oU7/HdPKk/X0+14NcUFfkpElG3759+cc//oHJZHLc50vgVUSanHYCAwOFMiTwHEIZEggEvmTt2rXIskzv3r1LPjn2kP3Gob7icAas6wRxGtLk1EDIPH3JXBGy5AZw1KTc5fdVOqAnudPNHlG3KTYNFMxxwS2wbt26GAwGLl686OYIBe4i0uS0o9PpkH1sngNCGfIb8vPzxV0hgUDgE65fv87TTz/NF198oahCqiKkWks/UrBhQkLxwvsVETDYx9bA/VLhBuga5JEfEODd83xcxgMJNVizV69zuOD9UuthzFHrXrztqLe0IOjUajHuCwoUIv3Nm15TDapVq8bFixepWbOmV44vcI6ykvIl0I6QEvwEoQwJBAJf8dZbb9GoUSO6dOlif8OyqhChsWbIid4wVnHFIc1oLF6H5C22GeFiqrIslYoMAJbZuCbWFCJJXz4CFB9Qos+QB4mKihLKUBlApMm5jq/VIaEM+QmiZkggEPiC77//nvfee48NGzYUrcwwUw8APihYP8Si1sbXqhAU3rnX1a3jXM0QKM1Vk6QiW+omTgQpi/Vl1yFtm7F43VaS2XOPm2CYlX0Om713qlJTWoqQ5eNyEIA5lSbnIjVq1OCPP/7wyrEFziPS5FxDDSIDvKnMO0DMnv0EoQwJBILSRpZlJkyYwKxZs+jYsWPJDW7plSUgAt7UkMZrNILBUJRuVwro9C66ya2MLHSks4taGL8yUlFbHNUPqYqQZT8fTytEqiKUWxCoJlk8fwP7ChFornO5HZEkyWt3v9u2bcvu3bu9cmyB8whlyDXKgr22mD37CSIYEggEpcnhw4cZNGgQV65cYeTIkdY3MpmUZUimYiJgibdTvzSgO/ob+YMGKWl8ccBSB8FbmF4JWKZasQy3xcpIJeiQTUXpaGUJy0BI5QaKQuRrLIMua0HYNqMSuC2VlOt9G9C1a1e2bt3q81Sj2x2hDLlGWWi8KmbPfoJouioQCEqTjRs3cubMGXbt2lXyRozRqL3xphoYGQyKGmIyKQYMpaQQSZJEfitU/qoAACAASURBVH4+HJWVxVHKV7ZJ6bnjjCoESqDxSGbJ9bYUInv9iDxplqOm7tkKhFR82Q9KC1cPFalwuZm3RUDUtGlT9Ho9Bw8e9PVQbmuEgYJrCGVI4DFEzZBAICgtZFnm7Nmz1K1blypVqpTcIDW1ZHpXGUen0ynBkFa07GItoLCnECUDFv1riQM6ddJwUg9hOQ5fYk8RyrUIOG+DgEiSJIYMGcKKFSt8PZTbGpEm5xplIYgUs2c/QaTJCQSC0uDy5cvcd9997Nmzh0WLFnnmoOaqtlpkrtdDRATk5SmGDJauapIEdxmKJroGg7K4SIl+F3onlPZol0/nPB+Y/a5D6VdkTzVyhUQZtibYdslTeymVZcwVIUvKSEDkzbohNRgSqXK+Q6fTec0kw58RaXICjyGCIYFA4C0yMzN55JFHSE1N5dVXX8VkMpGcnEy1atWs76A2I1VJSPDOwI4W1CNJUlF9kou4pAyla9jW8pqo2DMfUJ9LRlGEOid4z6jAltNdWVKE7OGKbXkpo9frvaYctGjRAr1ez5EjR7xyfIFjRKmCa5SFNDlhre0niJohgUDgaW7cuMGJEydYs2YNn3zyCXv37iU/P5/du3dTtWpV5w9kK2UuIaFI5VA/vywDBqNRW8qdJCmqkqNJp/nnpSwX1QypmGQl9ap7GUn3mwwkpnj3HIkyRBmV38uqDbg17Kk+AWWgsW8Baq8hb1gIS5LE3XffzcGDB2nRooXHjy8QeIvAwEAyMnz7PyqkBD9B1AwJBAJPcvDgQWJjY+nTpw8//PAD3bt3p23btuzfv9/5QGirA0Xo0CH7z7uKuUJkNCopb/qCJqI2jB2kb++Fq4eLO9x5Si1JpsiaWlV7tNhRl6Z1dbcU3wVCrroL5mUpSxnHm41XQXGVK9bvS1DqeDMV0l8RypDAY4g0OYFA4Cny8/MZMmQIM2fOZNgwax03HaBOaO19JFmmztmaQFgqR1rGkAzspMjk4AaKymR5LPXx231LHke2ohBpdVZLAuJsNC8VKIGqeYZiE0lx9HOWagWGEhcL3qOogr+tMqZuebPxKsCwYcOYOHEiV65coXLlyl47j8A2BoPB5w1EyxtloWZIBEN+ggiGBAKBp7h27RoXL150LRAyx1YJTpheuwmAXq+9JsiRXbQ9zNP2uqVAEwOcMrluMa2lvuh2w/LvJB3l+jt7h10NelT1rYwFQSrerBkCqFChAgkJCWzevJlevXohSRLh4eFeO5+gJGqvIREMOY9QhgQeQ9QMCQQCT3Hjxg1CQ12onLf3GRQK1NMX3cXXSl6ebxu0/mw2iW0RCUes9AxyhCQVr5O63bFUhCxxVSEqo3hbGQLIyMjgySef5NatW0RGRnLu3Dn0nuxLJbBLWbCJLm+oappPx+DTsws8hlxQACwQCATuEhwcTE5ODufPn6dmzZqeOWg0MK9Tmb1rb5UVEZ4/Zjnrv1SuKON/W6Vhvbxx40ZiYmKoVasWBoOBH3/8kTZt2nj1nIIivF0X5o+UhbmryKvyI8rCH5RAICjfXL16lZCQEEaMGMH//d//advZ0j5alqF5hLIcld2frNqyp9aKKnrp7BxTlm27kE1GCZS2JiiW1wLX2OzAYEOLKiQAoGLFiowcOZKTJ09y4sQJn6cf3W6IeVj5RARDAoFAIMBkMjF79mzuvPNOatWqxaZNm4iM9ECjysMZylKW+ADFXMFkY7KtRRF6TaQg2WWpVLRY0i1FCTotZyJxeCbovU2ZPHkyUVFRNGjQgE8//ZQDBw74ekgCQZlGpMkJBAKBgI8++ohly5bx/fffExYWxpo1a3jggQfs77TNCP/bpfxezSwFzpsTWRvW2E4RipKuZ82mWpaVWh57Y1f72eQW1AuN36WYKjjLUj0kmrSZA9wObE4o7tYnFCG3CA8P57///S/ff/89e/fupXfv3kydOpUxY8b4emgCQZlEBEMCgUAgYPXq1TRp0oS6desSGBjI2LFjHe/0v13K5B6AVNBJttUWT+BqCoqayjbZYyNR0Oout6gTcJvUDFlTgtR1lsFotxQQ8Y9HCQoKokuXLnTp0oVBgwbRqlUrHn/8ceFyJhBYQaTJCQQCgYDPP/+cixcv8tprrzneeJtRsTGWLVSR/ILnvIE7itBRWVm0NC9dZiiZ3jU4AyrFwzRgOI4DoVCKN2g1N09wtcGoVrYZS+9cgjJJgwYNiImJYf/+/b4eikBQJhHBkEAgEAioXLky3bp1Y+3atY43VhUha318uqcqlsmeRJK0ubDpUPoSuWO4IJtgFMprNBQkUWwzKo09j2HfElodw01c70vkKa4eKvrdW4GqNaIcmCMISpXWrVtz6NAhxxsKBLchIk1OIBAIBBw4cIBJkyYVWsO61ZvEUaCgok7OPW2JXDEC4uNd21dVvMwDPZNJUYgkvaIKOfv67G0XB5yLUAK9iAjI8LDJxDZj8TocKHhcSvVK6ntqrqw5q8oJPM6VK1eoVq2ar4chEJRJRDAkEAgEtzHXr19n8+bNLFu2jODgYF544QXHgZChAsRl2lZI7O2/MrLIgAAgwAu9fDIzXe/noypCliQBaDBLCMa+KpQOUHAdMjOL0thsBSrmaW7OBDNX7agA24yl15MnKkFR0wQ+JScnR9g+CwQ2EMGQQCAQ3GacOnWKN954g927d3PmzBk6d+5M//79mT9/PrVq1XJ8gErx8H8ok1zLVDlHE3XzQEh97C2FyBWspf65gqvpcWESZDu4hkslJchwdL2SC34mWTwuTcrCe3qb884773D06FE6duzo66EIBGUSEQwJBALBbUBubi6TJk1iw4YNXL16lfHjx/Pss88SFxen3WFKneCujCyuEGlRhMy5mGpfIZJlpQ7J2fS08swNHJsdJAGkwlaj7WCjUkGaoLkqExBhu5GswC9Zv349s2bN4ocffqBGjRq+Ho5AUCYRwZBAIBD4MWfOnOHtt9/mm2++oX79+qxbt45q1apRvXp19w+uKkTO3P1XAyFL5UVVKyo5qPH5XG9m4+2A26WHz8VU2ylv5gFrcsG1d3SNBX5Famoqo0aN4uuvv6Zu3bq+Ho5AUGYRwZBAIBD4MePGjSMqKoolS5bQsWNHz9YNaE2BspeC5uhYw/IgsRRqHpLxXKpcaWAvIAIYmQXZ6oNSNFAQ+JTc3Fyee+45/vWvf3H33Xf7ejgCQZlGWGsLBAKBH1OpUiXat29Pp06dfFtAbSvASCpY1F44LSKtb+dsn6FQx5uUyjFKE3tmCdkaTB8EfsPLL79MlSpVaNq0KS+//DLnzp3z9ZAEgjKLUIYEAoHAj2ncuDHp6em+HYSWIOxIphL4pKQUX7+zFBzJrh9Xfvq6N5A5slzSJtvcCEHSW09/i4xUXOqs4ci5TlA2Uft3mey/b5cvX2bhwoXcuHGDjh07kpGRQcOGDXn00UdLYZACQflDKEMCgUDgx7Rs2ZIff/zR18PQRmpqkUJkNCqTd2fNE26gOLI18SMb4W4pSi8iSwIilPRBaylytgIhQflE/R/Ix+HNhSVLlhAbGwtATEwMVapUEU5yAoEdRDAkEAgEfkyVKlXI8HRDz9JAVYhcUYRcVXYqNlIag4a50XDWE+iApXrYmlC0LiNDebwiQlGDbClCAv9DbyX4sbYOxTZ/9uzZ1KtXD4Aff/yR6dOnc/78edatW8fNmze9OFCBoHwi0uQEAoHAj7l06ZLvOs9bpndp5dAh1+20J+N6c1Ff1tmoKXDD8ko+p+W1JCTYbzwrboWWD2ypQKpCZJbqeOnSJf7+97/TpUsXUlNTCQoKomXLlrzxxhtERERQqVIlPvroI9avX186YxcIygni41AgEDhNdnY2EydOZMCAAezevdvXwxE4wZEjR7jjjjt8c/KLbtb5xMe7ptKo32z/21XU0NVXREQoE1ZZtt701PJbWNIrDVXdJSXFdk2QLDusOylkqaQsgjJNcnIyd955JzExMfz8888MGDCAkJAQ+vTpw+bNm0lLS+OBBx4gJCSE7du389tvv/l6yAJBmUEoQwKBwClu3LhBq1atOH78OFOmTGHo0KHs37+fqKgoXw9NYIMrV67wzjvvsG3bttI/+TYjjHJjf8uJvBYThuCCn4kmCu2kV2hoOLoiAvKynO9rZI94s1S2RBmSzF6HNRtvdcye8jawVIjELdDyhfp/YPn3b/b/cerUKZ599lm2b99OVFQUgwYNYt26dURGRrJgwQI2b97Mk08+yZw5c4iIiODEiROcPHmSQ4cOER0dXYovRiAom0iyk24ylStXPjFjxowGjRs39vKQBK6QnZ1NaGiob61zBX6NLMv88ssv5ObmUqVKFfLzlfwlLapDVlYWFSpU8NYQBWbk5eVx4sQJKlasSO3atUt/ANePw4nrrqe5tW5d/PGBA87vW7/gp+XNb8tjWlDi71PLOS3R/z97Zx7mRJn9+28l6b0xDQg4zojKIos+gDiIC5gIzQ/kqlyRZoZGgSviNi7ouM0VdVQGd2QQxt2rIk0Diggi40MLaWhBBaVBoVFBQGURlE6g9yx1/3j7JZVKVaoqqax9Ps9TDySpeuvN0sl76nvO91hDAyEpxyTjql2g15hr3Dmm8tw7JHleaUxTUxNsNhtstiiuQ8s/i62fj4MHD+LIkSNo3749jh8/Dp/Ph7y8PJx66qkQBAEtLS0A2Gf7+PHj6NChA+x2O3755Recc845yM3NlZ+JiIHGxkZkZ2fDak1y3WGaEY+1wcsvvywuXrz4QVEUn9Ha19Bf5J///GdckOwvaEKRjRs34s9//jOys7OTPRUig7n88suxatUqPPXUU3jssccwY8aMk+ly06dPxzvvvIMbbrgBjz32GAoKCsKOd7lccOrtF0NEzb59+3DJJZfghhtuwBNPPJGkiyRO9k+BYMzQQOkCndWAm5wWERSisM/n0f8NeFtd2Yw0YrXbmeGBKs7wu1LN7rrscuX7nSkyvzSkpqYG7du3x2mnnWb8YIXvzUAggD/84Q/47LPPcPXVV+ORRx7BBx98gGPHjmHv3r1o164dzjnnHGzZsgW1tbU47bTT0NTUhNNOOw05OTnYtGkTRFHEeeedhwsvvBB9+/ZFt27dMGzYMOTl5cX+hNsg27dvx5/+9Cd06NAh2VNJK+KxNvjoo490S/uUJkcQhC6ee+45zJw5EydOnEB2djYCgQBqa2vx6KOP4uabb8bcuXPx7LPP4qWXXsIvv/yC8vLyZE+5TdLY2Ihrr70W9913H+6+++5kTwf40AGMrAwPZuz25Ng/j/foT0ErcQOLbIBoMF0uE2ythdYr2/y5C3SlO9VYu3YtTj/9dPTo0QNZ9TX454QJOAPAVgD/BjBRElgfPHgQVVVV2LBhAw4dOoQ+ffrgvffeQ15eHqqrq7F582bs2rULH3zwAW688Ua4XC5QJhDRVqBgiCAIXVRXV2PatGk466yz8Oqrr2LChAlYuHAh7r33XlitVrz66qsoLy9Hc3MzRo4cmezptlkWLlyIDh06YPr06cmeCqPYBQx1MotsaUA0YEB4Y1UgeAVc+tgnDv2udPkAmhBZSXI6Q+toFoL17Om0PHzfk65urcqNEYXICKmiCHH48+bmCUrudkRSmT9//slGqqvuBRbeCWQD+BNaP6b9i4BtTKE8/fTTMX78eIwfPz5snEsuuQSXXHLJydt9+/bF4cOHKRgi2gwUDBEEoYu///3vGD9+PA4dOoRZs2ahoaEBzz33HMrLy3HZZZfh6NGjuPHGGwGwtM2SkhJs2bIFI0aMwOzZs6lWKEFccMEFeOSRR1BfX586rzkPbJQCHTk8SJGm9okiTgYjWpwJ4DE7U4C0zsGZCGChhpojWI0rRJlAuipCPIjLMmCcocbS1gbAsY5jIosXL8bXX3+NW3oth0+4E38C8ACAewD04Ttt94TZb2tx5MgRHDx4EIMHDzZ/0gSRopCvDEEQujj//PPx/fff48SJE7jzzjtx9dVXY8uWLdi6dSt+//13bNu2DQDg9/tx5ZVXori4GIsXL8bmzZuxfv161XFFUTxpxkDETn19PQ4dOoR27drhm2++SfZ09ON0KtZFANDvJJcP4GErW7QuhLFfuIkAjn0dXPjKmeBjbnAODdtrq1V7Hympbl09wZdeqpAgsG0i2PaoCSmLvjq2pQgHDhzAtGnT4PF4cPXzwFjJYzsBnCo/oL/KZ1qBDRs2YMiQISHGCm63G/X19Thx4gTefvttzJ07Nz0bOROEChQMEQShG0EQUFdXhylTpuCyyy7DzTffjJKSEpSXl+N//ud/sHv3bni9XgDAr7/+il9++QUHDhxAz549FcfbunUr+vbtiw4dOuD48eOJfCoZy9NPP41//OMfuOWWW8y3Pa9whi/ejSzmXS51VaiyMnKTUEC5Tw8nH6w+iS/cS0Xjpgv7EDRMUOMmjTkOGRJZ+SIST5mgHuRGYmkR20Q/2/jtJPPAAw/A6/Xik08+wbFXgI/BPEqOAdgI4Dr5AXv0B3Ljxo3D0KFDAQALFixAnz59cOqpp+Kcc87BKaecgilTpmDdunUYMmQIXnnlFXzxxRfQ60pMEKkKBUMEQejG6/XisssuQ1ZWFvbt24cnn3wS2dnZGDduHE499VT88MMPyM3NRXV1Nb799lvMnj0bb7zxhmIw9Oabb2LEiBH47bff0KVLF+Tk5CThGWUWx44dQ2VlJR544AG89NJL6NKlS3xONBHG+v6YeV4l7HagXmT1SbGSZVd/7Fybds3Q5kp9jV5jCSqJcLgiJKcGxhUim41tckUoWoWIz61G0+FXk5aWFixevBjjxo3D4MGDse1gAc4DuxbwO4AuYHVDITTpH79nz54YPXo0Nm3ahLvuugt//OMf8f777+Ptt9/GunXrcNFFF+Gtt97CTTfdhMrKSjidTtx7770UEBFpDdUMEQShm0OHDuHHH3/E+vXrT9ajHD58GC+88ALat2+PUaNGAQC6du2KJUuWqI5z9OhRTJ06FX36sOz2TZs2UTAUA9u3b8cbb7yB8vJy3H777bDbIyzoo6HCCRxpVUSkwYAgBNUavpAvjfOiyGoF3mmt3ZkJoLPDPCUmF5HrQvbpqBlqADCmEhjkJIUo3ek0hP3LP/v8tl7kwdmHzcAlyrvq5bfffoMgCLjpppsAAJ+KD2A4HsFRAHPAgqIwdNYOHj58GEePHkXnzp1x1VVX4fXXX8fYsWND9tm0aRMA4M4778Sdd96JX3/9FcOHD4fdbsfDDz9MvQ6JtISUIYIgdHPGGWdgwoQJOOecc9C/f3/069cPffr0waFDh/DWW2/p/iHs1KkTFi1ahDvuuANVVVXmL97bED///DMuv/xydOjQAVVVVZg1a1b8TqakisTqrhaNIsIDrhkwL+BYCKDvwMj79ND5OW0AUF0deZ9SMTRwlN8mzGWnjteWK0J+P9tGVbFNsLKt2BWb+ugFcOWVMaXaHTx4EIIgIC8vD7///jvmzJmDCxYuhPNPFvwHwB4AFQB8ALtwIIoaPa+CzJkzB6Wlpdi9ezfy8vLCAiElunTpgg8++AALFizAgAEDUFJSgoqKiqifH0EkA1KGCILQjSAIeOmll3Dvvfeivr4egUAAvXv3jqpB31//+tc4zLDtsWnTJgwYMACPPvpo/E5S7IqcFjcRibOG7oXQxWQkp681DuDOSpYqFYk+YIFIpMCqwgk8YKABa12cCu65Snc9gjVRfa3AjjQyOUg3YlWE5EzxACXGp/Hdd99h7NixsNls6NKlC+68886TaWqTJt2HmqefRiOAEQDKAfxFqgjxxsV9wNwWZX8vW7ZswWuvvYbPP/8co0aNwl133aV7Xj179sR3330Hl8uF559/HiNGjMCoUaPw0UcfwWpNUzdCok1ByhBBEIYQBAE9evRA//79cf755ysGQu+99x4uvfRSHDp0KAkzbFuMHj0aX3/9NQ4ePJjsqejD6QzWUHDXr2kGjn/IH2py4PVENj2IFAjlgylCNWBz+frryOeeBvP7DBlRhCqcQG2r4iQ1h9CTvpdJ8M9OkSQoFkVWO6aE/H61+iKfj21WK9v4bSOKkB51vDm6AOGf//wnvF4v5s6di+XLl8PlcmHjxo3497//jSeffBIDzj8f2bm5mD17NkbW1jJFyOlkrxP/vNSA2c4XhM5z7NixePnll9GpUyf8/PPPmDbNyB8lYLFYMGzYMKxatQqHDx+GxWJBr169sHr16pD9RFHEF198gf3790f1GhBEPKBgiCAI05k/fz42btyIqqqqZE8l4yksLMTo0aPx8ccfx/dEoqis/lhg7JdE7TOxEJHd4hwO4+qTVqPWBgCTdC5Ma6vZ/noxu8cTV4T+6gkPyBrAFuHntvFkD6V0sEhpYmbXt+gdb4h+peno0aN49tlnUVZWhvXr1yMQCODLL7/Eww8/DJ/PhzfffBMlJSUQBAFjxoxBbm4uRo4ciaKiomBzYY/CxYIGQFxiP2l8YLFYcM4552DNmjW46KKLQqy1jdKlSxesWrUKr7zyCqZMmYJLLrkES5cuBYAQEwaCSBUoGCIIwnRWrFiBzz//HCUlUeSCEIY57bTTcOzYseSc3C+yTQuuCPkVVIwGaCtEPIWNKynTWvePtdZGPh9BYHUjSuj9xbRagQEDjM2D91myCuHKhZoiJCfTFSL56+LxRFaI9ChC0tv8ca4IGZ2bHrpadNW5+Xw+vPjii+jbty++/fZblJWVIRAI4MiRI3jnnXcwfvx4fPvtt7jiiitOHnP22WfDbrfjs88+Y58llQsPLa3/zv3LcdgtFrz55psIBALYu3cvDhw4gC+//JIpN9xKf1F0Qfbw4cOxadMm/O1vf8N9992H+vp6rFu3DpdeeinuvvvuqMYkiHjQxi8jEQQRD9q1a0cdzBPIjz/+iIsvvjgxJ+PqjNXgVXW9KuEah3ZKEl94agUnDod27yK9lLhZncfSIpZmpIbdrrtgPYQNleGBjiCw11vJyU+JM42fNiMx+vrHqhDpPf7MM4G7ZmvutnfvXnTr1g0AcO6552LixIno27cvnn76aZSXl2PJkiW4/PLLw45zOp34/fffseLBBzEtwsWRHADDwT5uJ8CU/EmTJuGee+7B3r17ATDn0LNqq1s/c36gtPU5LgmvN4pEt27dcPbZZ+OJJ57AsGHDsGPHDvTt21f38QSRCCgYIgiCSHMOHz6MDh06JPaketQgKYWFyuk6Upqt2oGQVAUIIHwhapHMTSsQ4sqBdF56ghkLQgOXvlZgl585jhlVhPq3Ph81xYfbl2uVcOSDFcZnMjwQ5+95tIGnFnx8M01B+lqBSZN07Xr66aejrKzspGPcxIkTIYoiRowYgc2bN+Oss85SPK5r164YM2YMlpaVocViQXaAfai2g8XJdgA/AcgCMBDAbgCHzrEgsHIl+vfvj3Xr1mHZsmWo3/E6Lt4bowe4BEEQcN555+H999/H7t27MWvWLEybNg3l5eVkxU2kBBQMEQRBpDkjRozAypUrMWzYsGRPRR23O3FX4LWwWlndBk9Xko6rtbjmCpFZfOuJnPoG6DdtMHDFPqHEI7iIhjUO4GgVUGpiOmF/nTbZO3xAjZatISMnJwcTJkw4ebu0tBTZ2dm6nNl69eqFP3TtiskXX4zfystxEMAuAKcDOB/ABgD3APgCwPVvvIHTbrgB1157LW655Racd955OO+884Cls4HxKicY7wEgGFaIrrjiCpxyyino3r075s+fj7y8PCxZsgTHjh1D+/btdY9DEPGAaoYIgiDSnGuuuQaffPJJ/E5Q4QzWU1Q4WaqY1BFOb02B1mLY7w+vATEKV4usQrjpg8PBNp8vtG7DbmfbQI0+Q2awyAb0lbx2WoGQXow4lEnfu1RiaVGw71Sk3lP8fZUGrrxHUCSKXcAEky3I98TJQl1CXl6ebovqq6++GnV1dWhoaMB1vXphlCCgPdhiLxvAjQBeB7BRYIry4MGDsWfPHjz00EPBQdobVDd1MHXqVLz55psAgNzcXLzwwgsAgPLyctPPRRBGoWCIIAgizcnPz4fX603MyY5UhltZi34WJKU6Lpdy8brbHZ90KyVEv3bfo2gw273ODOQBVzwDMN4oVRCYeYASFc4wS2lVHA59+zVpPG4BU1ESRP/+/bFs2TJ8/vnnmJ2Tgx3/8z9YD+DN1scPAVj95ZfIKWyHuXPn4q677sJXX30V6h5X7GJpl2pYELMKOX36dLzzzjtYt25dTOMQhBlQMJRBiMlOQSAIIilUVVWhY8eOEfd5+umnUVZWZmxgrghJLaonIjxtayLYPnoUor46rnCr1Rap2XvLsVpDa5r0HhdPuCJkdp8igNUU6Qnm1NzUkq0QcaVRbkyhpRAByoqQWq3YiEp99uiiRgNeKVpBaJ414emLl112GebMmYNp06Zh9erV6CuKGC6KeE8U8a4oYt++fWhubsYZZ5yB0tJSZdXpQwdr0CqnD4zXC0agubnZtLFSAVqHpScUDGUIgiDQHyFBtDH8fj+GDx+Op5566mTaiRoPPvgg3n///fhOSI9CJGa4/bMa8VKEAGBmnMZNB7giJEeuEOlVLvUE61LcbhY8yQMKrgjVBdPy/H6/7nS3WJkwYQJuv/12RYOC9evXo6WlBZMnT1YfoNgF7BRDFSIL2H0m0NDQgEmTJmHFihXxTfFNMH6/HzatdE0ihFRYu1IwlCFYLJaU+EARBJE4LBYLtm/fjnvvvRcXXXSR6n78uyE/P1LuiwLFrsiNUKXw/Xg/HDXmOoAya+Q0HK3vMq3HjfaISXdqwBb/WiqKkkKWDNVMnjonVYSkyqOeHlLyXkJKFNq0G/BydkT52ZErRAqKUCKDITX8fj9effVVAAgxaVDlQwcLEPvZTVWEpkyZAgD44x//eLIhaybg9XopGDKIz+dDVlZWUudAwVCGYLFYEAiYVYlLEEQ6IAgCNmzYgDlzdEGfNwAAIABJREFU5qBnz5544403wvaZN28eLBb2Vb9+/Xr9F014ipzRtC6t4utiF3CjXz1dSW99hSiGB1RWa/LT4SJhMBY1TDopRGp1PUbhyowUhyM01a0+AWoknwff6sKDqlRQDfbs2YOWlhZcffXVmqm1ANjf6w4fsE0j1c9guuW4ceMAsGBISb3y+/34y1/+gkGDBuGhhx7Cvn37dI+dTFJhYZ9utLS0JP01o2AoQ6BgiCDaJr1798bOnTtRVlaGmTNn4sUXXzz5WG1tLe644w4ArBFuXl4eVq1aFb/JCDr6BJUJ6oHQQoSbM0SiXrYITmVFqFRk89WrtMUT6aI9Xmg15a2sDDaVlc6D39ZShOToUYgikQCFzOfzJV0Z2r59OwBg5MiRSZ3H+PHj8frrryMrKwvdu3dH+/bt8d///hd1dXV48skn8X/+z//Bxo0bMXv2bNTX1+OCCy7A7NmzU36dQ8qQcbxeL7Kzs5M6BwqGMgRBEFL+S4IgiPggCAIuvPBCrFu3DrNnz8ZTTz2Fn3/+GZdeeilGjx4NALjjjjswfPhw7NixQ9+gxS62OFyj4KolVTgWtm6dHZFti3mRfCSlKRpzAZMW9glNM46XQjRDdtvpNE+BMYren6NI83M69SsOUmVGbn4Qa6BkEqmQJldSwppkjR+v1kjIIDE4Bi5YsAC33XYbZs2ahX79+mHy5Mk444wzUF1djYsvvhjvv/8+hg4dijlz5mDLli1YunQphg8fnvKmC9RI1hikDBGmQcoQQRBnnXUWXC4XVq9eja5du8Jut6Oqqgr5+flo3749lixZgrFjxxobVKnWQq7s6FGEjCg+SUAUxZPphHGlVAQG6bRtNoJcTXE6mfpSVRXbuBVO/eYDFU6mCBlZDKopRGailEq3xJ4YhUxCstPkRFFEjx49sGbNGpx66qlJmwfAVLKvv/4aNTU1aN++PdavXw+3242VK1eivLwct956Ky688MKT+5999tn47LPPcNppp2HQoEFYu3YtAKYqbN68mWqm0xiv15v0YIi0vAyBDBQIggCAM888Ey6XC//5z3/wzDPPYMaMGXjppZewadMmOBwO9OzZ07yT6elCv7QI+KtHv1LQOQ6Bgg4CgUBigiEepJiNILDLm36RnaO61cjC7w+qL3rsoiucwJ2VwH4Eg96FYO+j1nt9xKTnpfQa8QBL/jsnDby0fgPt9qBte4LtroHkp8kJgoAffvjB3EH5a672/qiwbds2eL1ezJw5EwMHDsRPP/2ETZs2YWCExscWiwVlZWVYtmwZpk6dCqvVikAgAI/Hg0suuQTLli1DVlYWRFGEx+PBoUOHUFlZiU8++QR79uxB165dcemll2Ls2LHo1atXrM88DFqDRUdLSwulyRHmQMoQQRAcQRBw+PBhXHXVVXjsscfw4osv4vjx4ygtLTU+2BqFfiN9wBym9CwovQYCIUC/65fJBAKBxKS3bI7z8+OBhLRXkxGFqLaaudNJ1b+ZYO+jmkJU4WTBEgAsMDrhVvjx8USaSpckKIWKsXXrVjQ1sY61s2bNwp49eyIGQhxBEHDttdfiu+++w6pVq7B06VIcPnwYFosFvXv3xg033IDTTjsNZ555Jq666ips3LgR48aNw1tvvYWpU6fi8OHDGDJkCCrjcEEiFdIg0xFShgjToJohgiCkNDQ0YP78+Rg/fjwuvvhilJaWYvny5cYHKnYBOxF6BV5vr5G+gnm9daS20VkyRYovpGO42p8QZWhpEdAUx/G5KqT4mIajmlVQD1prwOq5Flay58CtsHlQwRWhWBrK+uqC/+cKllQhiqQIye+jK/SJx+BrXt2qXBYWFmLo0KGGbf+zs7ND1J3ly5dj69at2LRpE26//XbFwGrgwIG45pprMGbMGIwbNw5PPvkkbrzxRkPnjQQ5yUVHKhgoUDCUIZAyRBCElFmzZmHSpEno2bMn5s2bh5EjR6KgoCD6Adc4WPqUkIArn2qLWr7Y7uMBSlr/v7QoWI/E/y8PlnSQkJohXx2QC3U3vWixAChvNQlwuYzV7BjZdyaAGbLaL731RFp0GmLOOERawC/MrFy50nj/MwUEQcDAgQN1qUvDhg3Dhg0bMHr0aNTW1uLee+81RbEjJ7noIAMFwjSoZoggCCk5OTno168fFixYgOeffx5PPvlkbAPyjvRGmlLubHWji2WtU6bQTHS/5H6vhy3SrwdTLKaB3bfI2KIkIcqQrRB4Dea7yfnF0OBPFFmvHTkFktfR6QTONbhw4woRRxBC0xq5s2A0KBlwVFez3lFKz2WNI9zpcI0jNIA22PuGSBwHDhzA448/DmeS3A579+6NtWvXYunSpZg0aRJ8Jtjyp0K6VzpCyhBhGqQMEQTBCQQCeP/99/Haa6/h6NGjWLt2Lbp3756cyRS7gDNjTJeTp181tN7XB8xOukbhMYsfEAXd/WoSEgy1HwAcrQJgYhPQMhWlTkkhakDQuc3Mmgne7FVu7a2HNQ7lQEg6d6W5njxGULgv9UhYTVqakAoXb7n75rhx4zBu3DiUl5cjNzc36vF8Ph8pQ1FAyhBhGhQMEQQBsKaKQ4cOxTPPPIPrr78eGzduxLnnnpvcSXGFqK819FfH4WCbKIb2gpEWuUdyl/sOTBFSgn8d6lSIErJYLXaxXkxm1g2V+lngIE9Xi/RczH6eNQiqRjxIVVOI5GYcSgFMocJ7ZrMp10NxhSiSIpQCChEV16cm+fn5WL58OQKBAB566KGYxiJlKDpSIYikEDZDIAMFgiD++9//YtKkSZg5cyZuvPHGxFhFG2EGgBsRrJm5uYqljgHAgAERFACVhazWV95EAPADNm1b6IRZayeCeCz886G/1qkGLF2R08/OUhe5chSppktt7n6/hkKU2iS7xxChTnZ2Nt544w3069cPo0aNwogRI6IahwwUoifZqmmGfPMTVDNEEG0Xv9+POXPmYPLkyVixYgVuuumm1FvY31nJVAzpgrrUz3oQASytS8322OFgC2qOBeEKg16cTkWFIWFNVwFgaBx6KY2ojJ/60c9u3PRBvv/O1qawpaJ6IBSrGYOaApRkO20g+T2GiMh06tQJ5eXluO6667BkyZKoLi6TgUL6Qu9ahmCxWEwpACQIIv0oLS3F4cOHUVVVZW5TVTPZr3K/njUHt1rmC90AmMqg18p5vAeq6hKfRiKVIZcLKCoK7QWUymyPcZ7bPcFaJWmwYrez3j+c2urYzpPCUJpc6uNwOLBo0SJMnz4d+/btw/3332/oeK/Xi8LCwjjNLjPx+/0pceEu+TMgTIFqhgiibfL++++juroan3zySeoGQgAwyBFaFwSw20pOYXqIpacNEKYQJbzA3R19T6S0pb+ssao8GGw/gKXjKbnt8Ua/kZArQCmgCHEoTS49GDZsGF5//XW88sor8Hq9ho6lNDnjpEqdFQVDGQLVDBFE28PlcuGWW27BO++8E5MLUkQqnMyEYGmR5q4RcblYACBd6LrdQdUnEvEogK+sDKlBSUrNULwW6qIYmlaYKigpTILAVDKA1f/Ui8BbCnOvgTFb9xSD0uTSh0GDBqF379547rnnDB1HaXLGaWlpSbqtNkDBUMZANUME0bbYtGkTSkpKsHjxYgwePDjZ09EPV4iiVYTiREJrhjjy/klmsi2NlKdIClE0tWEppAhxKE0ufRAEAc899xzmzJmDxsZG3celisqRTqTKa0bBUIZAaXIE0Xb46quvMGbMGCxYsADDhg2Lz0m4InSkEhD9wUamZilEehQhTrwWt5LFaUq7yelp0upwhL9GqaoQaVHsYupQA0J7SKWARXa0pIJ9MKGfPn36YPDgwXj77bd1H0PvsXFSoeEqQMFQxkDBEEG0Derr63HNNdfg5ZdfxqhRoxJzUt4/JpNwOACJ6UxKB0NGndykpJNCZBYpGDSRMpR+PPzww/jnP/+J/fvV3F9CSRWVI51IhYarAAVDGQPVDBFE26CiogI9e/bE2LFj43uiYhdThKRwhSjR9DV5cWu1hilTCTdQ4Kg1JzVKJKWNK2tyAwsg3JQg2lWBlnoVadwChSChxM2aqZZJHuMNVpVwOgFr6gVBHAqG0o9Bgwbh3nvvRUlJiW633mT3y0k3UiWApGAoQyBliCDaBjt37sTAgQMTczK5IpQshahGexfdyBQhTlJqhjhmBURauN3s+Tta67bsdqDTkJB0QfSKcmwl0wMpaj9PFgB1KgvNYlewKS+/zZusVjiDwY8gMDMM+TlSSCGiFKr05O9//ztycnJQXl6e7KlkJGSgQJgKGSgQRNtg586d6Nu3b7KnkRiczqDTWCQWQn+hvYqCkpQ0Od6EFIg+IDJaT+VyBeu2eO2WzxccZ66DvZYWBJvb6hnfVxfF5MECmEhBAleI5IpQmvUkImUoPREEAY8++igeeeQR7NixQ3U/Wn9FBylDhKmQMkQQbYNDhw4lrrFfPPq2OJ36r9hXVelvTPpwbAvNlKgZMhLUxYtiFwuIelvZNtehzzTjCb/2Pmr4/ZE/D1wRqnAyBz6rwBrp6v3JWyQLtpYWBVMvE6QcUZ+h9GX48OF48MEH4XQ6MX/+fMV9UuL7Iw1JFQMF+svMEKhmiCDaBjfffDMeeeQRXHHFFZnf7bywUD0YKrACy4cEFYL2AwBUKu8rRRBYmliq1AwBQXUIAEol90utt6XpifkAXgPQOU725MUuQHoR3KrjdTEjldFmU0xhjBl57ZvXY27qpQ6oz1D6IggCbrrpJlx22WUYOnQobr755rDANlUUjnSDDBQIUyFliCDaBiUlJbjoootw3333Je6kZipCkkanmlfmeY2LHIeD1ZkUu1gaVYm71fBB5xyrw1OsklozpAZPoytVeF6lIjAT7HXtXxR8LfWkFRolUT8tfj97PnK4InSk9bOzAExF03q78lv340EjV4TkdW8JUIgoTS796d27N84880zccMMNWL16dchjFAxFR6ooQyn2zU9EC9UMEUTbYfbs2Xjvvfewe/fuZE8l/rhcoS5odntk5zQ9C84BA8LuSvk0lyV2trBfCODD1sV9dTXbtkvUM71phW2B11r/5aYLSVCEOJQmlxksXrwY559/Pm655Ra88cYb8Pv9aGhogNvtxqFDh/Dbb78le4ppRap87yZ/BoQpkDJEEG0Hr9cLv9+Pdu3aJXsq+nG5mHIjVXr0Kk5SFzS3Rt8cn09ZTZJSGZ5Ol9Q0OT2UuIMqEVeEPB7l4EdJIRKE0K1MYIqLHtY49DV+5ehRbdSoqgo3VCh2sectTQvs7ADetTLrbfn8uCKUZVdW1ZIApcllBt27d8fdd9+NlStX4rnnnkNubi46dOiAa665Bp9//jm6d++OoUOHYtOmTcmeKmEAukyRIVAwRBBth7q6OlgsFni93mRPJTakwcdCRF64ytUg6bGiGEyv4m5pNhtLu4p0bkkglipXKHWhkOYXhpZCNBPAXFNmE4T3LBIALPAHzwMAMyT7TUPkRrKigqGCPGjmag+nHkBB6zFcESpRCJwtSFzanwRKk8ss+vXrhx07dsDn8yE7Oxs///wzGhoa8PDDD6O8vBx/+ctf8MMPPyAnJyfZU01ZUimbKU2++QktyECBINoO3bp1w913343Jkyen3989V4iUGoDGQmUl2wSBBUZDhmgfI1lwp1UwpKYIybHZ1OthagCMqNSnEBW7tPsIASzg+fcQYIIvqGLtFIHH7IBgZWpOqQjUtyqEVivbpP/3+VhNkJz+RUGFSC1orhdZCiE/jxzBGqw3krIQLA0xjiTk88Wd9vQYXhAxY7FYTta7BAIBZGVlITc3F1OmTEHnzp2xefPmJM8wtfH5fClTZ5Um3/yEFlQzRBBtiwcffBDNzc144YUXkjsRaeqV2qJaug+/LV/MT0QwfUvP+eT3SeGBkd75I0UNFGIlkjLGmQngzkrtNDollUXOE37g7wqqVfsBrLmrVM3h/Y18vtYA2R9UhJQa+2736DM5kDZmlcODNCB09VMq6nt+MZLSaZhETMgNFC666CJ8+eWXSZxR6pNKphMZ9s3fdiFliCDaFlarFW+99RZmzZqFpqamZE9HP4WpmZ2dVsqQXhwOoJ89cr3PfiibCkxE0L2NI4qRFZSfrK0W5zIiBSicXOhLX+tvglueVCGKsyKUELgidD3YaxgAKUQJxufzhRhkDBo0CF988UUSZ5T6pIqtNkDBUMZAV5wIou3Ro0cPnHvuuVi7dm3iT66k0IyoDFWIlPap11ArlFSBBJDyBgpG4b2UtrlZ+pic/NYtUu0OV+ukr8uEOvX96/366pmkLLJpq4FmI03ji1YRSmDDViL1kascvXr1wt69e5M4o9SnpaUlJWy1AQqGCIIg0pLm5mb4fD60b98edXURFqiELtJKGeIW22ooNJVVVIgiBUJyzm2tP9JKvfN4jKk3N/pZ0KV3Ltvin85mNnFPYS8VAb/I1C5L6+ZvvY9ICPL6l44dO+LYsWNJnFHqQ2lyBEEQRNTs3bsXPXr0QPfu3bFp0yY4lRpVxhslW+w1DmaMMK46uI/c5pov1iKNa/S8Srf1pj/l80PSqGZIzUTAblcOhICgQtQHbDvT4Dl36qg/4mw30OsoS+f7ZEHsjX/NQK4I6VCIAoEArFu2MEMLqxB0vSMyBq/XG5ImR8GQNqnScBWgYIggCCLtWL58OYqLi7Fs2TJ8/fXX6Ny5c7KnFETudCZfmH/iUL9irdUfSAm1BbKe9KeFAF5ndsdppQxxFko2UWQ9mCI1pAWYu9tOMdTq2myMvIxuN1OttEi2yhFDWpzvf/0vWOvrmaoWgDFFzghcIUr2a9UGkascRUVFcGv1RGvjUM0QQRAEETWDBg2Cy+XC6aefjj/96U/JnQxXaqSKEMCafvLGn1whki567fZQe21R1F7IK51Xflt63xoHa8qpxkQApX6gqCg9gyGuEEXbWLQPjDVT1YuSNXYktrnDrdbXOIACK7s/FRQhNbQaBxcVwf/117A2N4feTwpRRiE3UODfJWRspQ6lyREEQRBRc+mll2Lq1KkYOHAgysrKUsNWX64IKSlE29xBVzG3m20OR3SKUCQqnGw7WqX8uDwA8HoQ+HV9ZhkoRIIbFuwHYLYRYT970HihyEDtEFeILGDvT7ELqPOx+5NJLEYJTifg8cCXkwOb3PExngoRkXCU0mytVit8Pl+SZpT6kIECQRAEETWCIGDGjBlYvnw5nnrqKYwaNQrffPNNciclV3rkt9VwuYwpQno4Usm2G/3AdX6mgEhriOSL0AYg8GMWrPnxkElSjKWSAKUB+uys9WJBaL2QnsawUra5WYqXkvtdOlLFgnFfQQFsDSqRT6Kd9IiE0bVrV+zZsyfZ00hZmpubkZOTk+xpAKBgKKOgXkME0bYYPHgwvvrqK1xxxRUoLi7G5MmTsX///uRMhis9arfNRN4glMMVoZlgPVf4Yr8GwKOeiMGZaLFA8HrjM99UoUwAvB5gGthmNko/P/w9SobJR7IpLAQANNvtyDEaGBJpg9w8gfPnP/8ZW7ZsScKM0oOmpibk5uYmexoAKBjKKGw2G/x6Oo4TBJExZGVlYfr06fj+++/RtWtXDBw4EPfccw9+++235ExIryIUD7giVIPwhXkNgNM9QN8INUQAS+3K9IV7AxKforWhUnufVEStJkirVgg4mQaqGAz1AauLirbei0gZGhsbkZeXF3Z/586dyURBBZ7anSqpyRQMZRA2m43yUwmijWK32/HEE09gx44daG5uRu/evTFz5kw0qKXnxItEKEJq93NFSI0aAKI/co2SxwNUpunCXYtYzBZiJYC2qRC5XGjp3Bk58r+JGQjWzxFpTWNjI/IVUmz9fn/6mbIkCLUAMlnQu5RBWK1WUoYIoo1z2mmnYf78+fj888+xefNmXHnllWiSF29nKvuhXQMjWM2vUSL0k+4KkR5FSEbzAw8g++yzmWLaz06KUIbR0NCguLAPBAKwWjWU6DZKfX09CgoKkj2Nk1AwlEGQMkQQBKdHjx5YtmwZOnbsiOnTpyd7OuagtQg9S8fCY6c/TF0KWK0QpBeSEpnmp1b/FE+SlcYIBBWiNkRzczNyXn6ZKaZSR0UiI4ikclAdtzIUDBFxg2wcCYKQYrVa8frrr2PVqlVYvXp1sqdjDkoLed6LZocvKptuf25u0PqYNy/NZAYMSG5ABLQpF7VUcs0izEctGDr99NNx4MCBJMwo9aFgiIgbZKBAEIQcu92ORYsWYfLkydi1a1eypxM7bne4QiQNXlwubZMEGT5pMFSgo66FqzgKDlKK+xl5LBEKkcsF/McT7LeUD1bQT8SFVGouSZiPWjBktVqTZ2ST4lAwRMQNUoYIglBiyJAheOKJJ3DddddlzgUT7lqnlDq3w2dI+fDl5MDKg6EGANXV6jtLG4mm+2t5JlggdCZYQX+sOByG62naCqnimkWYj8/nUwx2zzrrLNTW1iZhRqmPWp1VsqBgKIMgZYggCDVuuukm5Obm4s0330z2VMxBy7XOQF8Xf15eUBnixyopRIIQPq6SQiRXd4yqPYkous6yAw9bgdcQDITKrKy4X6v3bD9ZoGm1siDIiDFFZ+PpjOmIaDQ4LBPYJm2OS6QsoiiqBrotLS2KLnNtHf43kUpOexoaP5FOkDJEEIQagiBgzpw5GDt2LKZNi0fHzfQlRBniyBWiogiL02guQvFFsnwhlShlpaQ1kJTW7kxo/f04UwC+Q9CZzwKgF9h9gpWZAEjnfU64KYUqC8ECoTZiItDS0oLs7GztHZ1OoKoKOPlR8gAksqU8kRqHHjt2DEWRvjfaKKlYQ5c6YRkRM6QMEQQRiQsuuABNTU344Ycfkj2VIEuL9F8F51fNTS6+D1OGgGD6GD+fAaUpzH5ZyY7Z6QwPIJJhw5tlZwGOVKnZKQL+1jmvcQALwNSjTxwAv+AmSh6vMXC+NhQIAQYWfkcqw4NqUohSnkjpXlu3bsV5552X4BmlPvX19SmnmJEylEGQtTZBEJEQBAE33XQTZs+ejZdeeinZ0zFGmQBMbP2/BUCpeUMrKkM97MDzA4AROvriGP1dLxOAVGm3U6LhnKcWuFQ42QJ+ovLDIYgi2z/SeBmKpjIUpghJmAiQQpTaRLLV/vTTT/HEE08keEapT319PQoLC5M9jRBIGcogqOkqQRBa3HXXXVi8eDEOHTqU3IlwRcjrYVskhUhJCdJSiAz8uvlyc2Frbg690+thi30tFgKoV1mtKilC/YvUA4h0+/7WEwgBbMFf7GpzgRCgUxlKt/edOEljY6OiynH8+HG43W6cddZZiZ9UipOKyhAFQxkEKUMEQWjRqVMnXH/99Zg9e3biT17hZMYEBQbS3LgiJF14B1pvXx/hOOU0fkX8ubmwNjYG71hiZ6lfWov9fAClBi7blwnAdo10Oz2W3clmaZE+xYxTVRW/uSSSRTbDDXI1g6FIphN2e1R9s4jEoZYmt23bNvTv359cBBVoaGhIiK12Q0ODCKBFz74UDGUQpAwRBKGHe++9F2+++Sb27duXvEmUuNmWZWcbv20Wgv76mxBlKB9A+wH6Dmw2UONT4QT0+lak+vf4FAP1U0DqPx+9iMafR0tLi7YyZLcr14u53cYc+hJBIvpgpRFqaXI2m824k2AbIVE9hvbs2dMIQFfXWwqGMghShgiC0MMZZ5yBGTNmYOTIkfjxxx/jf0KuCI2pZC5tDdCvEJW2ppotlNxnAbvPH2GxUedj++jIxvBLm642gaXH6VnIGFnk8+eul1RecDZp7xJCMowhzIQrQnKlUEdg0NzcrO0m53YHjSkAUoTSCDU3ufr6+pRzTEsVAoEArAn4Tti5c6cAnfYuKa7FE0Yga22CIPRy9913IycnB0OHDsWGDRvQrVu35EzETDVICR0Ld19ubriBQqbBeyaZoTScZ2c1VXpd5IYMif2cySQKRYhjyEaYNwqO1D8rWciDPn6b1A/FVLgVK1Zg+PDhSZhNauP1emFLQBqw1+vF4cOH8wHosk6lYCiDIGttgiCMcNttt0EQBIwaNQqbNm1Cx44d43OiYhfwWuuCgaeKvWZwjFIxOgc5wQplq64gIcpQoPVc8oarSigtBKULI+nj9WLy1B6bLahimbGI3da6WLcKwV5ESlgQWb3LFBbZgj2aZBgKhowEQdw8hKeYEgkn0sJ+5cqVWLVqVYJnlPokKkVu9+7dyM/P/83j8TRr701pchmFxWJBIBDpl4kgCCKUW2+9FZdeeinmz59v7sBys4RSMbSXTZbdmPlAtOiwcE2IMsStpRONIMSvZuc8O9AHLBVRaTUxNI1TvaQpcFn2yPtGUI78fn9CroSbytIiFmxJzSIsCH2P5bfbIGr1Qnv37kVTUxP69OmThFmlNokKhnbt2oWsrKxdevdv4x9lgiAIYvr06Xj11VfRKHVUi5Xa6mB9EF9UFruC9433sCvq8UbH1XZ/Tk5409VKHW5pUqVHqX5Eep8R9zWABRmxEmkRbkYh/DY3a9BaL4YGPgvBlKebKvU1yS0qCl14m9xUVxV+vqKi8PullLjVV0v50A6WokGtpk7+eno94c1ZeUPfaN9fX124U2MAoSqfX6Nmrw2gZqu9du1aXH755eQkp0CigqGamho0NDRs1bs/BUMEQRBtnP79++PSSy/F/fffH/tgXBGSO44VCOF9hES/em8hMxHFYD2GAr68vFBlyMgiRk86nVEsYEFGLMSiCNlkFtJ6FtYuV7CvkpLip/Y+VzgBj4I73SJbctQ0tYB2AUJNPNB6+y31NLVAIJCcBXF1dejtvgLbIlHhZGmPggCU+pXTH5UUojaMmq328uXLccUVVyRhRqlPooKhrVu31jc2Nm7Xu3+aabcEQRBEPHjllVcwYMAAXHnllRg5cmT0A3FFSA5Xg6RMBAAPUKZec2Eabrfqgt6fkxPedNUsIgRhqiwwfxqGiDWtTkm4T0rnAAAgAElEQVTZ4QoGD5QqnOoOexMBVudVCVgE8xUI+efA49EO9vi8r2+tk+KKUIR6HUP1QhyuBjXIbvPGvnweSjVDTme4oqk3GBtZGbn+i8P3EYQ2b57Q2NgYVmfpdrtRWVmJd999N0mzSm0SFQx9++23PgCUJtdWEQSBvO0JgjBMUVERJk+ejI0bN8Y2kN4ePVJicOsydp5W5YJf3S6zAhYgYLPBYtSJsw9Yc1buzsbHlp8vQhCmOm5nE2ptorFm5oqQGmak1nGF6GiVPqvxAID+CVAPIyENaLlCFEER4ujqMWQmckVIDleIpPVABYK2EQahiFLN0IoVK3D55ZfDHs1FkDaAz+dDVlZWXM8hiiL27t2bDwPBEClDGQa31473h40giMyjZ8+eWLJkSWyDFLsAEWzRK1eCUo0JPqA0ysV9lj1y4BftYuhhK3sNY8Xl0g5c5L0+EuFGOt4DwOBrvt3DFuxmKUQ8aOWvj90eWlum5ggIGDL90NVjSE69bG4NCnNQm8eAAZFr3bgVurRfkpHeV3LauL22UjC0ZMkSTJgwIUkzSm38fj8slvhrMAcOHIDVam0URbFW7zGkDGUYZK9NEES0jBkzBpWVlfj9999jH0weKDgc4WpFH6jXmMSTWIq/F4IpQtvcykELV4ii7RVjVrqgVr2NKIY2+tSLnoVvqcJ7+i9reNNSIwQQn/qsSGgFtFxpUVHMokqTiwVet0Uru4Qgv/B87NgxrF+/HldddVUSZ5W6JNI8IS8vb4+RY0gZyjCo8SpBENHSrl07jB49GgsXLsSdd94Z22BcIZIjXTTOiO0UpiCKwKuv6t/fjBS2eGNUEUoEO1PkIh2vq7Fa1QM76f1ylajCCRxpVV80ms5GFQwpvXdGFRhKeYs7oiiGmWPMmzcPY8eOxSmnnJKkWaU29fX1iu57ZrNr1y60tLRsM3IMBUMZBilDBEHEwq233oqbb74Zt99+e3xSGrg6xGttkowoihB69dJ/gBkpbGqYkW6kp6ZH7YJZgRWoN/H3gzev1WNTrgczPjN8LtH+Th6tAmZCORCSBS3Nzc2JXxib6V5nAZCL2FLpMpSmpibk5uaevH3ixAm8+OKLqKqqSuKsUpuGhoaEKEPbt29vrqur022rDZCYmnGQMkQQRCwMHToURUVFePvtt80ffJENuLkqZQIhgKW6WLlKoGU6EO9fTF7QHsvxepD31eHU6fjtEARjltdmBELcrCIWeO8dKYKg3otJrW9UqV9TEeK01LyMnLUXBcfqq+O1UwqIlcw54o3Ymkpar3HeNlovJLfVnjdvHoYNG4ZeRi6stDHq6uoSEgxt27atSRRF3eYJAAVDGQcpQwRBxIIgCPj3v/+N//t//y9OnDhh3sBLi5hrXKKc43Ti9/th4wtiXnNRppBGthDRW14rLWYLVFLVor0Kb0QRUOrrY4RaDdeyWJD38gGYqYSGc5smakFZPH4vW5vINlfbkf03A6/1IltswTAQvXGHNHVSPsaaNEgNTTBS84T9+/fj+eefx6xZs5I8q9QmUcrQ999/nw3dlywYFAxlGKQMEQQRKxdeeCHOP/98fPzxx+YMuMjG+sxIby9KjSztk8qQlAk+oK/kPguUTQFiIVI6WqwKkR4EQV0h0kLeUDcS0agaC2VbpyHGjjeDfna2RUPrZ73ZbkfO8ePB+2sAjKhUV4hK/crBsJHmt9FgAUudVDP/KHYp28a3UVUIYMEQr3+56667cNddd6F79+5JnlVqkwhDEbfbjYaGBguAX4wcR8FQhkHKEEEQZnDFFVfgk08+iX0grghJSSGFKEQZkrLDxxSiWBQhOXwBmSqLSCWFSI+y0AD19LJYkNdWC1YWgJpRp6XkZuhwqL8X29xsi4bWgEa0WiP3ryoqYq9jX4PBb6SAaEAUfb70OiuSQnQSnia3dOlS1NTU4P7770/2lFKaQIC5eshNJ8xm165dKCws/Fk02HCTgqEMw2azkTJEEETMjBo1CqtXr4bX603OBMrifDW8FUVliDPBp60I2Wxs4wtbvfbPWo5ur+kbBkD0Co8S7w1QTlWTY/Sim54gsAHMnGBm620zFSGXK7xWTU/tGleIRDH6FDQ5M8AUIo+HvY41MJ4eqfY34XKx90+PaZcFxgJzrhClSjCfRBobG/Huu+/ib3/7GxYsWJBYC/U0RKqkxZNdu3YBwLdGj6NgKMOwWq2kDBEEETM9e/ZEr169sHjx4tgGKnGzYCJLspDUCjAW2WLrSWMAVWVI/wBs4wvbykp9qsmQCAv9fnZjFt51dfr31eJ/V8X3tRfFyAoDz/QXTGo+K4crRHoX9FKFyO3WfZwvJwfW5mblByeZZG0e6SLBmZL/q61BzWpi2wZpaGjA3XffjWeeeQYXXnhhsqeT8iSqx9COHTt8x48f/8rocRQMZRikDBEEYRZ33HFHfFzlIlHW6tglJ04KUURlKBJcEVLC79dWiLhZg/zcC6He0FWNSIFVJJRWAE06j82HMVc5jrRPjxozEL86ISWFyChcIYrwuWm225EjT0PkipuZFyyVPmedHcBcR7Dm6kMHC0ClaZpKQV1Za7pegcD+T6jidrsxePBgTJkyJdlTSQsSFQxt3bq1we/37zR6XGpUsBKmQcoQQRBmMWLECEyZMsWcHzI9bmAJVIQ4Pp8vOmVI63uWK0RaF6eGDAk6nfWzA50N1HzE0sMnH0APhbSvwkJttzk9aXRKVDiDTnR8DOn73QfMOW5Cil/QkxsMAOE9ho4dQ87PPwNPPx3c51UHAJN6LnG2KPS14YE0D2j0BNYVzoT/7aUrHo8HP/74I5555plkTyVtqK+vR5cuXeJ+npqaGgGAIVttgJShjIOUIYIgzOKUU07BBRdcgE8//TQxJ3wi8RdyYk6Tizy49j5cIRJF44pQLNSLygYBAwZo1zMJVpb2aGSuXBHyRgi0ZoAZa/QV9NdepSgtLS2sjoS/t/kwr/mslK4RPmOdHeHpltI6vDKBXYAoE4AxsrlNAylEKjz33HOw2WwYEq0i2wZJhDLU3NyMI0eO5APYbfRYUoYyDLLWJgjCTKZOnYo5c+bg6quvju+JioqAGNvfRIPP5wtpnphWuFzRpw7KlIyQMYHW90MlzavTEPVAiKfOaQVKSirERLBLtAEANZXqc0xFZHNsbm5GdnZ2/M87I8Jj8vdAbrQxEQBUgqlo+11lOIsXL8bXX3+Nxx9/PNlTSSukfZnixe7du5Gfn3/E4/G0GD2WlKEMg6y1CYIwk7/+9a/Yv38/1q1bF7+TKC28lYjDotiwMlThZJseYySz3MciEa9AQUkhyrJrK0IjKtkmrycqdjGVIkvjNQko3LfURLe8BBHWU+VDB0sDNJtpOvcThOia7ZrZWyvNOX78OO666y7cf//96NixY7KnkzZwl+t422rX1NQgKyvLcIocQMFQxmGz2ZJnhUsQRMaRlZWFp59+GnfffXd8LrTYbKGLNLVfpTj1ODFcM8QX+/UaFsNKzSvjhXweFrBgzW5nzmlL7GyT7qdlkexyhTbiFEVW96VW+8WDRE5ttXJA1D6KPjjjPQmxWTeTpqYm5ObmBu8odgEH4xAcawWXQHTW6wuRHopcAnn22WcxcuRIdOzYMSE20ZkC78kUb2pqasS6urqvozmW0uQyjKysLEqTIwjCVK699lrMnTsX/+///T/ceOON5g1cVBReV6OkDCxEsPDeZFpaWpCVlaW9o3xhz2/nIzylKJ6KEFdJ5EGJKAYDhVgsk+XBht4F8QhZzcl4D4BKYI0zVEkqdrW+djHUzwhCyi/UGxoawhfMAwawz/F2E/NB9TRZjcZ6nRShkwQCAcyfPx//+c9/sHXrVvzyyy/o0aNHsqeVNrjdbhSZ2QtNherq6vrm5uZvojmWgqEMQxAEGGy8SxAEERFBEPDCCy/gyiuvxPjx43HKKafEPqjTqS9thytF0SgKOvB6vfpqO+SLfX6bf9/ygv9Its0VTuBoq/tXpLobtWOlltQVzvDj9Xz3G/19KLQBdSZfYCt2ASJYYDc+ysBAKyDii69EqXMywpQhIPjZSLS6JXUsVMIC4BNH8IKDHufHNkJjYyMmTJiAX3/9FZs2bULXrl2xZ8+e8PeWUKW2thadO3eO+3m+/fbbAKJwkgMoGCIIgiB0cMEFF+CKK67Av/71LzwttQuOlmqdSk8ArYXelYDDGVzUmXTRx+v16lOGtNDqXSO3wV5oQBkptAH1EgVtIVhgtLTIvIWr2gK93q9PieGP83HWOLSDvUjOcnpIUYVIs0bCajWn15DDoa9nksvFgueRlcrKawCJczFMIwKBAK6//npkZ2ejsrIS2dnZ4bVghCZutxvnnHNOXM8RCASwb9++PEQZDFHNUAZC6hBBEPHgX//6F9544w389NNPsQ+mJ71HThysiXU3XZXX2GjV3EhRazS6yBaafldUFF7fUeEEGlUWzl5PdI1Po6HQxGunS4sAq2BOXxurLODgr6HHwzal1zTOaDrJ+XxAQRSNfuUYaR5b7AKGRqi7E4Tw17KNM3v2bBw6dAgLFiw4+X4eP37cHGW8jRAIBODz+eLurPjLL78gKyurXhTFqK6wUDCUgWRlZZGJAkEQpvOHP/wBJSUlWLRoUeyD8f460WJiMX3MLkd8LgUC0F+28HY6WUpdjeyYiQBK/ewxfrw8bbDQxh6XX82fiGAgoRRkxYN6nUoGDxIjKQ1ej7JCEQ0BpJypQkNDg3ZPla7+2FZgjigMRVyuyEYkZr0nGcCRI0fw1FNP4e233w5RgigYMkZdXR3atWsX9/PU1NQgNzd3T7THUzCUgWRlZaGlxbDNOkEQhCbXXnstVqxYYc5giVI1zESuCEkX4mb0ZpGqGWqKUDLgqwUeuMXSFFUwQRVRw+1mm93ONn47gSiaJ0gRBBYcBxC0aM8HC1REkQU6dnvk5rdGVCG99EuAFXwa4PF4cOWVV+K6664LM0qgYMgYtbW1CTFP2LVrF1paWqJ22aFgKAPJzs4mZYggiLjQq1cv7Nu3L/aB1FLH9MKvcMegEPn9flgsMfwMKp13uydUIYpm0coVokhpTRYwxy+zXL8ipf2JYrhDXWVl9OlnnYZEd1wkYgnOTKa+vl49GOor+8yc2fpvA4AxlSx18qZK4KU6lk4nx+GITVGVG4FwFgLYRsYJoihi5cqV2Lx5M/75z3+GPX7ixImEKB2ZgtvtRvv27eN+nu3btzedOHGCgiEiCKXJEQQRLzp27Ijffvst/uqzBfFpUilBt5OcEpECMLlCxK/268UCpmbwVEL5L/VCAAsUjpP3+jEDuSIkxeOJLggpdrHnVWaiQiQ35EiCIsRRVYa4IiRFfrvUH0yhBNjnRqoQxUMRIk4yZcoUXH/99ZgzZ06YoiGKIgKBgL4aQwIAC4bsCWg+XV1d3YzwvybdUDCUgVCaHEEQ8SIvLw9XXnklhg0bhsOHD0c/ULGLqRprHGxxL4UrEY/ZQx+zWoOKkPwKdxQKke4eQ9Egv8pudBFbJnkuUoVISRGqcDJTgqNVbIslIJI2WVVShOSkkkKUIuqQrpohxQNlt8sE4OYq4L9D2Od+jSP2YFeuAPLmqtRXCA0NDXjnnXcAALfeemvY4/X19dG9r20U3qQ7EcHj7t27sxGlkxxAwVBGQmlyBEHEC0EQsHTpUowYMQKDBg3CF198Ye4JpL9KJW62SHM42GZyQ2nTbLXlxPrLyu3EeYBXWRlcxJ5nD97P3b+OVjFTglI/22qrE1uPpadflBJcIZIHw9HOoarKhIFiR/VzZTS9TaoQjahkW6IMM9ogPP1348aNioox1QsZw+PxJEQVOnbsGJqamiwADkY7BgVDGQgpQwRBxBOLxYJHH30U8+bNw5VXXmmOQhRJiXC5gspKscucxTNiTJPrZ1cuOF8IbTVFC6VfZm5aIO3Nw53URD8wU7Kv1xO7QmSEWBc8elQJPYGEGb17YiQQYJZsqg6F0dT7yAMgM9Ih+d8bKUInqaqqwtixY3HxxRcrPk7BkDFqa2sTUi+0a9cuFBQU7Bdj6ClDwVAGQjVDBEEkgjFjxmDy5MnmNGE1ijwgWgjDNSgxpcltcysXnE+E+mJVb7qImsVxpYJFNz9njex2qcmBgZrBgiiaU5sTSSGKZAedYjQ1NSEvLy/yTtEoRNL/k0JkOqIo4uWXX8bUqVNV9/F4PBQMGcDtdifESa6mpgYAvollDAqGMhBKkyMIIlFcffXV+Pzzz6MfIBqrZl4zs1B23wSFNDo+viCE1uEgjmlyaotVk9P8dM2DP3elRYn0tdGiLPz1QwT36KhQUim0ehalGLrrSvrGWEcRT3vyNkhFRQWam5sxatQo1X0aGxsjW6YTISTKeW/Hjh1ej8fzdSxjmNhSmkgVKE2OIIhE0b9/f3zzzTfw+/3GC2WjvWrIAyceb+hVhCYCmBhc0LdMmICCAweAzz4DhgwxbnKwNML8JwIoNTZcXKmrM2cck1IUT8LfS/7ac9VESVkTxciBmwUsYOvsSFoApdljCGDPbWcMyl2ZNdx8gv8tJclBL9156qmncP/996ta7ft8Plit1tgbNLcRWlpaYLPZYmtdoJOtW7c2BgKBnbGMQcFQBkJpcgRBJAq73Y5AIICmpiZjTkvyRUVlq4rhcGgHJdXVoYt7NUVIA29hIbKOHGG1JpUJSjvSWtDHC7+fndduVzY84HNSS+Hiqg1Xh8yqNeGvu9MZ+r5HE8yopRcmkIaGBu06ib9H3Q6FUeoHUAlQuY8pbNmyBT/88AMmTJigus/x48epv5ABEpUiBwA7d+60IgYnOYDS5DISm80GX6LTMQiCaLMMHjwYEydO1N6RE4si5HSyxby0WD7KxqveggJkSYMqm81Yul6Jm9WzyJWpNRqNMWNpmhkrZihE08Beb/nrVeEMTb2L9J7w95JTXa392ts0rt/mgwVpSUyr01SGbDbWmNcMpCmQHg/bioqi//tqozz++OO45557IpqpkHmCMRLVbHX//v04ceJEAMD3sYxDwVAGQjIuQRCJZM2aNfjmm28wb9682AeLpApVV5tqn9zSrh2ypcFBNApRsQuwFYbfp0WyAiK/n6W6KfV20jOnUhFokowVraJWWRl6rMfDbkfbK6gPgA+Tb7SgGgzxQNEvaaZKJJ2PPvoIu3btUuwrJOX48eMJsYnOFGpraxOiDFVUVCAnJ8climJMujAFQwRBEERM2Gw2rFmzBvPmzcPDDz+sfYDbzRbe0sWFQ0NN4USyT5YupHWMFaYMRQtXiLQUISl9k3jRalqUxxUVsQW9fNnBFQp5I1zpY1GqdwCYmiINJOQUWIGdqWG04Pf7YVNSsOSvjZlpmTzt0W5nf1tUN6SLhoYG3HHHHZg/fz5ycnIi7ktpcsbQVTtnAitXrqxzu93LYx2HgqEMxWKxnOz+SxAEEW+6deuGDRs2YO7cuTh27JjxAfSYFxgNXDQCk0BWFqxKKcXRXNEsdpm7GJcHh32g3NcoFrhCpDeAO2FSelckjJpYWK1AXWqkhfv9/vCCca4IESnHv/71LwwePBgjRoyIuJ8oirH1JGtjNDY2Ijc3N+5ZSoFAAJ9++qkNQEWsY1EwlKGQiQJBEImmU6dOGDlyJN599119B3CFSM9iPJIyALBfM6WFtMHeQwDCDQbk9S1msLP1eStdPJWaSDgcbNspKvc1iobXojzuPBOCMa4Qyd/3PmjtFaWwgIpUA5tCF/0Ur4bHapZgBFKEdHPw4EG89NJLeP755zX31dU7ijhJopqtbtu2DRaL5Zgoij/FOhYFQxlKdnY22WsTBJFwHnzwQTz11FOor69P3EkdDsAvC6j4olul+ahm+OV0BseQ17eYyZmy23I3PZcr9Lbe4DES3Osiy842vZgVjClRAzav6xUeK9C4wqzWRynBKAZD7QdEv9IyalVPqLJs2TL84Q9/gN/vhyiKuO2223DzzTfjj3/8o+axZJ5gjEQ5ya1Zs0YMBAIfmzEWWWtnKKQMEQSRDAYOHAin04mHHnoIc+bMif8J1RQhDXy5ubA1NqrvoBT8yHvimMFOMX5ja1ESRXAjikD/otgc0da0mgeUCUwNmgkWDHGise9WsgtPMIoNV/n7GU3KkFHViytuRAjff/897rvvPhw+fBjLly/Hb7/9hv3792Px4sW6jqdgyBi1tbXo1q1b3M/z4Ycfnqirq1tlxlikDGUoFAwRBJEs5s2bh0WLFuH772NyOw1FrohYWu9TU4Q08BYWIsuoehVPhUiuAGnBXw9RZMFFH4Pnm4noU/9iUYhEidHBTDA1SBoIBRCuEDVEf7qTSJW+SMRg9hCxaJzc45LGjh078OOPP+Kaa67BRx99hBkzZmDRokWapgkcCob0I4oiWlpakJubG9fzNDU1YcuWLbkA1pkxHgVDGQqlyREEkSw6dOiA0aNHY/Xq1fE7iTwIMoi3XTtknzhh0mSSTLELmGswIKpBbIGdNBhTSudSmovZBhBGqI6ydsdAYBQxGIpW8RNFY4FULK59GcqePXsAAB9//DHeeustlJeXo3fv3rqPP3HiBAoLC7V3JFBXV5eQ1+qzzz5DQUHBD6IomiIJUzCUoZAyRBBEMpk6dSpeeOEFNDU1ae9sBK2aGZ1pQi0FBchqjqKuKZkL+khEExCpwS20+aalIPl84a/7DLC5WMBMItY4whWluQ6WJqc0515gTmxAbLUzXBGSptEpBQxq9xmgsbFRudCeApSk8vjjjwMA3n33Xfz0008YPny47mMDgQAEQQh3CSQUSVS90CeffOKrr6//0Kzx6N3NUCgYIggimQwZMgQXXnghZsyYkfiT6+kx1K4dsjwGrbotAB7wAEuTX6yvSLEr6FLHFYVoWn3I62/0KkhL7MFVxfVgAVEvAIMcyrbjxS71uqDvANxZyQIipWBLitWq/ni0ipAcHQGNKIqxLZql7xW3PS8T4pea2QZYu3YtrFYrVq1ahXHjxuGMM84wdHyilI5MIVFOcitWrGhoaWn5r1njUTCUoVCaHEEQyeall15CeXk5Pv3008SffElkBcdbUIBsr8H+NLye5a/JL9bXhcvF3OqUAqJ+9vAAgitCSsibpyrtV+IONmTl/85A5BSxoiLgJwXlJwCWyscDIkBdIYpkvT1gQHiamd4GvwZoaWlBVlaW8oN6HQD1Wp7zQImIyK+//oqJEydi2bJlGD16dFRjeDweqhcygMfjgd0eX/X8999/x969e7MBfG7WmOQml6GQMkQQRLLp2LEjXn75Zdxzzz3Ytm1bYk9e4mb+2WVC0EqaI4po+eEHltK0bBlgFYKLdyl9EFrcn45wt7q+QuhzUTJBiMWRTek1nIjWS64R3OG0zrkfwNEq9n8e9PBAzGqNHAgBwUCsqCh4LqXgjAcr0iBPFMODvqVFoS58rY83dOuG/PfeizyXSPCAVRrkyD+38vuV5iedVxt3lrvtttsQCAQwcODAqMc4fvw4Tj31VBNnlbkEAgH4/X71iwIm8emnn6KwsPDL33//3bRFLilDGUp2djYFQwRBJJ2RI0fiu+++S2zfISlZdsWr6CEd5dupXMmcgdCaFkvr7XfTtP9LPpQVoWiRKkRKwWSk+/Ui78MEBJUWrUBICleIYn3uXuXgraFLF+Q//1RQxZKjdn8sKDWoJQAwpW7ZsmU4cuRITItzcpLTT6Jeq48//rjR7XZ/YOaYpAxlKFlZWZQmRxBE0tm7dy86dOiQvA7u/Cp+aejdXq83uEhyt+6j1t9mpmTRaaT3TSqxM0XnbbVG7qczA0CnIbGfR6+bmzRY6qsQbEwEMDH8/obOnZH/82FgxHodHX11MNOEMdowBw4cAAA8//zz6g5/Omhqaoq7TXSmkIh6IVEUsXr16kAgEFhj5rikDGUoVqsVgUCsl+QIgiBi48MPP8SYMWNSzo0ppMajTAi9yi6//bA1vRUhveitbTFCPlgAKQ0ipXVHQ4YAkWoMJgL4ezVLc7PZlJ3t+PsVi7FFjI5v9V26oODXX9mNAiFcCVIykJDSgODrZCTgXojw9ywe72OakZ+fj/bt22PSpElRj9HS0oLs7GwI5ASoi0Q4yf3444+oq6vzAthp5rikDBEEQRBxYf78+fjHP/6BdetM6YtnKiFpclpMMGi0oARfJLhjaFiaCBZFuSxQqrnRU+TPFRu1ui0A2C5JTauqYgGRyxV6rnwADR4AAktrfMweWtsTDUr1Vvw5yep5Grp0Qf6RI+xGE4DaGF3sZoSfI4yJaPNBjxpr167F5ZdfHlO9z/Hjx9GuXTsTZ5XZJMI8Yc2aNcjKyqoQRXM/+BQMZTiiKNJVDYIgksKPP/6IgQMHYujQocmdiLR4vvU3NEQZ6tzqNnakMvS2GdhsoWlg6VDYLg9iIi3K1RY/XBGSovRbZPT3ye9nVtNyhahBtp/Xw9QZLUVGrbdQpPdoWvhdze3bI6e2lt0IgDkOlsh2imR4oMRCaAdE0rGJk3zzzTfo1q1bTGMcP3487ov7TMHr9cJiscQ9A2DFihV1Ho9nhdnjplbeAmEqNpsN/ki52ARBEHHkhhtuSJ5xQlFRUI1RcSw7eaGo2BW6aJbfjgWl7+AENCWMmgk+FsQIkpRAI2lXfN/6OC/OI/XeqQELIkZURp86J0hSJXnvJhWlS2wNcDXDHKUaJEA51S2rdRFuRhPdNsiTTz6J5557LqYxSBnSj8fjiXuKnN/vR2VlZRaACrPHpmAogyF7bYIgkkleXh4OHTqEmpok+VN7PMpX/tWuznd2mKcK2Wzq51GaVyZwro0t+HkNj7wnkVJQtcYR3745XCFSow/UA46JYM+Jw+t5ZIFeU1ERcqTpj6II+BVUMbU/AyX1p8TNzsUdDeXoDVBjrIVKVzp27IjBgwfHNAY5yenH7XbH3Tzhq6++QlZW1q+iKB4ye2xKk8tguKNc0lycCIJo03Tr1njEUuEAACAASURBVA3PPvssrrnmGtTU1MQ/ZbfCydQADUS1VA6z1CAgskNaOiCvk1ILKHhgZ7cDntbnrDe1C2CpidMQnuZmFhMBoFLd4Y3XBal9Nnf6Q800eOqfwwFsqAQCrfVC3DxB6aMVi612lp0FdJnQ8yqBdO3aFU8//XTUx4uiiEAgAJuNlsl6qK2tRe/eveN6jjVr1gR8Pt9H8RiblKEMhnoNEQSRbG644QZkZ2dj8eLFyZ7KSbyNjXFvDKhJutUi8Manamg1T5UrRFwRAuIXCOlFK1iZCOB6hNYKuVwn1Z8G7iSnpAhxol1tcYWIp+pFqwi1IYVo3759+OWXXzBkSPSW7A0NDTFZcrc16urqUFhYGNdzfPjhh3X19fWr4jE2BUMZDPUaIggi2QiCgNdeew3Tp0/HsWPH4nOSCidb6OlQhSCKJy1zk4Yopr6rnBzRZKWLK0JGVCSOBUCZTpvzvla2mYXcdt3hQMPgwcj/z3/Ujyl2AeV2Ziohx8LGIMxj+fLluOqqq2C1Rv++ezweSpHTSXNzc9wtyOvr67Ft27ZcAOvjMT4FQxlMTk4Ompubkz0NgiDaOIMHD8aoUaPwn0gLxgSS1GCoIE17FQkmzFseDESrCAUAlOoMznb42BaJYpe22hIAm+80hClEJ0pKtAvtp7QqZ/JVl1/U3xBWD+dGqFUDQo0hMpQPPvgA11xzTUxjJKKBaKZw9OjRmCzM9bBhwwYUFhbWiKJYF4/xKRjKYCgYIggiVfjHP/6B+fPn48UXX4SpLSKWFrGeLjz1Sgdx7SqvlY70GmKrIUkWZvRaakDwuQtWZaXECEs0Ug2Njt8vutTFuro6FBQU6NuZK0SkCMWFlpYWfPHFFyguLo5pnN9//x0dOnQwaVaZza+//oouXbrE9Rz//e9/vSdOnPggXuNTMJTBUDBEEESq0KtXL2zcuBGvvPIKxo8fj19++SVpc2lubkZOTk5yTv6EH7izMvUDogonCzSl8xRF/elpWnQawgLDWFGqobFao7P3bj9Ae5/XAHwYDGICgQAEQVDvr1IgsK0BbOMKUayKkFrQvcOnbcct7/+UQRw6dAidOnWK6WKHz8cC/6TXFaYBoigmpNnqypUrG71e7yfxGp+CoQyGgiGCIFKJs88+G5s3b0bfvn0xYMAAbN++PfrBlhaxzethm1QhUio0l9xOajBUA2B/ck6tm/5FrP5qvCfYiJYTq0LE67qKXWxRHksfHbXgJdrCeZeLfUbkClG+ZLsewKigmcSJEyfiXjgeEaXeLnMjKE461dN05eDBgzj99NNjGuPYsWOUIqcTHgjFs17o119/xYEDB7IAbInXOcgzMIPJyclBU1NTsqdBEARxkry8PDz22GM4/fTTccstt6CqqiruXcvlxDUY4gFYpMVBA8y18TaTCiewXeIMNxNAVhELPPic8xG7A1xB6+vD1aFojBSkr6GZqZftBwCQBYGvgdlc/9XDzCRaFbMTvd+NXGjP1Sn+fGNtRiv/XHFrc+nzL3YxK3GuSHEsSN3PnUl8//336N69e0xjHDt2DB07djRpRplNIlLkKioqkJ+fv7GpqcmEXF1lBL252x06dNj95JNPdu/Vq1e85kLEgUTYHRKEXujzSEj57rvvkJWVhbPOOiv6gKi2mv2rJ8Wplfr6euTl5cU3CPvqq8iPX3BB/M4dLTurgUYVY4KzAWS1A74/wW7/f/buPD6q6vwf+Gdmsm+TBAj7rmwCQVxaK5pooeqv+qVWoQpa2yq1VVutWmlV3P2qX/UliiirFllrFAUFhSAkAiLKDhIChCVkX2ffZ87vj5ubTCaz3Jm5d7b7vF+veUEmM+ecJAO5zzznPI8SXFEBd6PcPi+UEsBQAGeDfE5mNjBqVHBzBUt/ErB3fD0+1mfp1QtJgwYF7kdzsOP1cGmYP3dfryuVCpjU8W/A388RiM3XnkhqamqQlJSEfv36hTyG0WhERkaG9H3REgB/Xk7K79Urr7zislqt68rKykJ5y0SQoIKh0tLSkZcl8D+iRFRWVobi4uJoL4MQAPR6JN2ZzWbMnDkTl112GZ577rnQBinp2CY0Q3ip6m+//RZXX311WKV3BfN2kaBSAQ7J3uQMnb8LmrEAKtEzAOKNUwHPZQHPaqVvDipmFkiIbcXADR2ZIo+v//unnkLhtYeQ/itJekF65+/nxBhXUe64n2BICd/9kOLcjTfeiIceegg333xzSM93uVz49ttv6feUAHyximuuuUayORhj6N27t6mtre1SxthJqeahM0MJLikpqfMwICGExJL09HTMnz8f7777Lo4fPx7aIDM0QQVCAHfBE5FAyBenkzvr4e28R6yqgO9ACACecnJbyKQMhNTq6FRga94FjIbXr9/cuzfSbtgEBMoMiUVIWey3Q282Gu/Onj0b1jY5jUaD3Hj6dxlFzc3N6NOnj6RzVFZWwmazmQGcknIeCoYSHJ0bIoTEspEjR2L+/Pm49tpr8fLLL8NsNks6n6hlvYVNyF3Ee9JqAYMkLTOiYzb8B0vhUqu5RrVi9uQJhpcgz56ejiSzGQqAC3ClplD4P1vFX9FNLeMyed5KizOWsFkhxhhqa2sxcODAkMdobW2l80ICNTU1oaCgQNI5SktLoVKptjCJ/+OmYCjBUUU5Qkisu+uuu7B3714cPHgQY8aMwZo1a+BySXNl7XA4Ap/vEFNSEhf4eMMicAEdDG9lqjMQ/X44jHGBULT4aPCqHzIEOefdSgNG+4yJe5DzNHoWuUjwKz6tVguFQuG/oEUAFAwJwxiDRqORvOrehg0b9Fqt9gtJJ0HC/9MgFAwRQuLByJEj8cknn2DVqlV46623cNVVV+Ho0aOizxPVstqehMZ7KgV3i4YriiKXjVGpuAyQ+xZGifuXhEM3dChyqqsjN2Gg7wXfe2hbMfCyxzbQiWpgfOx+L8XQ2NgYVuEExhjMZjMyMsLtBpz4dDodsrOzJS2cYLfbsXv37lQA30g2SQcKhhJcWloaBUOEkLhxzTXXYO/evZgzZw6uv/56rF27Fk4RtyBFPBhyOLwf+FerY/dC371PEx8IZcD/FYMSwGqE1zfI4eAyQPz3LNoZIR5jXIEID7qhQ7tnhqT8eWYquH5aQnYLTSvvWUDhiLZ7yfQEFG6ZZ51OF1ZWSU4isUXuhx9+QFpaWg1jrFnSiUDBUMKjM0OEkHijVCpx33334auvvsIbb7yBYcOG4X//939FCYqilhnyLNig0QS+0OczQi5wN/7j4mLu5o7PCvA3sRkDnDVxMq6J6vPq0K8sPL+uNYquWyQJ/B7qhg5Ftnsw5Gs7pBhrMYG7KRS+g64Eb6gayKlTpzBo0KCQn9/S0kJb5ASKRDC0detWp9Vq3SjpJB0oGEpwtE2OEBKvLr/8cuzfvx+bN2/Gtm3b8D//8z/Q6XRhjWmxWJCWlibSCoPAZzvCyQjxQVF5OXeLhgx0P5ivRPdsRd4kYJ2a25YV7G6j8nJg167w1xiOcW5BkELRVbr9RPdAnAGwZ2YixWiM3Np4vjJE0/y8JrydB0swq1atwu233x7y86nZqjB2ux0Oh0Py/0c3bNhgNJvNmyWdpAMFQwmOgiFCSLybMGECtmzZgqFDh+Kqq65CRUXo9Zsjlhni39H3POsjJCPEc3ZkY5Tgbp7ZpeJi31kMKTNERrdtdJ7ZoqllXKnzwxruccFiTu/ZoEhkiBSKnlXjZnZke7K7B7CWvDyktbX1HEOsssz+fn58hsh9O6PMnTlzBseOHcMtt9wS0vMZY9QUXKCWlhbJS2rrdDpUVFSkAYjIuyMUDCU4CoYIIYkgOTkZ7733Hh5++GFce+21uOWWW7By5Upog9yaFFMFFITiM0Ke2wSjlR0KRlERd95mNXpmlbwZE6X+T+P8BFoKBbC0+116X8UTtNroVJVjjPseu8sAd99qAGuTuBsv3vpcBbB8+XLMnj075H/bRqMRmZmZkhYESBRNTU1hnc0Sory8HFlZWYcZY9L2WuhAwVCCU6lUkpWoJYSQSPvzn/+Mqqoq3HHHHfjkk08wdOhQvPnmm4KbS1utVmm3d3i+o++C9wxRMGK10IIQZWXATw6goAjYUOQ7W8QXYHjKz7mwWRJmQAIlG/mtaR0/ix7nhTy5Bxp8VqtExODDPRtUkut9bBO6+hIxJ3dbG8Gy8hFisViwbNkyPPDAAyGPQSW1hWGMoa2tTfKS2l999ZVNp9N9LukkbigYkomINxokhBCJ5OTkYPbs2diwYQMOHDiAr776CqNGjcL7778fsGmr1WpFSkpKhFYqkkmTfH8uXv5vn1rG3YCuDJF75Tn3jNDsjtvdHbc5kDYQEiK5IyDt2OLYo5KcJz5D5L61zy4wixkoO+EZHNu1XWN7y77NAaDo+P7e5+Qq02m13C0BMkRr167FZZddhlGjRoU8BgVDwhgMBmRmZkKplDZ82LRpk9XhcGyRdBI3FAzJQFJSkuB3TQkhJJ6MGDEC27Ztw6pVq/D1119j1KhRWL9+vc83gFwuF1SeZ2/E5HmGgy8w4K8SWyBlZd2yEt3m4v/0rCQWy2dJ+HNHx93OvLw9hcseueO3B5oAFEbxgn0suMIQPMag/+1vkV1TE/xY4WaIhJQb92y2aoLPxrGJ4L333sNDDz0U1hharRbqeM7ARkgktsjV1NSgqalJCeCgpBO5oWBIBqjXECEk0f3iF7/Ahg0bsGrVKjz33HMYNGgQ/vrXv6LMrWFo3GfIJ3W/IO+Gz7rEq6llXDW02T4+f0QLZEm4xctXj6SxAJ4G0H6o8y7GGBhjUAVqzul5hmdOxy1Qhog/5+PJ13SzWFfmbKmPx/CWdtz4DFIwBT1i0JEjR9DQ0IAbbrgh5DHMZjPS0tLovJAAjY2NkpfU3rZtG9LT079ljEXsjAcFQzJAvYYIIXJRVFSEI0eO4JtvvsGwYcNw33334aGHHgJjDA6HA8nJyZFZiK9qa6Hgz4TwGSJfQV08VxcTUinO6JQuQzSLcUGPOz4QArplhvjD9tBouAIR3ngGVi+hq1eQkLV4bgtcDS6IEfJ98pXh8BVoxrEVK1bgnnvuCSvbS1vkhHE4HLDZbEhPT5d0nk2bNhk1Gs1nkk7igYIhGaCKcoQQuRkzZgzmzp2LQ4cO4bvvvsNLL70Ei8UifiW5NRI2OiU9nZagsSlvFuvKELkHQkC3zJtOp0NOTg73QVlZz+BjNbgtgPy2vzkAKt0+/4Ba2Dmd1fCdJfK1/llMWPPX/6i5ghZxjDGGkpIS3HnnnWGNQ8GQMK2trZKX1GaMobS0VMkYK5V0Ig+JV1aE9EDBECFErrKysvDll1/ihhtugMlkwvTp06O9JOH4syX8tir+4xnxu62pB/dMx2oEzl4MlXIx6MjIdKzJfS2zFZ0Zt27BEMBliIqLgUOHuK2Ms8q4+6eWcSW7PbNBQsvB88FUU3n3j8WQAK+hffv2ISMjA+PGjQtrnPb2dowfP16kVSWuxsZG9O/fX9I5jh07BpfLpWOMnZN0Ig+UGZIBOjNECJGzAQMG4Ntvv0VGRgYWLlyIcjH68/AZIfcLZsoQhc9fFiQDwDtRzGZ0BG49giGAyxBpNNyf7sIJYNwr8Hn7OBR8pb4EsHLlSsycOTOssz5WqxXJycnSFlVJEG1tbcjPz5d0jtLSUgD4StJJvKDMkAzQmSFCiNzl5eVh1qxZOHXqFGbOnIlp06bhkUceweWXXx78YGL2i/GHf/c+ETNCvIIirjiBe1EBJbgqcp5M4IosqJIAqSqkluT6DhZmA5itgGnHDu7MkBBlZV1ZIz4j5OuckS/BBlQZEHY2KY7ZbDasWrUKhw8fDmucSFzgJwKDwYD09HTJg8YNGzbo9Xr9l5JO4gVlhmSAtskRQgj3LvCll16KyspKFBYW4rbbbsPMmTMD9ibyKlnNbZtyz2TEa/GCaJpa1jPIC1RDyhm9MtHOlBQolcrgshFlZd0rAZaV9cwg+RNsRsgY4HWYAK/RnTt3YvTo0Rg8eHBY49B5IWGampokryJntVqxd+/eVADbJZ3ICwqGZICCIUII4X7ZpqamIjc3F//85z9x8uRJmEwmLFiwQNgAfFU3vsmlZ4YolG1y24oDP2+GJjGzQt7MEfg4/nsmdnW5AGWv9YMGIevTT4Mft6yMywgFmxVyt0YhrJocz1sp7gQIhADg0KFDuPLKK8MehzJDwkQiGNqzZw8yMjLOMMbaJZ3ICwqGZECpVMZ/fw1CCAkTHwzxUlNTMX36dJw6dSr0QfkMUaimiXB+KREoQtx+c0TLbUMTg4BAQzd0KHLOnQtt/GAzQuHyzBAl0HXAiRMnMHast8ZQwtntdgBcY3rim9PphMViEb41NERbt251ms3mjZJO4gMFQzJCAREhRM48gyEA6NOnD86dOyfs/0c+Q5Os5m4zNMBMbc+sjpAMEZ8RCvZ5ierOjjNAgZqGelNeLl6GKEBxAd3Qoci5cKH7nXzGJpisTTA8xw52rgTcvllZWYnRo0eHNUZ7eztlhQSI1FbCDRs2GC0WS8SLJwAUDMlGcnJy57sghBAiR4wxKJXdf+1df/31aGxsxB/+8IfQzg6FijJCvoVyZRJuhmiNQtAWPf2QIcj57rvgxy8u7gp2YzHg3VbcFWRtK472avw6evQojh8/HnZJbTovJEwktsi1t7fj9OnTqQD2SDqRDxQMyQSV1yaEyJmvzE9OTg727NkDh8OBq666Cj/88EPgwcI9wxOo4WYsXixHgkLF3VaCa3oarHBLpguowGbJy+vKLnrL0ASbteGDI3+BHN9M1dfHMrJnzx7cfPPNePvtt9G3b9+wxqJgSJiWlhb07t1b0jl27NiBrKys/YyxqFyoUjAkE1REgRAiZ3a7HcnJyV4/l5mZiVWrVuGRRx7BLbfcgo0bg9i27m0LUgJuS4qIOx1d2+WeRvBXKOFc0QgILmxZWUi54orgKsnxGSHPQM0zQ9QUpUwhnxFyn7+pPCYzRHv27MH06dMxf/58zJ4dXrMkp9MJh8OBlJQUkVaXmEwmE1JTUyUvqb1582arVqtdL+kkflAwJBMUDBFC5MxqtSItLc3n5xUKBf7whz/gyy+/xL333os1a9ZItxiNgKxSpoK7yRGfIXKyrgpsmQIuxpxhBqABslG6YUOQnZ3d8xN3d9x4yerg565A8BkiGTGbzfj973+PxYsX49Zbbw17PI1Gg7y8PBFWltgisUXOZrOhpKTE5XQ6N0g6kR8UDMkENV4lhMiZxWLpUTzBmyuuuALffPMNnnnmGTz66KNwCG3uyWeDhGaEVsN76WOeCQnfONMn9wwRX4HN4ADUIQQZwTjOfJe+Li2CbsMXyMnJ6bpvFuMCHxe6eiMVFHXfQllWxr0mhJbUjnSGaGoZ93W4N3YtKOLuC6a3kcSeffZZXHbZZaIEQgBtkRMqEsHQpk2boFQqTzDGTks6kR8UDMkEnRkihMiZt0pyvkycOBE//PADjh8/jttvv114QOQPf5aE701UUBQ42MmAtFXK4o1GA0z0EhD5CkL5rWiXBFE6uaysZ4ZICWBqGfR6ffdgSKUA7nDrSzQbXGGMcH5eT4f+1ERVX1+PpUuX4p133hFtTAqGAnO5XDAajcjKypJ0noULFxq0Wu3bkk4SAAVDMkHb5AghchZMMAQA+fn52LhxI3Q6nfCmrL64n73gm3oGetc9A6GVmU50hzWRyxBNVAOlRZ3b73Q6Xdc2uZLc7hkhd7PR87wNnyHib6vB3dytRvS2wfEZohjLCAHA8uXLMXPmTNEyFIwxWCwWpKenizJeouIb0gZ1Ri5IdXV12L17t4ox9olkkwhAnaZkgoIhQoicWa1W7+c9/EhJScGvfvUrNDQ0hD6xtyzBGgW3vaq0CGg/xPUqcucZCBUI3GIlF4HOXHlevB13cveNUwE/CczyeTRHZYzB4XD4LMLRw7RyYE1S13Y/T3zQM1vR8z7Syel0YunSpfjss89EG1Or1UItdUCdABobGyXfIrdixQpXSkrKp2az2SjpRAFQMCQTFAwRQuRM6JkhT06ns0dvIsH8VeOya93egXe7IPYMhGYDQDlA18lRZTabu2cSZmjQ7efmzSwncKePz3l7t52/jyoRdiotLUVBQQEmT54s2pgtLS20RU6AlpaWsBvb+sMYw8KFC006nW6hZJMIRNvkZEKhUAjrsE4IIQmox8WsQHV1dRgwYID4C3KvOFZaxN0YAzZ4HGT3VJjL3YhvH6u5G29sx31Cs0JetLe3U/WxKNi0aRNmzJgh6piRyHjEO51Oh/T0dCQlSZcz2bVrF/R6fTuAvZJNIhBlhmREpVLB6XRKXi+eEEJijb8+Q/40NDSg2F+5Y3/4zM+24u5Vwjy3Q7mf0eD/rlAAcHuOXBuxhqKzmlvH90yhCq9JLrjzE/369Qv+iWt9bJXj35x0/7lK/YblGrfvh6/tezHmm2++wcqVK0Ubz2azweVy0XmhAC5cuIBBgwZJOseiRYvMJpPpXRYD79RTZkhG0tPTYTabo70MQgiJKP53bagHgUPeJudNKD1ovKEMUWB8hiiMjBBPo9EgN9fj+y3kZcGcMde8NF7odDpUV1ejsLBQtDEjUSo63jHG0NTUhL59+0o2h16vx/r165UOh2OFZJMEgTJDMpKeng6TySR5mURCCIklNpstpPNCABcIOZ3O8BbgWZ2Lf4fe24H53FxAq+15v6cjAh4jd2Fmg3hOpxMul6tnZnE0uGap/twNAOXAKh8ZoolqoMoAJGVxDVc9CjeIwrOIB3Ny98V4hujAgQMoLCwUdatWfX29pOdgEkFrayvy8vIk3UX08ccfIy0tbafZbG6UbJIgUGZIRigzRAiRI5PJFPK2GJVKBZfLW/1kIhfdqo8V5gLjOno/zRPhYvGIFjA6uQC4PMINV2Pcvn37cPnll4s2nsvlgsFgCLqqpNxEYovcO++8o9doNOI1jgoTBUMyQsEQIUSOQi2eAHCVOE2mQN1RBfJsoOqtoapGw1WUE6KUSm5HAt9vBQCXxakAV+VvlpP7GXg2aQW4qyslgFUqrk+RZwamMBfI8pLxyM3lMkRi4vsH8RQq7uMYzgoB3AH7K664QrTxWlpa0Lt3b0n75sQ7p9MJjUYjabW9iooKnD592gXgK8kmCRIFQzKSkZFBwRAhRHbCCYYuuuginDx5UtwFzQF3MT3b434+OFoKYQFRE2USIqG9vR15f/gVlxEyemyZnFYeWoaIzwh5ogwRAKC5uRllZWW45ZZbRBuzoaEhtCIYMtLY2Ii+fftKGjAuW7bMDmA5YyxmonEKhmSEMkOEEDkym83IyBCabulu5MiROHv2rDgL8XyHnr/PGyEB0WwAKnqXOywqBVfRzf1WmNut6IHBYEDWD6d9nw/iM0SMdd2czHtGiBeNqy/+9RfjGSEA+L//+z/ccccdojVHZYyhtbWV+gsFIPUWObvdjuXLlztMJtMSySYJARVQkJHk5GTYbLZoL4MQQiIqnMyQSqUS7//NTAXguePOvdEmHxh5bp0LZI3Cd1BF/PN2HOyIFmg/BIB77aQdPgyFtyyOu2lBNsZdiZ6ZQV5ocXtP/OsoWS1aMYlI2LBhA1auXImDBw+KNqZOp0N2dra4lSETjM1mg9VqRU5OjmRzbN68GQqF4hRjrFKySUJArwoZ4dOeMVDSnRBCIsZsNiMtLS2k5xYWFuLIkSMir0hELlCGKBR8RsiXmVqgMBdt5Q8jf88eadbg7QpMCcAo39/R8+fPx9/+9jd8/vnn6N+/v2jj0ha5wCRrMO1m4cKFBq1WO1/SSUJAwZDMpKSkUHaIECIrLpcr5DKxNpst5ECqB2PHFir3d/75bVXu+O1MMr4olpyQAoFHtGgrcSLvxInAjw02mzOrYxvdao8xnCL8zD0Lc9i13Mclsd2X6vDhw3j55Zexa9cu/PznPxd1bP4sDPGtpqYGAwcOlGz8hoYG7Ny5U8UYK5FskhBRMCQzVESBECInTqczrK0x58+fx9ChQ0VcUZAYAzzPTbgHT0p0nVEBus69EFFoLr4YeadOBX6gGIGrCdI10p2NzmxXLGKM4U9/+hNef/11DBkyRNSxzWYzkpKSevaJIp2MRiOUSmXI24mFWLFihSslJeVzxphBsklCRMGQzPCNVwkhRA4sFktYv+AlCYaMzHtGyBeN23kP+q0dMc6kJLiSkpDs7w3EDAj/OXrjedbrmATNdF9y+3uMNuvdsmULnE4n7rnnHtHHpi1ygdXU1EhaOIExhoULF5p0Ot1CySYJA/23KjNUUY4QIifhNFwFYiAzxHOvUubtY8+MEGWI/BOwrU07ciTUZ874f1A4GSFvPyMXuirahcq9auFs9KyCF+74InM4HHjllVfwj3/8Q5KSzhQM+ccYQ319vahntDzt2bMHGo1GC+A7ySYJAwVDMkPBECFETsKpJAcABw4cwPjx40VcEYkXbaNHI6/SR9GroqLwMkKBiJEhesnP52IoQzR37lykpaXhzjvvFH1su90Om80Wcml9OdBqtcjKypJ0G+GiRYssFovlXRajFbyotLbM0JmhBMcfkI2jMqqESMlsNiM7Ozuk55pMJvzwww8oKioSeVUSYG4ZIvePSU/binuWOPeiffRojLl0DbDd7c6JauCwCP+/BsqApIdW8KObgiKgIrYbuOp0Onz44Yc4evQoUlJSRB+/ubkZBQUFoo+bSKTuLWQwGPDJJ58o7Hb7CskmCRNlhmQmLS2NgiFCiGyEkxnatWsXJk2aFHIwReKbYcAAZKGx+515k6SfuKgIMIjQGLWsLPwxJPbvf/8bv/3tbyWrYlZfX09b5PxwuVySB4wlJSVITU39jjFWL9kkYaLMkMyoVCq4XEJqipK4wmeE7NruH1OGiMic2WwOeYvM0aNHMXnyZJFXJDHKCAU2tQyA/8yMuXdvpAFQ3GkHxN+95Z+YZS+o7gAAIABJREFUQQxjQHExUF7e/b4YsHz5cnz11VfYt2+fJOO7XC7odDrk5sbO+ahY09LSgt69e0vajHbBggV6jUbztmQTiIAyQzKkUCjgdAbopk0IIQnAarWGvP0mZoonkIhru24U8m+6SboJvFUTHAuu79AakYsIxGCGqKSkBE899RS+/vpr5OfnSzJHW1sb8vPzJSnKkCik3iJ38uRJnDhxggHYLNkkIqDMkAylp6fDYrEgMzMz2kshYuEzQJQRIqQTf1Y31Iuh9PR0WK1WMZdEok3ga6E9azQKZs4Ejhzp+UmpMitPSzMsgJjJBjHG8OCDD6K0tBRffvklRo0aJdlcVEXOP4fDAb1ej7y8PMnmWLp0qV2pVP6HMWaXbBIRUGZIhqiIAiFEDux2e1gVkvLy8qDR0BsLsjJRDRQVoV1os9VwMQZ8rOYyQrxkddcbWwmmtLQU27dvx8GDB3H55ZdLNg9jrHMLGPGOP08lVebM4XBg2bJlDqPRuEiSCUREwZAMUePVBDZDQ1khQjqEc14IAHJzcykYkpsjWjh374YzJcV3s1Xq4RQSs9mMRx55BC+//DKysrIknctgMCAjIwMqlQhV+RKU1I1Wv/76awCoYox5drqKObRNTobS09Oh1+ujvQxCCJFUuA1XKRhKQP5KkHcUGtCOHIncQM1WxSRkm/PaJIB1nPWdFRtb3oL11FNPYcKECfjtb38r+Vy0Rc4/i8UCh8MhaVC6cOFCo1arjenCCTwKhmQoPT0dTU1N0V4GIYRIKtyGq2lpabBYLCKuiMSDttGjkXfiRLSX0aW4GPjRCQxF17miOOsnVVlZiZUrV+LEiRMRKWjQ2NiIK664QvJ54lVtba1k5cwB7vu/Y8cOFWPsY8kmERFtk5Oh9PR0OjNECEl44QZDtbW16Nu3r4grIlG1Nom7AYBazd3cdVRdax89GvmVlcLHzc3t2joXzoW+t23Oa5OAH8u5JrEVAO5G9zmKi4WNrQpzfWF+bc888wwee+wx9OrVK+QxhOLfwEhNTZV8rngldTC0cuVKlpqaupExppNsEhFRMCRDqampVCGJEJLwwg2GysvLceWVV4q4ohiQm8vd5Ig5uVumAtBquZu7cdzFvmHAAGTV1Qkf13McsRQXA/c5uUCI59kmsLycC1LGBRGobCsObh1hlvquq6vDtm3b8Le//S2scYRqbGykLXJ+6PV6pKSkSBYsMsbw7rvvGnU63buSTCAB2iYnQ3yKmjFG9fcJIQkrnGCora0NW7duxZIlS0RelQQ8K4/5K6Jid7tw93VGJTeXe9wyFZCU5X/MklzgD1quAppG433Mko7xZrs9T93xeP53UAYAo0Rbvta6XerM9vgcHxhqNEAFYO7VC2ltbVD4236WAeAiNfdcb4GQ+xa2klxgprbr42AcOtQ9EPLH1xF1laJnADWtHIBC2Ho8rxFC2J537NgxTJgwIWLtPBoaGnDJJZdEZK54JHXhhL1796KtrU0PYJdkk4iMMkMylZycDLs9psu+E0JIWJxOJ5KSQnvPb+fOnfjZz36WON3r+YyQCdwttyOI8cZhEHfuP2i57V3uDIbuGSoT/G/DKsnlMjoKBffnmo4bH3yV5Hb/2B1zArOcPQMhoCtD1DF3m5AtciYAeZOEZYRmhpE1mjQpuMeLnSFSifNm6e7du3HVVVeJMlYgTqcTZrNZ8mp18YoxJnlxicWLF1usVut7jMXJgTZQMCRbdG6IEJLIXC5XWJnvb775BkVFRSKuSAIluV1ZF/cbf787/nPuH/N/8o/P7Qg4jB1bs+5zcoGMtzH54OQPWu6xWm3Xx/zj+YDFhJ7ZCafTezCRKcIFOD9vCNpHj0aekPNCuwK86f2x2ntWJZjXZFkZEOxr0HPpK/08dlq59/vXJnHr9PyZhWj37t24+uqrxRksgObmZvTp0ycic8Wj9vZ2qNXqkN8kCsRoNOLjjz+GzWb7QJIJJELBkExR41VCSCKzWCxIS0sL6bl2ux3r1q3DzJkzRV5VFC1TcbcMcLelHTd3YmeE5qBnRigQzwwRH3TN1HZtGTOBy/LMARd4rVF0D+7cKRTeM0I+tF98MfJOngz8QGdHmWtvbawmqkPPCHme6Qo2IPJ8yQcqw+0tO3SX0/fjV6N7g9gAjh8/jv3792PKlCnCnxQGKqnt34ULFyTdIvfpp58iNTX1B8ZYEIfuoo+CIZmixquEkEQWTsPV8vJyDB8+HBdddJHIqxIZX30sWd395q0q2Z0O7sabxXo+/vMpwIai7gHTMpX3MWdouDM+/1Fzj1Wruz7mH5/sUa0t0oLMDjmTkvw3W/XG6tHUczW6yl+LhQ+I1Gr/gREfpOTmds/klRb5DmCmlXdlrNYoAmeEZjFBfY7q6+vx5JNPoqioCO+8805EtpsyxtDe3o78/HzJ54pHLpcLbW1tkmbOFixYoG9vb4+L3kLuKBiSKdomRwhJZOE0XN2wYQNuvfVWkVcUI/gMkTdTy7ibouPzCrcCCqHQaAAn44Ilz6sNlapnaWuAO5jvftSAD7o+VndlYTLAXdwvBRdw8YFdmLQjRgTfbDUrC1ijAsaCu/FWw/cVVqGXwIDPCPFnmLxliDQa7k/GuDnducf9ntmxqWXiNGoVkBGqrq7GH//4R4wbNw56vR7ff/897r472PRgaPgtYFQYyrvGxkb06dNHsu/PqVOn8NNPPwHAl5JMICGqJidTFAwRQhKZ2WwOuXrV7t278d5774m8Ign5qx7nyT075Ot5n3dsaZpaJmzuGQHWkqwGLB0X6EoA13RkNw4d6llVLlzJ6q5gIFkNQPh2NcHnhdxpOr7eO9Gzkt4seP+6+DNVwfzcPN3pAGZ1jL0a3JbBOejaSthZHMNHxUBv+O2ESnTPDo0FMC9wYFxWVoYZM2bggQceQFVVVcQzNLRFzr+amhqMGjVKsvGXL1/uUCqVKxhjNskmkQgFQzJFwRAhJJGZzWb07t076OcZjUZUVlbi0ksvlWBVcUJIEBQMjYAL8UCFpzyDLm+f5/Hb42ZoAAgPstrGjMGYtWsFP75zzXzA87GX7NTHXs4PVYC7b2IucLhj3fz3yL3Ut9D5AWC2j6+Tn7uoOPB4PM9tchXgqvEx32vauXMnZs6ciZKSEhQLbQQrsqamJkkv9uOZ3W6H0WhETk6OJOM7HA4sWbLEbjQaF0sygcQoGJKppKQkOJ1+DkkSQkgcC7XH0N69ezFhwgTqXh/P+C1h24q9ByM+GAYMQFZtbejzesu+CAnI+GBqLACEsN3PWzlxvkcU/7WX+6gcJ4Iff/wRt912G9auXRu1QMhoNCItLU2yKmnxrq6uDgMGDJBsi9zWrVvBGDvHGDsmyQQSozNDMqZQKOByiVQ7kxBCYkio1eT++9//Yvr06RKsiISNP+gv9IKuqbzn+RkfejRbVam6/+mOP9fkuRZfa2OsZ9W5DACnvWSMhgL4ZFLgHkDuc3oL9mY5hQWB7ueA+MIZHth/c3Ds6FG0tLR4HeLpp5/Ga6+9hl/+8peCliwF2iLnn9SNVt977z2jVquNu8IJPAqGZCwtLQ0WiyXayyCEEFHxvf6CfRfUbDajpKQkYge+SRiC7dkTQNuYMV3NVhkDHI6uP4O1rVhYMOOt0ewRLVfh7e8CMjlCAyahloIrVuERAC5uew0TJkzA66+/3uMpLpcL33//fcRKZ/vS0NCAvn37RnUNsYqvHBxqdc1AmpubsW3bNhVjbJ0kE0QA5RNlLDMzE0ajUbJ/IIQQEg02mw0pKSlBP2/58uW46qqrJH0HlYTAX9BTXMxVWPOms4Jax/P99BtqLizEkG++CbwWtZqb0x++mak6F5g0iVufsWMtfFNZI/P/dZ1HV7AT6hmuDHQVVBgLLvPEW42uYhN8dqigCDt37sSWpCT8IsmJ/7eSK5G+949/BAD8/Oc/R0VFBSorK2G32wEApaWlmDBhAoYNGxbaGkVgNBqhUChCrh6Z6M6cOYPhw4dLNv7KlStZWlraJovFEmJzreijYEjG+GCIujUTQhKJ0WgMqpKcTqfDihUr8MILL2DHjh0SrowELVCvoPKOPjmBCjB40xEsMHDNVicuWAAo3TbMeAtWtNru52+YW1BTWtQVCPGP3ekjw+PtnI87E7ixxgI47uMxU8uAzCTA6OP8r7+AqyNQ3LtgMtbvasGPzRfBbDbj+++v7XzIn76+Dcfe+BlOnDiBe+65B3PmzIFarca4ceO6bUFduXIlkpOT/X89Erpw4QIGDx4ctfljmd1uR3NzM8aNGyfJ+IwxLFiwwKjVat+VZIIIoWBIxrKystDY2BjtZRBCiKgMBgOysoT3x3nrrbdQWlqKzz77DOPHj5dwZUQyQjJEs9A921JcDJSXw9i/PzKamqBUhnBywD1LNM1L4OMCVyHOPUO0rZg7zySGy6dwAZe347/ugVBFz0+fOnUKN79wAffeey+Obl+OlpYW/PWvf8X7778PAFCpVHj55ZdRWFgYs2+aMsZQX1+Pa665JtpLiUnV1dUYPHhwaK9tAfbt24eWlhYjgG8lmSBCKBiSMT4zRAghicRoNCIvL0/w4zdv3oznnnsu6uceZK0wlzsv4241/G5tC4n7lrOO4KnpzBkUeMugqNVcdscfIVXaPDNE7YcCP4f3fIDqcnwAmOWWIfLMUHmjUOA4AGVBAaZOnYrXXnsN48aNwwsvvIB33nknbqqytba2Ijc3N27WG0mMMVRXV0v6/9rixYstdrv9PcZYXFfjogIKMka9hgghiSiYbXIulwsHDhzAddddJ/GqSNDmBPHYMEpHNzc3e898aDShbb/zxv1SMW+SsOdkQHhj1suncIUPMsBlnVb7fuh2cN/auQCGDBmC66+/Hg6HAz/99BN69+4dV4FFdXU1hgwZEu1lxKSGhgb06tVLsi2MJpMJa9euVVit1g8kmSCCKBiSMb7SEhPrP3tCCIkBwRSGUSgUmDhxIpYuXUr/F0ZDYS63ncszKwR0Hf6XkMvlgslkCuqMWcgUCkCl4LJTBUVcwOInaMEyL2W9eaqOsXhPA/h6ClcRbja8ZtRcAJ4H8HsAEwGsBNdXS6lUQuWthHiMczgc0Ol0yM/Pj/ZSYtKZM2cwcuRIycZfv349UlJSfmSM1Ug2SYTET/hPJMFnh6iiHCEkETDGwBgTfHGnUCjwwQcf4Je//CUmTZpEZw/iURhBbHt7O/Ly8vyXYS8t4kpdezl3E7KpZYFLg7+aBdzp5X7P3kZjAcxTAcwJvOR9qK0AXgBXV28fgH7Bfs/4OWPoDYO6ujr0799fskai8Uyj0SApKUnSIP/dd9/VazSadySbIIIoMyRzdG6IEJJIQimrnZGRAcYYLr74YolWRXw63LEVbWKAszESaWpqQkFBgf8HTS0DjjNxrphc6MoQBeLZlBXw/rwKcIHQbHQGbAxADYBWcNvi7gRwT8ffE6U1KVWR803qrFBVVRWOHDmiALBRskkiiIIhmcvMzITBYIj2MgghRBTBltUGgL/97W945plnqIN9vArU98ePlpYW9O7dW9iDtxRxWZixAIqKuFuomRIhx835bYJrFNxNofD9vI5tcQ4AiwEMA3AZgBEAbgbQBsAIIFmtDm7Nns1tRW52GyqpG4nGM4vFAoPBgF69ekk2xwcffOBQKpWrGGNWySaJINomJ3NUXpsQkkiCLavd1taGPXv24LPPPpNwVSSgw26FAiJ0sW2z2QBAeCZxaln3nj/FxdKvld8G97T/hzEAX4IritAPQAmAKwDoAPAdjW4EuBLfCeDChQtUOMGHs2fPYtiwYZJtH3Q6nVi8eLHNaDQukmSCKKDMkMzRNjlCSCIJNjN06NAhTJo0ibrXxxLGum6BqNW++wsFEFRWyJswKtgFpQJ+S4z/COA6AP8G8AaAbwBcCe58kBrA1+CCozFA8N8rz5+D0J+LhBhjneeFSHdOpxMNDQ0YOHCgZHNs3LgRDoejmjF2WLJJIoyCIZmj8tqEkEQSbDB04cIF2h4XywJdeIeR6Whubg58XiiGNQH4I4DfALgLwCEA/w9cEOTuBgC3KxH1IEYsbW1t1FvIh5qaGgwYMECy6oAulwtPPPGEQavVPiHJBFFCwZDMUXltQkgiCaasNsC9y3nDDTdIuCISNm+/n/izLyFmhQDuojqY5ryxZC+48ti9wCWO7kOAcw/OMH/Hx0BGiFddXU2FE7xgjOHcuXMYNmyYZHN8+umnaG5uvgBuV2bCoGCIUHaIEJIQgi2rbbfbUVpaiunTp0u8MhI2xriCBSoVdwvz7AsfNCuV8XcZtA1cUYRl4LbF5bh/Ugng445AMVPF3WIkiBGDw+GARqORtDhAvGpubkZOTg5SU1MlGd/pdOKJJ54warXaR1mCvYMef/8LENHRuSFCSCIItqz2wYMHMXz4cLqwihdlZYDDwd3CyAgBXEntPn36iLIsUaxGwCsyBmARgFkAPgUXEHWjBDBeDczoKEZhcHC3BFJfX48BAwZQbyEvpC6n/d///hft7e1nAGyRbJIooWCIUHltQkhCCPa80K5duzBlyhQJV0RilSjnhcTaOjYWQLIaWOn7ITXgqsEtA1CmAK5VovsVnBLcVjj3qnwJiHoLeafX6+FyuZCTkxP4wSFwOByYO3euUavV/iPRskIABUMEXHltygwRQuJdsGW1q6qqMHbsWAlXRGKRy+UKqR+V6DIAlBZxDV1naIBZjMsQuWHgYqTJAKYA2ANg3KqOO9M6xhgLYHQE1x0lJpMJjDHqLeSF1Fmh1atXQ6/XV4Lr25twqBQHoW1yhJCEYDQagzoQr1Ao4HIJ6X5JEolGo0FeXp54W634N8rXdIznpwx2NyZwvYvcJasBaAEABgB/AXAQ3L6kSz2fv9Tt7wVFQlcbtygr5J3NZkN7ezsmTpwoyfh2ux3/+te/EvKsEI8yQ4QKKBBCEkKw7/YPHjwYNTU1Eq6IxCLJzgvNYoBCxWV3Vgd8tHczNABj+La8HJcDSAXXR+hSwPe4ClXPoCrBMMY6zwuR7s6dO4ehQ4dKdo7qo48+gtlsPsYYi1BjrcijYIhQeW1CSEIItqz24MGDUV1dLeGKSCxqbm6WrnjCnQ4uKEpWB36sEsC24h53nz17FkVFRfgjgOXgdsIB8J79KSji5kxwbW1tyMnJod5CHlwuF2prayXLmNlsNjz55JMmrVb7qCQTxAgKhggAyg4RQuIbYwwulyuoZoMFBQWor6+XcFUk1tjtdjDGgqo6GJIZAgoZuAC0H+p2F2MMn332GbKysvCozdZVpIGxntkfGWSEeNXV1RgyZEi0lxFz6urq0LdvX8mCxOXLlzObzXaAMfadJBPECAqGCAA6N0QIiW82my3o/hplZWW49NIeJzFIAmtpaYlcSe2iIq45rB96nRZstQJTJ+dBpVJBqVRixYoVOHLkCJKTk3s+oaCIu81issgIAdRbyBfGGM6ePYvhw4dLMr7FYsG8efPMGo3mMUkmiCGUbyQAuIpyBoMhtvouEEKIQMGeFzp48CCWLFmCXbt2ibOAklzuTyEZgUTHb/2KwaxFU1MTBg4cGJnJ+F5Ifs5y5NwHzADwfaoGfC2PsrIy34VAYvB7KrX6+nr079+fegt5aG9vR3p6OtLT0yUZf8mSJczhcHzPGPtBkgliCGWGCADKDBFC4lswZbWrqqpw0003YfHixRg1apTEK4tBCkXPC/TMjvtyc7s/xv3+zI6Pc3O7Hsc/N1PBBUEluUBTOTCtnHtecTF3c1eS2xU8Rlh7ezvy8/MjOymfISrqeeZHCaAEwOMzh6KpqQlmszmoiohyQFXkvKuqqpKsnLbJZMKzzz5r0Wq1j0syQYyhzBABQMEQISS+BVNW+6WXXsJf//pX3HrrreFPzF/U27XdP07kDJFW6/3+5l0Ac3a/r/0QUGUAVAogXQUYHIAjOk2+jUYj0tLSoFRG+H1gPkPkriMYta3LwZX/dxHSL5lJOzO84HsLRb0nVIwxmUywWq2SBc7vv/++izG2kzF2UJIJYgwFQwQAFVAghMQ3o9GIQYMGBXxcbW0tNm7ciNOnT0dgVTHGMxvkbduRVtv9fpPb/YHGu8/Z9XjeEbfnmZ1csMgHTBEOHMOqIifBWjUAnlmXDbVajUcfTehiXSG7cOGCoH/XcnPmzBmMGDFCkrENBgNefPFFq1yyQgAFQ6SDe3lt2pdLCIk3Qstq19XVYdCgQeK9o8pfHMshIxQuF4A7tEAauIahEc4QNTU1YezYsRGd0yfGkKdQAJ/Xorn5kPdiCTLH9xa6+uqro72UmGK329Hc3Ixx48ZJMv6CBQucAL5hjB2VZIIYRMEQ6cRnh4Lp00EIIdEWTFntwsJCnDx5EjqdDjk5ORFYXQzhe8nxb3i595bLVHBZHbUa0Gi6HpOBrvs9s0NqNRfQ8JmepQBe6vhchYD19JkSylcREpfLBaPRKPhcWScJt0Fef/31+M1vfoPevXuHPVYiam9vR05ODgWKHvgzVFJs99TpdHjllVdser3+CdEHj2EUDJFO/LkhCoYIIfEkmLLatbW1UKvVwV8UByKHjBD/q4HfCqfp+JozOwKnZDXwdEfQMLvjMUVFwL5d3BY5/szQ2o5LjwhWRtNoNMjNzY2ZnQ/nzp3D/v37sX79enEHXtPx9c2K/ybq1dXVVDjBA2MM1dXVkmXL5s+f71QoFF8zxoS8nZEwKBginai8NiEkHhkMBsEHrMvKynD99ddH/hB9LGFeLpSNLPBjeLkeleCMrKucdnNHqXJ+B09ZGVCYCxxzyypFMCPEa25uRkFBQfBPlGAb5OHDh1FUVAStVgudTgd1gF5EgvE/gwTgcDjQ3t6OwsLCaC8lpjQ0NKBXr16SZMs0Gg1ef/11m8FgmCv64DGOgiHSKTMzE42NjdFeBiGEBCWY7U8nTpygTvbh0ngJCDyzPHe6/f2wx+Oj0CunubkZw4YNi/i83mzfvh1arRZ9+vTBgAEDxBl0jcL7x3GaIWpoaEC/fv1iJpMXK86cOYNJkyZJMvabb77pUCqVGxljpySZIIZRMEQ6UXltQkg8ElpW2263Y8mSJdi/f38EVkVihd1uh8vlEryV0isRt0GmpqZi4MCB2LZtm6BzbgElUEaIV11dTVkhD1qtFklJSZKUGW9ra8Nbb73lMBqNT4o+eByQ8T4B4onKaxNC4pHQbXI7d+7EiBEjJCtJS2JTS0tLzBQpYIxhyZIlWLJkCcaMGSPewAVFPT+O06yQ2WyGy+Wi3kIepGyy+tprr9mVSmUJY+yMJBPEOAqGSCf38tqEEBIvTCaToAunV155BXPmzInAikgsCau/kMiOHDkCvV6Pm266SbxBp5ZxN/eAKApbEcXCV0sjXSwWCwwGA3r16iX62M3NzXj33Xeder1+nuiDxwkKhkg3lB0ihMQTvqx2oIIIO3bswPnz53HvvfdGaGUkVrS1tSE/Pz/aywAAnD17Fpdccol0Z2HiOCMEcP+e6+rqxDtLlSDOnj2LYcOGSfK6efXVV+0qlWoNY+y86IPHCTozRLrhK8pReW1CSDywWq2CzoKsW7cO999/P/UskRmj0Yi0tDRxzuaI4OzZsxg4cKA0g8dxNojX2tpKvYU82O12NDQ04NprrxV97IaGBixatMhhMpmeEX3wOEKZIRnYu3cv5s6diwMHDgR8bHZ2NvR6fQRWRQgh4dPr9QGbpzY2NuKTTz7B7373uwitisSKuro69O/fP9rL6LR7925MmRL50uLxoqqqis70eaiqqsKwYcMkCehffvllq1KpXMEYqxV98DhCmSEZmDJlChwOBwwGAyZPnuz3sdnZ2Th37lxkFkYIIWHS6XTIzs72+5g33ngDs2bNwqBBgyK0KhIrGhoacOWVV0Z7GQC4LWAnTpzAqFGjor2UmGQwGOBwOJDr2cdKxqxWq2RZodraWixfvtxlNpufF33wOEPBkAycPHkSWVlZgg6QUmaIEBJP9Ho9hg4d6vPzjDGsW7cOW7dujeCqSCwwm81QqVThldQW0caNG6FSqahktA9SVkuLV6dOncLIkSMlaRL94osvWpVK5TLGWIPog8cZ2iYnA8OHDxdcSScpKQkul4sqyhFC4oJer/ebGWppaYHBYBC3jDGJC7G2Re6///0vFAoFduzYIf7gaxTcbW18vsdts9nQ3t6Ovn37RnspMcNsNqO1tVWSjHZ1dTU++ugjl9FofFH0weMQBUOkB6ooRwiJB4wxOBwOJCX5vgA8evQoxowZQ53sZai+vj5mgqGysjJs2rQJhw8fRnNzc7SXE3OkrJYWryorKzFq1ChJvifPPfecRalUvs8YoxcjKBgiXmRnZ0On00V7GYQQ4pfZbEZ6errPzzc2NuLRRx/FXXfdFcFVkVhgsVgAAGlpaVFeCef999+HTqfDuHHjMGvWLPEG5jNCPOaMuwyR0+lEXV0d9RZyYzAYYDAY0K9fP9HHPnPmDNatW+cyGo3/K/rgcYqCIdJDTk4OnRsihMQ8f5XkGGOYPn06brnlFjzwwAMRXhmJtljKCgHA5s2bAXD9rqQ4/xHPamtr0a9fv5gpfx4LTpw4IVlG+5lnnjEDeJsx1ir64HGK/kWSHnJycigzRAiJef4qyZWWlsJkMuH555+nrTcyVF9fHzONO48dO4bk5GQsXrwYBQUF4g4+i3VvsqpQcR/f6Qh9zOJi7hYBjDGcPXsWw4cPj8h88UCj0cBut6N3796ij33q1CmsX7/eZTab/0/0weNY/ORRScTwjVcJISSW6fV6nxeX77zzDh5++GF6F16GrFYrnE6n3y2UkbR06VI8+OCD+POf/xztpfhXXAyUl3N/j1CWprm5GTk5OTGznTEW8FkhKTz99NNmAG8yxjSSTBCnKBgiPSiVSjDGwBijd1QJITFLr9cjKyurx/3Nzc3YuXMnSkpKorAqEm0NDQ3BnbVwP3OpEEp1AAAgAElEQVRTUARMLRNtLRqNBqtXr8a+fftEG9OrWWFWgM3NBbTaro+dzq7sUFlZeGP7UVVVhUsuuUSy8eNNa2srlEol8vLyRB+7oqICX3zxhdNsNr8p+uBxjoIh4lVmZiaMRqPXCw1CCIk2/g0bb+cMtm/fjqKiopjJDJDIqqurw8SJE4U9eI20b/i98MILmD59OoYNGybpPGEpLu4eCPHKyyXNEPHb8X2d+5Mbvimv4NdukJ588kmTy+V6lTFG5yA8UDBEvOLPDVEwRAiJRUajERkZGV4/t3nzZkybNi3CKyKxwG63w263IzMzM/CDPQOhlwBUlANQAKXhZ4hWrVqFkpISHDx4MKxxJOWZEYogarLaXVNTEzIyMvz2TQvV0aNHsXXrVofVan1b9METAG2mJl5lZ2dTRTlCSMzyVUlu27Zt+Oabb/C73/0uCqsi0dbQ0CCscafEGaEzZ87gkUcewZYtWyQ5CB8xU6ZIMqzFYoFOpxPcED7RMcZQWVmJ0aNHSzL+v//9b5PT6XyZMUYHwr2gYIh4RRXlCCGxTKfTeQ2Gnn32WcyfP1/8ql0kLtTV1QVfRe4lALMBVLjdN60cCPHM7KlTpzBnzhz8/ve/x7hx40IaI2I0fs7RFxVJdl6IryBH55I5dXV1yMvL85ntDsfBgwexY8cOm9VqfVf0wRMEBUPEK/7MECGExCK9Xt9jO8natWtRX1+P3/zmN1FaFYkmh8MBs9ksbJtRQZEk87/44ou46qqrcOONN+KVV14RfQ5JMAao1d3vkzAQcjgcaGhowKBBgyQZP964XC6cOnUKo0aNkmT8uXPnGu12+/OMMZMkEyQAOjNEvFIoFFAoFHA6ndQIjRAScwwGQ7dzIU8//TSWL1+OLVu2ICmJfrXJUWNjo7AtckDXeaA1CuDpjvteQld2iAVXne3MmTOYNWsWcnJycOjQofi70NdoujJhEgZCAHDhwgUMHDiQyt53qK6uRt++fZGamir62D/++CN2795ts9vti0QfPIHQK5H4lJWVRdkhQkjMcblcANB5MXX+/HksXrwYR48elawSE4l9IW2REyFDtGPHDvziF7/AHXfcga+//jr+AiEeY9xNwkCIMYbz58/HdnW9CHI6nTh79iwuuugiScafO3eu0WazzWOMWSSZIEHQ22fEJ/7cEJW9JITEEoPB0G0rVENDA4YPHx7fB9VJWJxOJ4xGY/C/r9wrxs0Kft7//Oc/+Ne//oU1a9bg+uuvD34AmWlsbER+fj5SUlKivZSYcPbsWQwaNAjJycmij71nzx788MMPZofDsUz0wRMMZYaIT1RRjhASizzPC+l0OkkuJkj8aGpqQp8+fSJ6IH/ZsmWYN28eysvLKRASqKqqCiNGjIj2MmKC3W7HhQsXMHz4cEnG/+c//2m0WCxPMcaskkyQQCgYIj5RRTlCSCzyzFj//Oc/x4ULF7B9+/YoropEU0hb5MKwZMkSvPDCC9ixY4dk5ZATjUajQVJSEvUv7FBVVYVhw4ZJcsbx22+/xeHDh41Op/ND0QdPQBQMEZ/S09NhNpujvQxCCOnGMzOUnZ2Nv//97/j888+juCoSLU6nEzqdDrm5uRGZb/369Z2BkFRnPRJRVVUVfb86WK1WNDQ0YOjQoaKPzRjD448/bjCbzf9ijNlFnyAB0Zkh4pNCoYBSqYTD4aDqTISQmGEymXr04zCZTJJ0biexr6WlJWJb5L7//nv85S9/wddff42RI0dKPl+iMJvNMJlMyM/Pj/ZSYsKpU6cwcuRISSrqbd++HRUVFTqn07lS9METFGWGiF90bogQEkucTieUSmWPC9/Kykp611mm6urq0L9/f8nnqaqqwq233ooPP/wQkydPlny+RHLmzBmMGDGCmqyCCwxbW1slqTrIZ4WMRuMTjDGH6BMkKAqGiF85OTkUDBFCYoa3ZqsulwulpaV0iF2GXC4XNBqN5BkHvV6PX//615g3bx5+/etfSzpXorHb7WhqaopIwBoPKisrMXr0aEkCwy1btqCqqqqNMbZO9METGAVDxC/KDBFCYom3YOiHH35AQUGBJPvvSWxraWlBr169JM84PPzww5gyZQoeeOABSedJRNXV1Rg8eDA1WQXXFsBgMAhvDhwEPitkMBj+yRhzij5BAlMwgV2W8/PzT7/yyisjqWqKvDDGYDKZunV6JyRUBoOBKgmRsFgsFiQlJXU7x3j+/HmkpKTQO88yZDabkZycHPa51pqaGvTq1Qvp6ek9PqfRaFBTU4Nx48bRBX0I9Ho9srKyaIscuLONKSkpkpzD3r59OxYtWtTc3NzcjzHmEn2CBBZUMFRaWjrysssuk3hJJJYwxlBWVobrrrsu2kshCaCsrAzFxcXRXgaJY99//z0KCwuRnp4OxhhKSkrwl7/8BRUVFZK820piF//7qaioKKwgpba2FoMGDcKiRYtw//33gzEGm82G1NRUNDQ0YNKkSfjss89w1VVXibh6eaitrUV7ezvGjx8f7aVEnUajQUVFhSSvo5aWFlx00UVmrVZ7HWNsr+gTJDgqEUb8UigUSE5Oht1up6aGhJCoM5vNSEtLQ3NzM+bMmYNTp05h8+bNFAjJUGtrK/Ly8sLO1hw7dgwA8MQTT0CtVmPBggX47rvvcPLkSTz88MOYM2cOBUIhYIzhzJkzoDfROSdOnMDYsWMlGfvBBx80O53ODykQCg0FQyQg/twQlcQkhEST3W5HUlISFAoFXnnlFeTk5ODAgQNITU2N9tJIFNTX14vSaJXfBq7T6XD//fdDp9MhPz8f69evR1NTE5555pmw55Cj9vZ2pKen9yiDL0etra1QqVSS9MLavHkzNm/erDUYDE+IPrhM0OZXElBOTg50Ol20l0EIkTm9Xo+cnBwwxrBhwwY89thjFAjJFGMMLS0t6N27d1jjNDc347bbbsPnn38Ou92Op556Cmlpabjjjjvw1ltvYe3atbQrIkSnT5+mXkzgXqsVFRUYM2aM6GPrdDrcc889JoPBMJsxZhR9ApmgYIgElJ2dTcEQISTq+EpylZWVcDgcmDhxYrSXRKKkvb0darU6rC1yFosF1157LW677TZMnz4dSUlJ2LRpEx5//HF8/PHH2LBhAy6++GIRVy0fRqMRNpsNeXl50V5K1DU2NiIzM1OSptCPPfaY1WazfcYY2y764DJCwRAJiHoNEUJigU6nQ05ODo4dO4bJkydTdSoZE2OL3IcffogTJ07gnnvuAWMM77//Pr799lssWLAAH330EX72s5+JtFr5qaqqoqwQuKwQ31dIbN9++y3WrFlj0ul0D4k+uMzQmSESUEpKCmw2W7SXQQiROZ1Oh1GjRsHhcND2OBljjKGpqSmsbUfl5eV47rnnsGXLFowYMQLXXHMNjh8/DgB4++23cdNNN4m1XNmx2Wxoa2vDhAkTor2UqKutrUV+fr7o56bMZjNmz55tslgsf2SMaUQdXIYoM0QESU1NhdVqjfYyCCEyZrfbO4Mgp5N6CsqVVqtFdnY2VCpVSM9njOHee+/FBx98gMsvvxxPPfUU8vPzkZ+fjzfffBP33HOPyCuWl3PnzmHo0KGyz9y6XC6cPn0ao0aNEn3sefPm2XQ63TdOp3OD6IPLEGWGiCBqtRparRYFBQXRXgohRIYsFgtSUlIAAPv370dhYWGUV0SipaamBgMHDgzpufX19XjwwQfRq1cv9O/fHyNHjoRGo0FSUhKef/55PProoyKvVl7sdjtqa2txzTXXRHspUVdVVYX+/fuLnsXet28f3n//favJZLpP1IFljDJDRJDc3FxoNJSJJYREh0aj6SxL29DQgCFDhkR5RSQaXC4Xmpubg+4r1d7ejhdffBGFhYUYN24cysvLsXTpUlx//fUYOHAg5s+fjyeffFKiVctHVVUVhg0bhqQkeb/XbjQaUVtbK3oBDrvdjlmzZhmtVuuDjLEmUQeXMXm/WolgarUatbW10V4GIUSm3IMhvvcZkZ+GhgYUFBQEVUXu5MmTKCoqwo033oidO3di9OjR2LZtGxYtWgQAKCkpwe233y7VkmXDarWioaEB1157bbSXElWMMRw9ehTjx48PuyGwp1dffdXR2Ni43+l0rhJ1YJmjzBARJDMzE0YjlbAnhESHZzBE5f7lqbq6Ouis4OOPP45HHnkEH374Ifr06YNHH30U06ZNAwD8+OOPFAiJ5NSpUxg5cqToAUC8qa+vR2pqatg9sDwdP34cr776qlWn093NGGOiDi5zlBkigigUCqSkpMBqtVIVJ0JIxJnNZqSnpwPgiifIfRuOHJnNZjgcjqD6tbz55puorKxESUkJjh492tmb6tJLL8XXX39N52BFYjab0draiksuuSTaS4kqu92OyspK/OIXvxB1XKfTidmzZxvtdvtcxli1qIMTygwR4ejcECEkGsxmM9LS0jqrU5nNZtFL1ZLYd+HCBQwePFjw41evXo0XXngB//nPf/D88893BkIfffQR9u/fT4GQiE6cOIHRo0fLvoLciRMnMGLECNHfNH733XddZ86cqbTb7e+LOjABEGRmyG63S7UOEgf4YCjYg6uEEBIOrVbbuUUOAFpaWqizvcwwxlBXV4err75a0OMbGxtx1113AUDnu/Q/+9nP8MUXX6BPnz6SrVOO9Ho9jEaj7K8NNBoNdDodxo8fL+q4586dw5NPPmk1mUx3MsZcog5OAASZGWpsbJRqHSQOUGaIEBIN7ueFAOCnn37CuHHjorgiEmltbW1Qq9VITk4W9Ph169Z1/j0vLw8HDx7E999/T4GQBE6cOIExY8bIOivEGMORI0cwceJEUb8PjDHcfffdRpfL9TJj7KRoA5NuggqGmpqoip+cZWRkwGQyRXsZhBCZcQ+G7HY7qqqqMGbMmCivikTS+fPngyqc8OOPPwIAbrrpJjQ2NmLSpElSLU3WNBoNHA6H6MUC4s3Zs2fRu3fvoM6zCfHhhx+yw4cP11gsltdEHZh0E1QwlJKSAq1WK9VaSIxTKBRITU2FxWKJ9lIIITLBGOs8MwRwpZWzs7OpkIuM2O126HQ65OfnC3r82rVrsXXrVnz11VfYtGmT4GwSCV5FRQXGjh0b7WVEldlsRnV1NUaPHi3quPX19Xj44Ycter3+d4wxh6iDk26CCob69++P6moqYiFnubm5FBATQiLGYrEgPT29c+vJoEGDkJycjNOnT0d5ZSRS6urqMGDAAEHbjzZu3IjHHnsMO3bswI033ijrrVtSa2lpQVJSUrctrHJ07NgxjBs3DiqVStRx58yZY3K5XAsYY4dFHZj0EFQwlJeXh5aWFjidTqnWQ2IcnRsihESSRqOBWq3u/LilpQUmk6nbfSSyJkyYgIMHD0ZsPqFV5M6ePYt7770Xn3/+uexLPEuNMdZ5VkjOGhsboVAoRK9M+Mknn6C8vLzVZDI9K+rAxKuggiGlUom+ffuioaFBqvWQGEfBECEkkjyLJ2zbtg3XXXcdlUWOkoqKChw7dixivwf0ej2SkpI6e0z54nQ6cc8992Du3Lm48sorI7I2OWtsbERmZqboZ2TiicPhQEVFhejV49ra2jBnzhyzwWC4gzFG5xIiIOg+Q0OGDKGtcjKWnp5ORRQIIRHjHgwxxrB06VJMnTo1yquSr/LycgCIWEGC6upqQYUT3nzzTSiVSvzjH/+IwKrkjTGGyspK2WeFTp48iSFDhnSeZxTLQw89ZHE6nR8xxr4TdWDiU9DBUFZWFpxOJ8xmsxTrITGOiigQQiKFMdZ5ZggAVqxYAZ1Oh/vvvz/KK5OvzZs3A0BE+jy5XC40NTWhX79+fh934MABvPHGG1ixYoXo5zZITzU1NejVq1fAbF0i0+l0aG1txfDhw0Udd8uWLdi4caNOr9c/LurAxK+ggyGAskNyR1vlCCGRYDabOy+49u/fjyeeeAJLly6lC94o4JuefvHFFxg4cGBE5mxsbESfPn2gVPq+VGloaMCtt96KhQsXYujQoRFZl5y5XC5UVVXh4osvjvZSoobvKTRhwgRRC3To9Xr8/ve/NxmNxrsZYwbRBiYBhRQMDRgwAHV1dWCMib0eEgcoGCKERAK/Re67777DjTfeiPfeew+XXnpptJclO2azGVlZWZ1B0M6dOyMyb6AtcgaDAbfeeiv+9Kc/YcaMGRFZk9ydP38e/fr1k3Vp++rqaqjVatGr6D3xxBNWs9n8BWNsq6gDk4BCCoaSkpKQl5eH1tZWsddD4gAFQ4SQSOCDodraWhQXF+P222+P9pJkadmyZTCZTHjkkUdQW1sr+tYgbywWC2w2G3Jycrx+vrGxEVOnTsX48eMxb948yddDuIIB586dw8iRI6O9lKixWq04c+aM6Oeldu3ahY8++sis1+v/KurARJCQgiGA2yp3/vx5MddC4kR6ejqdGSOESI4PhrRaLTIzM6O9HFkyGAz4+9//DgB44403MGDAgIjMW1NT47Oc9vbt2zF58mTceOONWLJkid9tdEQ8Z8+exeDBg2XdxPann37C6NGjRf0eWCwWzJ4922ixWO5ljLWLNjARLOT/QfLy8qDX62G328VcD4kDCoUCaWlpFBAREkMSrf8bYwxWqxVpaWnQaDRISUmJ9pJk6dVXXwXANTON1Fktxhhqamp6nE0ym834xz/+gbvvvhsffvghnnvuOWqqGiF2ux01NTURyQrGqubmZtjtdvTv31/UcZ977jm7RqP51ul0rhd1YCJYyMGQQqHAwIEDUVtbK+Z6SJygrXKExI65c+ciKSkJTz/9dLSXIhqz2YyMjAwAgNFopIveKKirq8PLL7+Mvn374uabb47YvO3t7cjOzu727vu+ffswefJk1NfX48iRI/jVr34VsfUQ4NSpUxgxYoRsi5c4nU789NNPohdNOHjwIN555x2rTqf7k2iDkqCFlVsePHgwLly4INZaSBzht64QQqJPq9Vi2rRpCdVsUqPRQK1WY/78+ViyZAkee+yxaC9Jdj799FMAwNtvvx3RYNS9cAJjDC+88AJ+/etf49lnn8W6devQq1eviK2FcNu4mpqafG5blIPTp09j4MCBnW/QiMFut+POO+802my2vzPGGkQbmAQtKZwnp6WlISUlBTqdzuchR5KYcnNz6cwYITFi0aJF0V6C6DQaDSoqKrBw4UJ89913VDY5Cvht8JFscutwONDe3o7CwkIAwLx587Bt2zYcOHAgYiW9SXcnT57ExRdfLNuzWQaDAQ0NDbjmmmtEHff111931tfXH3I6nf8RdWAStLBf2dRzSJ74M0NUXv3/t3ff4VFWaf/AvzPpjfReSCWkEkggELBfICgqWAARFWV1lxWRldcFxZVFLIgdXBRZsICAP4plFxREDKAIIQkJaUx6m7RJJsn0fn5/sMnC0kLyZJ4p9+e6uN5rkydnvnnjJM/9nHPuQwgZDm1tbVixYgU+++wzKoR40rcPzZzL4VtaWhAWFgaBQIAjR45g27ZtZj3biFxKqVSip6fHbI0zLA1jDCUlJUhLS+O0GBSJRHjttde0MplsAaMbKd4N+ScbHBwMiUQCk8nERR5iJQQCAdzc3KDRaPiOQgixMSaTCXV1dVi4cCGmTJnCdxy7VVNTg4iICPztb38z24OvpqYmREVFYe/evZg/fz527dqFwMBAs7w2uZxIJEJiYqLd7tkTi8Vwc3ODn58fZ2OaTCY88sgjSqPR+BJjrJ6zgcmgDbkYEgqFCAoKQlsbLXe0N97e3tREgRDCuaqqKjQ3N2PlypV8R7FbO3bswP79+/H999+juroaO3bsGPbXVCgUEAqF2LNnD5YtW4bDhw/jlltuGfbXJVcmk8mgVqsRFBTEdxRe6PV6VFVVITk5mdNxN23aZKqqqqrW6XQbOR2YDBonc360VM4+UUc5QshwyM3NhUAggKPjkLa1kkFijOHRRx/Ft99+i7Fjx+LTTz/F2rVrYTAY0NzcjIaGBojFYuh0Ok5ft7GxEVKpFMuXL8fhw4eRkZHB6fjkxlRUVCApKcluZ4XKy8sRHx/PaVv/hoYGrFixQiuTyeYxxmhJlYXg5C+Nl5cX9Ho91Go13NzcuBiSWAEfHx/U19fzHYMQYkMYY6ioqMDs2bP5jmK3jEYjHBwckJWVBQCYMGECxGIx3N3dERAQAEdHR+h0OkRERODEiROc/N1va2vD6dOn8dZbb2HHjh2cP40nN0YqlQIAp8vDrIlUKoVSqUR6ejpnYzLGsHDhQiVjbD1j7DxnA5Mh42w3WFRUFJqbm7kajliBvj1DtPePEMKVU6dOISwsDNnZ2XxHsVuOjo6YMGECDhw4AABwcnKCRCKBQqFAS0sLGhsb0draisTERDz55JNDWiHQ2dmJTz75BAsXLoRer8e5c+dw5513cvWtkEE6f/48kpKS+I7BC5PJhNLSUqSnp3M6K7Zjxw4UFBS0qtXqNzkblHCCs2IoLCwMYrGYboztjJubG9RqNd8xCCE2wGg0YunSpYiPj4erqyvfcezayy+/jKeeegovv/wyFAoF3N3dL1kuJBAIsGXLFjDGEBUVhfvuu6//3EGTyYRjx45h3bp1eO2117Br1y4olcpLxi8vL8fy5cuRnJyMn3/+GYsXL8bcuXM5XZJEBqejowMuLi52e2RKbW0tgoKC4OnpydmY7e3teOaZZ9RyuXwuY0zP2cCEE5wVQ05OThgxYkT/1CqxD7RviBDClS1btiA0NJTaKFuAu+66C8XFxaivr0dSUhJ++umny65xd3fH7t270dTUhODgYMyePRvPPfccYmNjsWzZMkgkEqhUKmzevBm33nornnvuObz//vuYNGkSpk6dChcXF/z222/YsWMHfH194e3tzcN3Si7GGINIJMLo0aP5jsILlUqF5uZmJCQkcDru008/rTIajZ8wxgo5HZhwgtPdqX2NFOh0aPvh4+MDqVRqt2cQEEK4odfr8dprr2H37t3w9fXlOw4BEB4ejh07duCXX37BvHnzsHnzZsyaNeuy67y9vfGPf/wD3333HWpqarB//36MGzeu//N6vR579uyBWCxGWVkZVq1ahenTp/c3yOhr4U3419raihEjRsDDw4PvKLwoKSlBSkoKHBwcOBvzm2++wdGjR7tVKtUqzgYlnOK0GPL390dpaSn0ej2cnJy4HJpYKB8fH9TW1vIdgxBixVQqFRYvXozk5GT4+vrCx8eH70jkIrfddhsOHjyI6dOnIyoq6pJCp4+TkxMefPDBK369k5MT5s+ff8XPMcbQ3NyMSZMmcZqZ3DiTyYTKykpMnDiR7yi8aG1thaOjI6fnWnV3d2PRokVqhULxMGOM9hRYKO6O08WFNcQRERH964aJ7XN1dYVWq6W9YoSQQVGpVLjjjjug1+uxf/9+dHd3UzFkgTIzM7FmzRq88cYbnI7b1dUFT09P2itkAerq6hAcHGyX+/U0Gg3Onz+P1NRUTsd97rnnNHq9fidj7ASnAxNOcVoMAcDIkSPR2NhIN8d2xMvLC3K5nO8YhBArtGzZMsTGxuKrr76Cm5sbDAYD3RhbqJtvvhmFhdxueaipqUFcXBynY5Ibp1ar0dTUhFGjRvEdxewYYygqKkJKSgpcXFw4G/fIkSPYv3+/QqFQPM/ZoGRYcH6inZOTE/z9/dHW1obQ0FCuhycWyN/fH11dXXbbeYYQMjgvv/wyfvvtN5w8eRICgQA9PT20X8hCmUwmbN68GVOmTOFsTIVCAYPBQDOBFqC0tBRJSUmc7pWxFrW1tfD09ERQUBBnYyqVSjz66KMqtVr9GGNMxtnAZFhwPjMEALGxsaipqRmOoYkF8vf3py6ChJAb0tvbi/feew/Hjh3r7yImlUrt9pBHS6bVavHII4+gsLAQ7733Hmfj0qyQZWhvbwcABAcH85zE/Hp6eiAWizk/5HflypValUp10Gg0/sDpwGRYDEsx5OHhARcXF3R3dw/H8MTCeHl5QSajBx+EkIErLCyEn58fAgIC+j/W1dVF3Ugt0Jtvvone3l78/PPPl/y8hkKn06G7u9sub8AtidFoREVFBed7ZayBwWBAUVERxo0bB6GQu9vhU6dOYdu2bRqZTPYnzgYlw2pYiiEAiIuLo9khOyEQCODm5gaVSsV3FEKIFThy5AjmzJmDrVu39n+MMQa1Wg03Nzcek5H/pdfrsXHjRmzYsIHTjfX19fWIjo6GQCDgbExy4yorKxEZGWmX77uSkhLExMRweriqVqvFww8/rFSr1U8zxro4G5gMq2Erhvz8/KDRaOgG2U74+fnRUjlCyHXJ5XLMnTsXe/fuxZ133nnJx728vOjm2MKIxWK4u7sjPj6eszFNJhPEYjEiIyM5G5PcOLlcDolEgpiYGL6jmJ1YLIbRaERUVBSn4y5fvlwnlUp/Y4zt4XRgMqyGrRgCLuwdojNo7ENfEwVCCLmWzz77DLfffjtuueWWSz7e1dVF+4UskI+PD3p6ejj9/d7c3IyQkBC73KxvKRhjKCkpQWpqKqdLxKyBSqVCVVUVxowZw+nDl88//5x9/vnnEplMNo9RS2WrMqzvgJCQEEgkEuj1+uF8GWIB+v5gEkLI1RiNRmzYsAF/+ctfLvucVCql/UIWyMfHB4sWLcL8+fOxZ88elJWVDWk8xhjq6urscjbCkojFYnh4eNjdAwiTyYTCwkKkp6fDycmJs3Hz8vLwzDPPqJRK5TTGGG2YtzLDWgwJhUJERUWhsbFxOF+GWAAHBwcIhULodDq+oxBCLNTHH3+MwMBATJo06bLPyWQyas9vodatW4eJEydi1apVeP75oR2Z0tnZiREjRtjlwZ6WQq/Xo6qqCklJSXxHMbvKykoEBgZyWgS2trbirrvuUmk0mvmMsXLOBiZmw/k5Q/8rKioKv/76K2JiYuxuKtbe+Pn5UXcgQsgVFRQUYO3atf1nCl1MrVbD1dWV9gtZKFdXV6xZswZarXbIS9tqamo4bwu72eMAACAASURBVGNMbkx5eTni4+Pt7nDjrq4udHV1IScnh7MxtVotZsyYoVSr1e8ZjcbvORuYmNWwVydOTk4ICgpCa2vrcL8U4RntGyKEXMmuXbswdepUvPPOO1c8V4Zaals+xhj27t2LBx98cNBjyOVyMMZoBpBH3d3dUCgUiIiI4DuKWel0Opw7dw7jxo3j7KELYwxPP/20pq6u7rhKpfo7J4MSXphlqqavkQLtJ7Nt1FGOEPK/GGNYvXo19u/fj0cfffSK19Bhq5bv6NGjcHJyQkZGxqDHoENW+dXXNCE9Pd2uZmEZYygqKkJiYiKnLcT/8Y9/mL755psWmUw2hzFm4mxgYnZmKYbc3Nzg5uZGN8o2ztnZGQaDAUajke8ohBALcebMGQiFwsu6x12su7sbvr6+ZkxFbkRdXR0WLlyIdevWDfomWqvVore3F4GBgRynIwNVV1eHwMBAeHl58R3FrBoaGuDi4oKwsDDOxszNzcWKFSsUcrl8KmNMwdnAhBdm28RDh7DaB19fX+oqRwjp989//hNz58696k20Xq+HUCikNssWqqqqCrfccgtefPFF3HfffYMep66ujg5Z5ZFarUZjYyNGjRrFdxSzkslkaGhoQEpKCmdjNjQ0YNasWWqNRvMAY4zOj7EBw95AoY+vry/0ej2USiU8PDzM9bLEzPqWytH6f0Lsk0wmw7Rp0yAUCuHt7Y3S0lIUFxdf9XpaIme5ysvLMW3aNKxZswaLFi0a9DhGoxGtra24+eabOUxHbkRZWRmSkpLs6qGD0WhEUVERMjIy4OjIze2uSqXCnXfeqdRqtauNRuMRTgYlvDNre7fY2FiaHbJx1ESBEPu2adMmREdHY926dfjTn/6E4uLiaxY7dNiqZSouLsYdd9yBdevWDakQAi4cshoWFmZXN+KWpKOjA4wxu+v0Wl5ejoiICHh7e3MyHmMMCxYsULe0tBzQaDTvcTIosQhmLYZCQkIglUrpLBob5ubmBrVaTc0yCLFTWq0WoaGhuPnmm3Hfffddt9ChmSHL88MPP2DatGnYsGEDFixYMKSx+g5ZjY6O5iYcuSFGoxHl5eVITU3lO4pZtbW1QaVScXq475tvvmk4cuRInVwuf5zRTY5NMWsxJBAIMHLkSDQ0NJjzZYkZCQQCeHl5QS6X8x2FEGJmer0emzZtwgMPPDCg641GIwwGA1xcXIY5GRkIo9GI1atX4w9/+AP27duHhx56aMhjdnR0wNfXl37GPKmqqkJkZCSnXdQsnUajQUVFBTIyMjjbo3bw4EG8/vrrcrlcPo0xpuFkUGIxzH4KamRkJJqbm2EyURdCW0UttgmxTxKJBFqtFtnZ2QO6vre3Fz4+PsOcigyEWq3Gfffdh9zcXBQUFGDKlCmcjFtTU4PY2FhOxiI3RqFQoKOjg9PZEUvHGENhYSFSUlI4K8BFIhHmzp2rVqlUMxljYk4GJRbF7MWQo6MjgoODIRbTf0+2ivYNEWKfwsLCkJGRgX379g3oejps1TLo9XrMnj0bI0aMwJEjRxASEsLJuL29vXBwcLC7Vs6WgDGGc+fOITU1FUKh2W/1eFNdXQ1vb28EBQVxMl5vby+mTZum0ul0yxhjJzkZlFgcXt4hsbGxqKuro30lNmrEiBGQyWR8xyCE8ODhhx/GoUOHBnQt7ReyDBs3boRer8eXX34JJycnzsalQ1b5IxaL4eHhYVfvr+7ubrS1tSEpKYmT8UwmEx566CFVd3f3Lq1W+ykngxKLZLbW2hdzdXWFp6cnurq6EBAQwEcEMowEAgFcXV2hVqvtap0yIeTCHhFPT8/rXscYg0qlgru7uxlSkSuRy+X48MMPsWHDBvz666+ctR8GLuzbUCgUNPPHA71ej6qqKkyePJnvKGaj1+tRXFyMrKwszmbCVq1apT916lS5XC5fzMmAxGLxNndKh7DaNj8/P1oqR4id0Wg02LRpE55++unrXiuXy+Hp6UmHcPKgs7MTr7zyCmJjY1FaWoozZ85wfhhnbW0tYmJi6OfLg4qKCsTHx8PZ2ZnvKGZTUlKC2NjYAT2IGYg9e/Zg48aNPXK5/C7GmJ6TQYnF4q0Y8vb2htFopK5jNsrf35+aKBBiZ/79738jNTUVaWlp172WDmc2L4PBgBMnTmDp0qUYNWoU2tra8Pvvv2P37t0YOXIk56/V3t6O8PBwTscl19fd3Q25XI6IiAi+o5hNc3MzGGOIjIzkZLzi4mIsXLhQpVQq72SMSTgZlFg0XpbJ9YmLi0NtbS3GjBnDZwwyDHx8fFBWVsZ3DEKIGdXU1Az493lXVxftJxlmXV1d+PHHH3HgwAEcOnQIUVFRuOeee1BaWoqwsLBhe92mpiZERETY1cZ9S8AYQ0lJCcaOHWs3M3JKpRLV1dWYPHkyJ99zZ2cnpk+frtJqtX9gjJ3lICKxArwWQ0FBQTh//jy0Wi2dQWBjHB0dIRQKodfrOd2QSwixXIGBgSgvLx/QtTKZjLOT4cmFM4IqKytRWFiIgoICnD59GiUlJbjttttw9913Y/369WaZLWCMoaGhATk5OcP+WuRSdXV1CAgIsJvufSaTCYWFhUhPT+fkPkOv1+Pee+9VyeXyzQaDYRcHEYmV4LUYEggEiI6ORn19PRITE/mMQoZB33lDwcHBfEchhJhBcnIyNm3adN3r1Go1XF1d7ebp9dW0tLTgySefRFhYGDZv3jygGzrGGKRSKWpqalBdXY2qqirk5uYiPz8fQUFByMzMxLhx47BmzRpMmTIFrq6uZvhO/qutrQ1+fn52tV/FEmg0GjQ2NnJ2PpQ1OH/+PIKDgznrmLds2TJtWVnZGaVS+QInAxKrwWsxBAARERE4fvw44uPj4eDgwHccwqG+JgpUDBFiH1JSUlBRUQGj0XjN3+fUUvuC3NxcaLVatLS0YPz48bj11lsxZswYmEwmKBQKeHp6QqPRoLm5GTU1Nf3/gAvLzPv+/d///R9ycnLg6+vL83d0oXFCRkYG3zHsTmlpKZKSkjjtCGjJJBIJenp6MGnSJE7G27ZtG/vyyy8lCoViFmPMyMmgxGrw/q5xcHBAaGgompubOd/ESfjl5+dHHQMJsSNeXl4IDg5GTU3NNbuTdXV1DeueFWuRm5uLMWPGoLe3F3fffTfUajWOHj0KR0dHeHl5QaFQwNnZGREREZg1axbi4uIQHx8PPz8/i5xV6+7uhpOTEzw8PPiOYlc6OjpgMpns5sGjTqdDaWkpJk6cyMn74NSpU3j22WdVKpVqGmOsh4OIxMrwXgwBQExMDE6dOoWoqCiL/AVPBsfFxQUGg+G6T4kJIbYjOTkZZWVl1yyGuru7kZycbMZUlmnLli349ttvMWvWLHz++edWfxB5bW0tNcUwM6PRiPLycmRnZ/MdxSwYYzh79ixGjx7NyTmGLS0tuPvuu9UajeZhxlgFBxGJFbKIYsjFxQXe3t7o6Oiwmycb9sLHxwc9PT3UQpcQO2AymVBaWorY2NirXqPX6yEUCu1mOc+1PPLII5g1axZOnToFicS6O/gqlUqoVCpa/mhmIpEIkZGRdnPAeW1tLdzc3BAaGjrksTQaDWbMmKHUaDTvGI3Gf3EQj1gpi+l7OWrUKIhEIqt/MkYuFRgYaPV/5AkhA7Nr1y74+/sjPT39qtdIJBIEBASYMZXl6msclJycjJkzZ/KcZmhEIhESExNpdYcZdXZ2oqen55oPH2xJe3s72trakJqaOuSxGGN46qmnNPX19bkqlWoNB/GIFbOYYsjd3R0+Pj5obW3lOwrhEBVDhNiH9vZ2PP/889i8efM1b4glEgmCgoLMmMxyVVdXY/Xq1VbfClkul0OtViMwMJDvKHZDp9PZ1ZlCMpkMFRUVGD9+PCfnV23cuNH07bffimUy2TxGT+HtnkWtU0hISEBeXh5CQ0Pt4s1tD5ydncEYo/OGCLFher0ef/zjH/HEE08gKyvrmtdKpVKkpaWZKZnlys/Px+HDhyESifiOMmTnz5+nWSEzYoyhuLgYiYmJdrE8TqvVorCwEJmZmZy0bP/ll1/w4osvKlQq1VTGmIKDiMTKWczMEAC4ubkhICAAzc3NfEchHKLZIUJs1w8//ICsrCxotVr8/e9/v+a1SqUS7u7unDzZtVZGoxFLlizB1KlT8d5772HEiBF8RxqS3t5eGAwGWvpoRk1NTXB0dLSLjoxGoxFnzpxBcnIyJzOodXV1mDVrllqlUt3PGKvjICKxARY1MwQA8fHx+P333xEeHm7XfzBtSWBgIMRisV384ibEnrS0tODhhx/GF198gXvvvfe6MwMdHR12v5Tq/fffR1FREWpray3iXKChOn/+PEaPHs13DLuhVCpRW1trF4er9s2AhYWFcbK0VqlU4s4771RqtdpXGGM/cxCR2AiLqzZcXFwQHByMpqYmvqMQjvj5+UEqlfIdgxDCsQ8//BCzZ8/GfffdN6AlUhKJxK6LIZFIhHXr1mH79u02UQj1/V63he/FGphMJhQWFmLMmDF20Y2xuroaDg4OnDSIYIxh/vz56ra2tn9rtdr3OYhHbIjFFUPAhdmh2tpaGI10CLAtEAqFcHNzg1Kp5DsKIYQj9fX12Lp1K9atWzeg600mE5RKJTw9PYc5meVasWIFVq5ciZiYGL6jcIJmhcxLJBIhODjYLorP1tZWSCQSzvYXvvHGG4ZffvmlVi6XL6SGCeR/WWQx5OTkhPDwcNTX1/MdZeB8fACB4L//fHz4TmRRgoKCaN8QITbko48+wsKFCwd8NlxPTw98fX3tdpO9Xq/HgQMHsGTJEr6jcKKzsxPOzs7w9vbmO4pd6OrqglQqRUJCAt9Rhl1PTw9EIhFnneMOHDiAN954Qy6Xy6cxxjQcRCQ2xiKLIQCIjY1FY2MjDAYD31EGpreX7wQWLTAwEB0dHXzHIIRwoKmpCZ999hmee+65AX+Nve8XcnR0hKenJ2QyGd9Rhowx1t9Bjgw/vV5vN220NRoNzp49i6ysLE460J4/fx7z5s1Tq1SquxljLRxEJDbIYoshR0dHREVFoa7Owpt99M0I/a/eXpohuoinpyeUSiVMJhPfUQghQ/TSSy/hz3/+MyIjIwf8NZ2dnVZZDJlMJnz33Xd46qmnUFVVNehxVCoV3N3dIRaLOUzHj46ODnh4eFj9+UjW4ty5c0hISIC7uzvfUYZVX+e4tLQ0TpbT9vT0YNq0aSqdTreUMfY7BxGJjbLYYggAoqOj0dzcDL1ez3eUq6MZoQERCATw8fFBT08P31EIIUNw8uRJ/Pzzz1ixYsWAv0av18NkMnFyRog5GY1GzJ49G2vWrME///lPjBo1CsuXL0dxcfGAxzCZTDh27BimTp2K6dOnY+zYscOYePgxxiASiWhWyEyampogEAgQHh7Od5RhxRjD2bNnERUVxUmbdqPRiAcffFDV3d39lVar/ScHEYkNs+hiyMHBATExMaipqeE7yuA4OAB089+P9g0RYt0YY5g3bx4++eSTG3pya62zQrt370ZnZydOnz4NnU6H/Px8uLu7Y+bMmZg8eTIOHTqEq+3Frq2txd///nfExcVhyZIlePzxx7FlyxYzfwfca21thbe3t83PUlgCpVKJmpoauzikuLKyEq6urhg5ciQn47300ku6vLy8UoVC8QwnAxKbZvG9GaOionD8+HHExsZa5lPFW24Bjh278ufs4ByAGxEYGIi6ujp6okiIlZLJZJBKpbj33ntv6Os6Ojqs8sn2V199haVLl/bvXcjMzERmZiZWr16N/fv3Y+nSpQgLC0NmZiZMJhP0ej2kUinOnTuH9vZ2zJs3D/v27bOZvR6MMVRVVWHChAl8R7F5JpMJZ8+eRXp6Oid7ZyyZWCxGd3c3srOzORnv66+/xkcffdSrUqlmMsYseGkRsRQWXwwJhULExsaiqqoKKSkpfMe5XG7uhf978R86BwfAWho/mJGzs3P/DYOt/3InxBZ5eXnBwcEBXV1d8Pf3H/DXdXd3W+XT7aKiImzevPmyjzs6OmLOnDmYPXs29u/fj8bGRgiFQjg5OcHb2xvLly9HamqqZT7AG4Lm5mb4+/vDzc2N7yg2r7KyEoGBgfDz8+M7yrDq7u5GdXU1cnJyOHlgUFRUhCeffFKlUqmmMcZoKQoZEIsvhgAgMjISx44dg0ajgaurK99xruziGSKaEbqqgIAAdHZ2IjQ0lO8ohJAbJBQKERgYOKBiyGAwwMHBASqVCq6urpy0yDUnxhgkEsk1W4c7OTlh7ty5ZkzFH5PJhJqaGkyaNInvKDZPKpWiq6sLOTk5fEcZVmq1GkVFRcjOzubkAalEIsH06dNVWq12EWOsiIOIxE5YxV8ngUCAhIQEVFZW8h3l6nJzAcYu/OubLSKXCQoKohbbhFixkSNH4tlnn4VIJOr/2P79+xEYGIjRo0dDJBKht7cXTk5O+OijjyCRSBAUFMRj4sGRy+Vwdna2udmdwWpqakJwcDBcXFwu/2Tf+Xq33nrh38Vn7tnA8kBz0uv1OHfunM0srbwag8GAM2fOID09nZP9Z3q9Hvfee69SoVB8YjAYdnMQkdgRqyiGACAsLAw9PT1QqVR8RyFD4Ofnh+7ubr5jEEIG6YknnsDhw4chlUohl8vx5Zdf4s9//jMOHjyIxx57DKNHj4bPf44UWLBggdWeL3T8+HFkZmbyHcMiGI1G1NbWIj4+/vJPXnzDfuzY1ffQkgE5d+4c4uPjbbpBBWMMhYWFiI6OvqHltteydOlSbXl5+RmlUvlXTgYkdsUqlskBF2aHRo0ahcrKSmRkZPAdhwySUCiEq6srlEolPDw8+I5DCBmguLg4ODs7Y+zYsfD29sbkyZPh7u6OxMREHD58GCaTCRs3bkRWVhbS09Px9ttvw9vbG0qlkpMzQ8yJMYa33noLTzzxBN9RLEJDQwPCw8MvX8o00JmLvuuu0nmPXNDc3AwAiIiI4DnJ8KqoqICnpyeioqI4GW/r1q1s+/btEqVSOYsxZuRkUGJXrGZmCACCg4OhUCigUCj4jkKGIDAwkFpsE2JFWltbIRaLsWrVKoSGhkKtVmPVqlVQKBQoKChAeno6tm3bBi8vL0yYMAHPP/88/Pz80NPTAx8fH6tb7nPgwAEoFAo8/vjjfEfhncFgQENDA2JjYy/9hJX9TC2dSqVCdXU10tPT+Y4yrJqamqBQKJCUlMTJeL/++iuWLl2qVCqVUxljdPAjGRSrKoYEAgESExMvWatOrA/tGyLEejDGsHbtWjz++ONYsGAB3n33Xbz11lvo7Oy85LpXXnkFc+bMwYEDB1BXVwcAVrtfSKvVwsXF5ZLfU0ajEQUFBVi7di3uv/9+HD9+nMeE5lNXV4eoqCg4OlrNQhKrYy9ttKVSKerq6jBu3DhOHpD8/vvvmDFjhkqj0TzAGDvPQURip6yqGAIuzCpotVrIZDK+o5BB8vT0hFKpvOphhYQQy7Fz5078+uuveOONNwBcmCk4efIk9Pr/Ht+h0Whw//33Y926dWhoaEBISAiAC8UQF6fJm9s999yDzMxMJCcnIyMjA83NzXB0dERWVhaam5uRmpqKFStW8B1z2On1ejQ3NyM6OvryT+50GPhAfc2FyBVVVVXB39/fpttoq1QqFBcXY/z48ZwU1r///jumTZumUqlUDxiNxsMcRCR2zOqKIQAYPXo0zp+nhwDWSiAQwMfHhxopEGIFtm/fjuXLl/dvdP7+++/x008/4cUXX+y/RqlU4vfff8fXX38NAPDw8IBer4fJZLpy9zEL5+zsjH/84x94+eWXUVxcjPXr12PkyJEAgI0bN+Kmm26yi5mSmpoaxMTEwMHhCoXPwwYqcDgglUohkUgwatQovqMMG71ejzNnziAjI4OTM6r+pxD6kYOIxM5ZZTHk5+cHk8mEnp4evqOQQQoKCqJ9Q4RYOK1Wi59++gnz5s1DbW0t5syZgwceeADTp09HXFxc/3Vvv/02DAYDNBoNtm3bhsTERHR2dlrlrBBwobh77bXX8MorrwAAiouLsXbtWrS2tsLZ2Rm7d+/GXXfdxXPK4aXT6dDW1nb9Te5XmiHqmwmiGaFruriNtrWdwzVQjDEUFBQgLi4Ovr6+Qx6PCiEyHKz20dbo0aNRUVFBB8BZqYCAANTV1SExMZHvKISQq6iqqkJQUBCcnJxw9uxZ7NmzB0VFRRgzZkz/NadOncLOnTtRU1OD6Ojo/ps6iUSCsLAwvqIPikajwYIFC/DDDz9g5syZ+OWXX3D+/Hm89dZbePTRRwFcaH38/fffo6Kigue0w6uqqgqxsbHXv0l/2AA8bJ5MtqakpARxcXE23Vm1rKwMPj4+nHTIo0KIDBerfRTh4+MDBwcHdHV18R2FDIKLiwtMJtMl+w4IIZZl48aNWLx4MYRCIe6//36sXr0aTz/99CX7/Y4cOYLZs2dfduMslUo5eRJsTmVlZThw4ADmz5+Pd999FxMmTMD48ePR1taGDz/8EPPmzcMdd9yBjz76yGpnvQZCo9FAIpEgMjKS7yg2SywWgzFm0/8/bmhogFqt5uShJxVCZDhZbTEE/HfvEG3Et04BAQGXdaQihFiG0tJS7N+/H3/6058AXNjrt2TJEuTl5aG2thbAhSUwHh4eOHfu3CVfq1Kp4OrqeuW9JhYsMzMTtbW18PLyQlJSEgQCAWpqavDcc8+hoqICM2bMQF5eHubOnct31GFVWVmJhIQEq2uJbi1UKhWqqqpsuo12Z2cnGhsbOekcR4UQGW5Wu0wOAEaMGAFXV1erbd9q7wIDA9Ha2orQ0FC+oxBCLtLV1YVHHnkEa9euRVBQELRaLd5++218+umneP755/vPnPnwww+xbt06vPrqq5d8fUdHBwIDA/mIPiRarRZHjx5FfX09ACAyMhLp6emYOXMmv8HMSBUYiJ4XXkDaCy/wHcUmMcZw9uxZpKWl2WwbbYVCgZKSEkyaNGnID0SoECLmYNUzQ8CF2SGRSESzQ1bIz88PUqmU7xiEkP+xfv16qFQqzJ8/H4wx7N27F/v27cO+ffvw7rvvQiAQYMuWLXjttdfw66+/4o9//OMlX2+ND6iOHz+O9PR0fPbZZ5g9ezYqKyvR2Nh4/QYCtkQgQOWcORi1Zw/NCg2Tqqoq+Pn59XdntDV6vR75+fkYO3YsXF1dhzQWFULEXKx6Zgi40MLVy8sLbW1tNMNgZRwcHODq6gqVSgV3d3e+4xBC/mPx4sWora1FQEAAHBwc4OjoiC+//BLjx48HAPz2229Yu3YtTpw4gYSEhEu+ljEGhUIBT09PPqIPyqZNm/Dqq69iy5YtuOeee/iOY14XFT2KkBDIIyIwZtOm/36cHjRypru7Gx0dHcjJyeE7yrAwmUzIz8/HqFGj4OPjM6SxqBAi5mT1xRAAJCYm4vTp0wgODrbZ9pS2KigoCO3t7YiJieE7CiF2q7W1FTNnzsRDDz2ElStXIjo6Gnv27AEAyOVyODs7X3JeUFlZGW666SYkJSVdNlZf4wRrmFnQ6XR4+umnkZeXh99+++2SduH2qGzhQiR99RUs/ydnfTQaTf+ho7Z4n8IYQ2FhIQIDA4fcRZIKIWJuNvGOdHNzQ1hYGGpqaviOQm5QaGgoWltb+Y5BiF3r7e1FY2Mj1Gr1ZZ9zd3e/7OBUf39/1NXVXXEsa9oHuG7dOrS1tSEvL8/+CiGB4JJZofZx4+Cg0yGgrIzHULbJaDQiPz8fKSkpNtlGu28flJeXF+Lj44c0FhVChA82MTMEAPHx8Th+/DgiIiI4OeGYmIebmxsMBgN0Oh2cnZ35jkOIXRo9evQlhyArFApMnDgRZf+5Me7u7oaPjw8YY/j3v/+Nl156Ce+8885l4zDG0NnZecUZI0vDGMOHH36I06dPW9WSvuFgdHRExSOPIPu11/77QVoexwnGGM6dO4ewsDCrbCpyPX3fn6urK0aNGjWksagQInyxiZkhABAKhUhOTkZpaSnfUcgNCg4ORnt7O98xCCH/4ezsDH9/fzg4OOCJJ56Ao+OF52aHDh3CkiVL8Mwzz1yxw5pcLoeHh4dVtNRubGyEq6vrkJ9k24LqWbMQcfw43Lq7+Y5ic2prayEQCGxyKThjDKWlpXBwcOhvRT9YVAgRPtlMMQRc2H/CGENHRwffUcgNoKVyhFgWnU6HqVOn4oUXXsDWrVv7Z042bdqEF198EUuXLr3ijY81LZF78cUXMW3aNL5j8IcxgDGoAgPROnEiYv/97/6P0awQNzo6OtDW1ob09HSr2EN3IxhjKC8vh8lkQkpKChVCxKrZzDK5PqmpqcjLy0NAQIBNblK0RV5eXlCpVDAajVbxRJkQW7dmzRqUl5ejvLwcBQUFOHz4MBhjEAgEWLduHXx9fa948GhbW5tVdMrq6enBvn370Nvby3cU3pU++SRSvvgCwilT+I5iU+RyOcrLyzFp0iSbvBcRiUTQ6XTIyMigQohYPZt7h7q7u1MzBSsjEAgQGBh4yZ4FQoh5VVdXY9GiRZg4cSI2b96McePGISkpCTKZDACwY8cOHDt2DB0dHXj66acxZcoUFBQU9H+9SqWCs7OzxR8kqVQqsWDBAjzxxBNDPgfF2nV0dED44IMIPHcOyM3lO47N0Ol0KCgowNixYy9rPmILKisroVQqqRAiNsPmiiEAiIuLg1gsvmJnJGKZaKkcIfzp6urCH/7wBzg6OmLt2rWYM2cOPv30U4hEIsycORNff/01li9fjr1796KpqQmBgYEoKSm55AGGpS+RMxqN2Lp1KxITExEQEICNGzfyHYlXRqMR5eXlSElJ4TuKTTGZTCgoKEBiYiK8vb35jsO5mpoa9Pb2YuzYsVQIEZthc8vkAPRv5isrK0NWVhbfccgA+Pr6ori4GCaTySaXFBBiSfq6vvV1t3rzzTdRXV2Nb775Br6+vnB1dcWePXvQ0dGBY8eO4W9/+xvOnDmD2NhYrFq1EW+40AAAFoFJREFUCjKZDDExMZg6dWr/mG1tbcjMzOTrW7omxhgee+wx1NfXY9++fcjOzuY7Eu9qamoQHh5O3Vc5VlZWBj8/P4t+MDBYdXV16OzsHPJZSVQIEUtjs3edwcHBMBqNtPTKSggEAvj5+UEqlfIdhRCb9+OPPyIoKKh/OfHq1auh0+lQWVkJALjpppv6O8jdfvvtSEhIwCOPPIKwsDB88cUXyMrKwrffftu/x0+r1YIxZrHLzhQKBXbu3Ik9e/ZQIYQLSxpbWlrs72ylYdbQ0ACtVjvkFtOWqKGhAW1tbcjKyqJCiNgcmy2GACAtLa2/2wmxfLRUjhDzGDNmDFauXInw8HAAF5qYrFmzBmvXru2/xsHBAWVlZZg5cyZ6enrQ1dWFWbNm4eTJkzh48CCio6P7r21ra0NwcLC5v40r6u7uxpo1axAZGQl/f3+MGTMGDzzwAIKCguDl5cV3PItQWlqK5ORkmoXnUFdXFxobG4e8j8YSNTc3QywWY8KECUNqckSFELFUAjbAFpp+fn7Vb775ZlxiYuIwR+KWVqsFAJvcxGiL5HI53bDYMIVCYfcHXFoivV6Pjo4OSCQSREdHw8fHB8XFxRg9ejTq6+vh4+NzzWJHqVTCzc2Nt5trnU4HpVIJtVoNiUQCHx8fBAUFwcnJCTqdDgaDAa6urnSwM9B/yLW7uzvfUWyGyWSCUqmEp6enzRVCer0eOp0OHh4eQxqnrKwML730kumuu+76aNeuXc9xFI8QTtxQMfTTTz/FWeqa8KsxGo04ceIEsrOzaW20FcjPz0d8fDx8fHz4jkKGQW5uLm699Va+Y5CL9Pb2IjExEe3t7Zg7dy727duHGTNmoLi4GHl5eQgJCQEALFq0CBs2bLjsJtpgMODXX3/l5edqMpmwfv16vPPOO7j55puRmJiIuXPnIiMjw+xZrAH9PeSewWDAyZMnkZqaCj8/P77jcKqtrQ1VVVWYOHHikLpE0owQsXQ22UDhYtRMwbqEhoaira2NiiFCzGTnzp0ICAiARqOBwWCAwWDAv/71LyxbtgyPPPIIYmJiEBUVha1bt0KhUGD37t2XfH1HRwcvS+S6u7vx2GOPoaurC0VFRYiIiDB7BmtTU1ODsLAwKoQ4whhDYWEhYmJibK4Q6ujoQGVlJRVCxC7YxYLhvmYKnZ2dfEch1xEUFIT29na+YxBiF9544w28/vrr2LhxI3p7e/H999/j7rvvBvDfDmwikQi5ubmora3F66+/ftkYfLTUrqurw/jx4xEfH49jx45RITQAarUaLS0tiI+P5zuKzRCJRPDw8EBkZCTfUTglkUhQUVGB7OzsIS0tpUKIWAu7KIYAIDU1FWVlZdRMwcI5OTnBxcUFSqWS7yiE2CylUomCggKsWrUKKpUKs2fPRkJCAvR6PQ4cOADgQrv7xx57rP+pcExMzGXdx0wmE2QymVnPUxGJRLj11lvxl7/8Be+//77FH/JqKahpArfEYjF6enqQnJzMdxROdXV1oaysDNnZ2UPaa02FELEmdvNb0cPDAyEhIaitreU7CrkO6ipHyPCZO3cuAgMDsXDhQoSHh8PV1RXZ2dm44447LrkuLy/vumN1dnbC39/fbJvGc3NzcfPNN2PNmjV45plnzPKatqCjowOMMQQFBfEdxSb09PSguroamZmZNtUwobu7GyUlJcjOzh5Sm3wqhIi1sZtiCADi4+PR3NwMjUbDdxRyDcHBwWhra+M7BiE2x2Qy4bvvvkNFRQVKSkrQ3NyMlpYW/PDDD/1d/nJycgAAK1euvO545lwiV1FRgYceegi7du3CwoULzfKatsBkMqG8vBypqal8R7EJGo0GZ8+eRWZmpk3NSvb09KC4uBgTJkwY0p4yKoSINbKrYsjBwQGjR49GWVkZ31HINfQ9kaKilRBu5ebmQqvV4rPPPgNwoRNWTk4OHBwc8M4778DZ2RknT54EcOHg1WthjEEqlcLf33/YcwPAhg0bsGzZMtx+++1meT1b0dc0gVppD53RaER+fj5SU1Nt6ogAmUyGs2fPYvz48UP674QKIWKt7KoYAoCQkBAYDAZqpmDhQkJCqJECIRyprKzEk08+iYULF+Lrr7/G3/72NwCAUChEamoqHn30UezatQuPPvooAOCrr7667pg9PT3w9vY22x6UkpISTJ482SyvZSvUajXEYvFle73IjWOMobi4GGFhYQgMDOQ7DmfkcjkKCgqQlZU1pLOEqBAi1szuiiGAmilYA9o3RMjQdXV1YeXKlZg8eTK8vb2RkJAABweH/lPkhUIhPv30U3z55ZfYuXMntm7dipycHMybN++6Y5u7i9zIkSNx6tQps72eLSgtLUVSUlL/z5sMXk1NDRwcHBATE8N3FM4olUrk5+cjMzNzSIedUyFErJ1dFkMeHh4IDg5GXV0d31HIVXh4eECr1UKv1/MdhRCrJJFIEBERgbfeegtCoRCffPIJjh49eslT7YsP3Y6OjsbSpUvx888/D2i2p6Ojw6xPyF999VW8//77OHHihNle05pJJBIwxng5A8rWtLe3o729HWlpaTbTMEGlUuHMmTMYO3YsRowYMehxqBAitsAuiyEASEhIQFNTE+1LsWDBwcHo6OjgOwYhVunQoUP9v98WL16Mrq4u3HTTTXj44YfxwQcf4LbbboOLiwu2b98O4MKenA8//HBAXaTkcjnc3Nzg6Gi+c7vj4uKwfft2zJkzB/X19WZ7XWtkMplQVlZGTRM4IJfLUVFRgaysLJtpS65Wq5GXl4cxY8YM6YBzKoSIrbCNd/YgODg4IDExkZopWDBaKkfI4N1zzz2YMGECAODmm2+Gu7s7jh8/ju+++w4FBQUAgP/3//4f/vrXv97w2HwctAoA06ZNw4svvoh77rkHp06dglgshk6nM3sOS1dbW4vQ0FBqmjBEOp0OBQUFGDdu3JDO3LEkGo0Gp0+fRlpaGnx9fQc9DhVCxJbYbTEEXNikr9fr0dXVxXcUcgUjRoyAXC6H0WjkOwohVsfb2xsnT56EVCq9pANbVlYWtm/fjl9++QV5eXmDakrQ3t6OkJAQLuMO2LPPPovHHnsMixcvxvjx4+Hp6QkfHx/cd9996Onp4SWTJVGr1WhubkZ8fDzfUayayWRCfn4+EhMTh7SMzJJotVqcPn0aKSkpQ+oCSYUQsTV2XQwJBAKkpaWhtLSUmilYIIFAgICAAOr8R8ggOTg4XPHpr0KhwHPPPYcNGzbgoYceuqEx1Wo1hEIhnJ2duYp5QwQCAV544QWcPXsWLS0t0Gq1qK2thcFgwN69e3nJZEnKysqoaQIHysrKEBAQwMsM6HDQ6XQ4ffo0Ro8ePaS9flQIEVtkvgXfFsrDwwNBQUGoq6uj9qMWKDQ0FGKxmDYBE8Khhx56CEKhELW1tQgKCrqhr21ra7OoG0SBQAAvLy/U1dUhKiqK7zi8kkgkMBqN9PtyiBoaGqDVam1mz5Ver8fp06eRkJAwpP82qBAitsquZ4b6JCQkoLGxEWq1mu8o5H/4+/tDKpVe0vWKEHJj+paaGo1GrFixAj/++CMOHjyIZ599FgBQX18PpVI5oLH42i90NSaTCS+//DJGjhyJqVOn8h2HN0ajEeXl5UhLS+M7ilXr7OxEY2Mjxo4daxOd4/oKobi4uCG9b6kQIraMiiEAjo6OSElJQXFxMd10WxiBQAA/Pz9IJBK+oxBidWpqahAcHAxHR0csWrQIO3fuxPr16zF37lwEBwdjzJgxqK6uRkxMDHbs2HHd8TQaDUwmE9zc3MyQ/trEYjE2bdqE2NhY5Obm4vPPP7eJm9fBOn/+PMLDw6lpwhBIpVKUlpZi/PjxNrHMUK1W4+TJk4iNjUVYWNigx6FCiNg6Kob+IygoCO7u7tSy1QJFRkaiubmZ7xiEWB2DwYCOjg6EhoZi27ZtmDBhAp588kl8/fXX2LZtGzw8PDB16lQ4OTkNaGa8ubkZ4eHhZkh+fXfffTeeeeYZNDQ04KuvvrLrpWFdXV3o6emhpd5D0Nvbi+LiYkyYMGFA7eUtnUwmw6lTp5CamkqFECHXQcXQRZKTk9HQ0ACFQsF3FHIRX19fyGQyGAwGvqMQYhU2bNiAlJQUPPXUU0hLS0N2djacnZ2xevVqbNu2DcCFYmLZsmWQSCS48847kZ+ff933mFgstphi6IMPPkB8fDymT58Ob29vvuPwRq/Xo6SkxGaWdfFBLpejsLAQ48ePt4mZta6uLhQWFiIzM3NIXeO++eYbTJ06lQohYvPsvoHCxRwdHTFmzBgUFRUhJyfHZg5Ys3YCgQAhISFobW1FZGQk33EIsXgbNmxAWloaTp06hQ8++ACzZ89GWloavv/+e7S1taGzsxNSqRRCoRBnzpzBX/7yFwAXziaaO3fuFcfs7e2Fm5sbb13k+lRVVWHFihUoKCjAO++8c8Pd8GxNaWkpYmNjbeImng9KpRL5+fnIzMyEp6cn33GGrKWlBVVVVcjOzh70claTyYRXXnlF//7778tUKtV0xlg+xzEJsSh0t/8/fH19ERAQgKqqKr6jkIvQUjlCBqampgZSqRQrV66EXC7HwYMH4ezsjKysLDDGIJFI0NLSguTkZEyePBnLli1DV1cXRCIR5syZc9Vxm5ubeXsYwRjDwYMHMXfuXEyaNAkTJkzA+fPn7b4Qam1thV6vp4dEg6RWq3HmzBmMHTvWJs4SqqurQ11dHXJycgZdCMnlctx9993qDRs2lKlUqlQqhIg9oJmhKxg1ahR+++03BAcHw8fHh+84BBdaoBuNRmg0GptYz03IcFCr1XjggQewZs0aJCYmwmg04ty5cygpKUFDQwOio6Mv6TbW1zDGz88Pfn5+Vx2XMYaOjg4kJSUN+/dwse7ubuzcuRObN2+GUCjE4sWL8fHHH18zq73QarU4f/48cnJyaHncIPQdQJqWlmb1f+cZY6ioqIBKpcLEiRMH3fyhuroa06ZNU3V2du6Vy+VPMcZ0HEclxCLRzNAVCIVCZGRkoLi4uL8lLeFfeHg4zQ4Rcg25ubmorKxEW1sbsrOzMX36dMhkMtx2220QiUSYNWsWxo8fj/z8fHR3dw94XIlEAj8/P7MtHTYYDFi7di3i4uJw4sQJvPvuuzh79iz++Mc/UiGECze/RUVFSEpKgouLC99xrE7fAaTJyclD2lNjCUwmE86ePQuTyYTMzMxBF0KHDh3CuHHj1C0tLS/IZLLHqRAi9oSKoavw8vJCZGQkKioq+I5C/iM8PBxisZjvGIRYrMbGRggEAnz66aeorKxEXV0d3N3d8eSTT6KzsxP//Oc/8dlnnyEzM/OGnoY3NTWZbSnW8ePHMXHiRJw4cQJFRUXYvXs3pk6dSrMfF2lqaoKLiwtCQkL4jmJ19Ho98vLyMGrUqBs+cNjSGAwGnD59GiNGjEBqauqg3iOMMaxfv954//3398jl8js1Gs2mYYhKiEWjYugaYmJiIJfL6YwbC+Hs7Aw3NzfIZDK+oxBikQ4dOgSj0Yjly5fDyckJ7e3t+Otf/4o333wTzs7OCAkJgZ+fH+69994BHyNgMBggl8vh6+s7rNlNJhNWrlyJBQsW4Pnnn8ePP/6IqKioYX1Na6RSqVBbW4vU1FS+o1gdo9GIvLw8xMTEWH0hqdFo8PvvvyMyMhLx8fGDGkOtVmPu3Lma1157rVqlUo1hjJ3gOCYhVoGKoWsQCATIyMhAaWkp9Ho933EIgIiICDQ1NfEdgxCL093djW+//RZarRZvvvkm9Ho9Pv74YyxYsAD19fVwdXXFtGnTEBYWhn/9619wcnIa0Litra0ICQkZ1pkZnU6Hxx9/HMePH0dhYSHmz59P3TyvgDGGs2fPIi0tDY6OtOX3RphMJpw5cwYREREW0x5+sBQKBU6dOoXRo0cjIiJiUGM0NjYiMzNTdejQoR/kcvk4xlgjxzEJsRr01+Y63NzckJCQgHPnzvEdhQAIDg5GR0dH/8ZvQsgFjDGkpKTA29u7f/b0nnvugVarxdGjR+Hi4oJ9+/YBAL744osB3xCao4vcBx98gPr6ehw5cgQBAQHD+lrWrKamBr6+vla/z8XcTCYT8vPzERQUhJEjR/IdZ0i6u7v7O+AFBgYOaowTJ05gzJgx6vr6+rUymewBxpiK45iEWBV6tDQAERERaGtrQ0tLy5BOciZD5+DgAD8/P0gkEqtf700Il/z8/PDGG2/0L4ErLCzsPzsNuLC8qm/J76hRowY0plqthtFohIeHx7Dl7u3txcaNG7F9+3Y6K+caZDIZWlpaMGXKFL6jWJW+2TQfHx/ExsbyHWdI2tvbUVFRgezs7EG/Vz7++GPT//3f/yk1Gs1DRqPxEMcRCbFKNDM0QOnp6RCJRNBoNHxHsXuRkZG0VI6Q//H1119j5cqVGDFiBNRqNe6//34AwJIlSyASiaBUKvuvff311wc0plgsHvQynCu50ozu8uXLMXPmTNx6662cvY6tMRqNKCoqQkZGBi0fvAGMMZw7dw5ubm4DfgBgqRoaGlBVVYWcnJxBFUI6nQ6LFi3S/vWvf21SqVSZVAgR8l/0W3WAnJ2dkZKSgqKiIlqixTNfX1/I5XIYDAa+oxBiMV599VWUl5dj8eLFWLJkCQDgrbfeQk9PD8LDwzF27FgwxiCTybB79+4BjSkWizmbDX/77beRkpJyyccOHjyII0eOYP369Zy8hq0SiUQICwuziYNBzYUxhvLycgiFQrOfj8UlxhhEIhHa2towceJEODs73/AY7e3tyMnJUe7du/e4QqFIY4zRqfKEXISWyd2AoKAgtLW19R9eSPghEAgQEhKC1tZWOnmdkP84evQoNm/ejHPnzmHKlCkYMWIEDh48iJKSEmRlZeHw4cMQCARoamoa0GxPb28v3NzcBnXzdbFXXnkFa9eu7f/f7e3tUKlU+OSTT7Bt2zbs27cPXl5eQ3oNW9bV1YXu7m7k5OTwHcWqVFZWQqfTISMjw2rbsvfNbAHA+PHjBzUrmJ+fjxkzZqjVavUGpVL5MmPMxHVOQqwdzQzdoOTkZNTX11+y5ISYX2RkJB3ASshFzp49i08++QR1dXVYs2YNQkNDodVqYTQaMWbMGLzyyit47LHHBlx4cNU4ITo6GjNmzOhfphQXF4esrCzodDoUFBTg5ptvHvJr2Cq9Xo+SkhKMHTvWam/o+VBdXQ25XG7VhVBfG3BXV1ekp6cPqhDasWMHu/XWW5VSqXSBQqF4iQohQq7shmaG6ADSCxhj2L1796B/QRFulJeXw2QywdXVle8oZIBEIhHNAgwDjUaDGTNmYPLkyXBwcIBQKITRaMSpU6dw++2344EHHuhvxVxdXX3d8RhjKCgowLhx49DS0jLoXD09PTh9+jTOnDkDd3d3LF26FLNmzYK7uzscHR0hkUjoHLdrEIlE8Pb2pr+9N6ClpQVSqRTJyckoLCzkO86g6PV6lJWVITg4GI6OjoP6Pnbs2KHbsmWLVKlUTmOMlQxDTEJshmCg+18CAwM/MBqNM4c5DyGEEEIIGQLG2Pmenp7HGGNSvrMQYukGXAwRQgghhBBCiC2hNV6EEEIIIYQQu0TFECGEEEIIIcQuUTFECCGEEEIIsUtUDBFCCCGEEELsEhVDhBBCCCGEELtExRAhhBBCCCHELlExRAghhBBCCLFLVAwRQgghhBBC7BIVQ4QQQgghhBC79P8BR5PhyccNFtUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "def make_map(bbox, projection=ccrs.Orthographic(central_longitude=-90.0)):\n", + " fig, ax = plt.subplots(figsize=(16,16),\n", + " subplot_kw=dict(projection=projection))\n", + " ax.coastlines(resolution='50m')\n", + " ax.gridlines()\n", + " return fig, ax\n", + "\n", + "response = DataAccessLayer.getGeometryData(request, times[-20:-10])\n", + "glm_points=[]\n", + "for ob in response:\n", + " avail_params = ob.getParameters()\n", + " glm_points.append(ob.getGeometry())\n", + "# Plot markers\n", + "fig, ax = make_map(bbox=[180,-180,-90,90])\n", + "ax.scatter([point.x for point in glm_points],\n", + " [point.y for point in glm_points],\n", + " transform=ccrs.Geodetic(),marker=\"+\",facecolor='orange')\n", + "\n", + "response = DataAccessLayer.getGeometryData(request, times[-10:-1])\n", + "glm_points=[]\n", + "for ob in response:\n", + " avail_params = ob.getParameters()\n", + " glm_points.append(ob.getGeometry())\n", + "ax.scatter([point.x for point in glm_points],\n", + " [point.y for point in glm_points],\n", + " transform=ccrs.Geodetic(),marker=\"+\",facecolor='red')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.6" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/examples/notebooks/METAR_Station_Plot_with_MetPy.ipynb b/examples/notebooks/METAR_Station_Plot_with_MetPy.ipynb new file mode 100644 index 0000000..d36f8e5 --- /dev/null +++ b/examples/notebooks/METAR_Station_Plot_with_MetPy.ipynb @@ -0,0 +1,297 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "Station Plot with Layout\n", + "========================\n", + "\n", + "Make a station plot, complete with sky cover and weather symbols, using a\n", + "station plot layout built into MetPy.\n", + "\n", + "The station plot itself is straightforward, but there is a bit of code to perform the\n", + "data-wrangling (hopefully that situation will improve in the future). Certainly, if you have\n", + "existing point data in a format you can work with trivially, the station plot will be simple.\n", + "\n", + "The `StationPlotLayout` class is used to standardize the plotting various parameters\n", + "(i.e. temperature), keeping track of the location, formatting, and even the units for use in\n", + "the station plot. This makes it easy (if using standardized names) to re-use a given layout\n", + "of a station plot.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The setup\n", + "---------\n", + "\n", + "First read in the data. We use `numpy.loadtxt` to read in the data and use a structured\n", + "`numpy.dtype` to allow different types for the various columns. This allows us to handle\n", + "the columns with string data.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from awips.dataaccess import DataAccessLayer\n", + "from dynamicserialize.dstypes.com.raytheon.uf.common.time import TimeRange\n", + "from datetime import datetime, timedelta\n", + "import numpy as np\n", + "\n", + "import cartopy.crs as ccrs\n", + "import cartopy.feature as cfeature\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "\n", + "from metpy.calc import wind_components\n", + "from metpy.cbook import get_test_data\n", + "from metpy.plots import (add_metpy_logo, simple_layout, StationPlot,\n", + " StationPlotLayout, wx_code_map)\n", + "from metpy.units import units\n", + "\n", + "def get_cloud_cover(code):\n", + " if 'OVC' in code:\n", + " return 1.0\n", + " elif 'BKN' in code:\n", + " return 6.0/8.0\n", + " elif 'SCT' in code:\n", + " return 4.0/8.0\n", + " elif 'FEW' in code:\n", + " return 2.0/8.0\n", + " else:\n", + " return 0\n", + "\n", + "# Pull out these specific stations (prepend K for AWIPS identifiers)\n", + "selected = ['PDX', 'OKC', 'ICT', 'GLD', 'MEM', 'BOS', 'MIA', 'MOB', 'ABQ', 'PHX', 'TTF',\n", + " 'ORD', 'BIL', 'BIS', 'CPR', 'LAX', 'ATL', 'MSP', 'SLC', 'DFW', 'NYC', 'PHL',\n", + " 'PIT', 'IND', 'OLY', 'SYR', 'LEX', 'CHS', 'TLH', 'HOU', 'GJT', 'LBB', 'LSV',\n", + " 'GRB', 'CLT', 'LNK', 'DSM', 'BOI', 'FSD', 'RAP', 'RIC', 'JAN', 'HSV', 'CRW',\n", + " 'SAT', 'BUY', '0CO', 'ZPC', 'VIH', 'BDG', 'MLF', 'ELY', 'WMC', 'OTH', 'CAR',\n", + " 'LMT', 'RDM', 'PDT', 'SEA', 'UIL', 'EPH', 'PUW', 'COE', 'MLP', 'PIH', 'IDA', \n", + " 'MSO', 'ACV', 'HLN', 'BIL', 'OLF', 'RUT', 'PSM', 'JAX', 'TPA', 'SHV', 'MSY',\n", + " 'ELP', 'RNO', 'FAT', 'SFO', 'NYL', 'BRO', 'MRF', 'DRT', 'FAR', 'BDE', 'DLH',\n", + " 'HOT', 'LBF', 'FLG', 'CLE', 'UNV']\n", + "selected = ['K{0}'.format(id) for id in selected]\n", + "data_arr = []" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# EDEX Request\n", + "edexServer = \"edex-cloud.unidata.ucar.edu\"\n", + "DataAccessLayer.changeEDEXHost(edexServer)\n", + "request = DataAccessLayer.newDataRequest(\"obs\")\n", + "availableProducts = DataAccessLayer.getAvailableParameters(request)\n", + "\n", + "single_value_params = [\"timeObs\", \"stationName\", \"longitude\", \"latitude\", \n", + " \"temperature\", \"dewpoint\", \"windDir\",\n", + " \"windSpeed\", \"seaLevelPress\"]\n", + "multi_value_params = [\"presWeather\", \"skyCover\", \"skyLayerBase\"]\n", + "pres_weather, sky_cov, sky_layer_base = [],[],[]\n", + "params = single_value_params + multi_value_params\n", + "obs = dict({params: [] for params in params})\n", + "\n", + "request.setParameters(*(params))\n", + "request.setLocationNames(*(selected))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we use the Python-AWIPS class **TimeRange** to prepare a beginning and end time span for requesting observations (the last hour):" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Time range\n", + "lastHourDateTime = datetime.utcnow() - timedelta(hours = 1)\n", + "start = lastHourDateTime.strftime('%Y-%m-%d %H')\n", + "beginRange = datetime.strptime( start + \":00:00\", \"%Y-%m-%d %H:%M:%S\")\n", + "endRange = datetime.strptime( start + \":59:59\", \"%Y-%m-%d %H:%M:%S\")\n", + "timerange = TimeRange(beginRange, endRange)\n", + "\n", + "response = DataAccessLayer.getGeometryData(request,timerange)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "station_names = []\n", + "for ob in response:\n", + " avail_params = [x.decode('utf-8') for x in ob.getParameters()]\n", + " if \"presWeather\" in avail_params:\n", + " pres_weather.append(ob.getString(\"presWeather\"))\n", + " elif \"skyCover\" in avail_params and \"skyLayerBase\" in avail_params:\n", + " sky_cov.append(ob.getString(\"skyCover\"))\n", + " sky_layer_base.append(ob.getNumber(\"skyLayerBase\"))\n", + " else:\n", + " # If we already have a record for this stationName, skip\n", + " if ob.getString('stationName') not in station_names:\n", + " station_names.append(ob.getString('stationName'))\n", + " for param in single_value_params: \n", + " if param in avail_params:\n", + " if param == 'timeObs':\n", + " obs[param].append(datetime.fromtimestamp(ob.getNumber(param)/1000.0))\n", + " else:\n", + " try:\n", + " obs[param].append(ob.getNumber(param))\n", + " except TypeError:\n", + " obs[param].append(ob.getString(param))\n", + " else:\n", + " obs[param].append(None)\n", + " \n", + " obs['presWeather'].append(pres_weather);\n", + " obs['skyCover'].append(sky_cov);\n", + " obs['skyLayerBase'].append(sky_layer_base);\n", + " pres_weather = []\n", + " sky_cov = []\n", + " sky_layer_base = []" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next grab the simple variables out of the data we have (attaching correct units), and\n", + "put them into a dictionary that we will hand the plotting function later:\n", + "\n", + "- Get wind components from speed and direction\n", + "- Convert cloud fraction values to integer codes [0 - 8]\n", + "- Map METAR weather codes to WMO codes for weather symbols" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "data = dict()\n", + "data['stid'] = np.array(obs['stationName'])\n", + "data['latitude'] = np.array(obs['latitude'])\n", + "data['longitude'] = np.array(obs['longitude'])\n", + "data['air_temperature'] = np.array(obs['temperature'], dtype=float)* units.degC\n", + "data['dew_point_temperature'] = np.array(obs['dewpoint'], dtype=float)* units.degC\n", + "data['air_pressure_at_sea_level'] = np.array(obs['seaLevelPress'])* units('mbar')\n", + "\n", + "direction = np.array(obs['windDir'])\n", + "direction[direction == -9999.0] = 'nan'\n", + "\n", + "u, v = wind_components(np.array(obs['windSpeed']) * units('knots'),\n", + " direction * units.degree)\n", + "data['eastward_wind'], data['northward_wind'] = u, v\n", + "data['cloud_coverage'] = [int(get_cloud_cover(x)*8) for x in obs['skyCover']]\n", + "data['present_weather'] = obs['presWeather']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## MetPy Surface Obs Plot" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2wAAAJBCAYAAAA6KTYNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XdUFNfbwPHvZem9KYKCoGKvEQsW7BprTKKJXWMSk5ioyc8Y05vpeaPpRo0llth7jb2L0ajYFVGwgiiIFEHYve8fs6yACywEI+r9nMNRZubeubO7wDzz3CKklCiKoiiKoiiKoiilj9X9boCiKIqiKIqiKIpingrYFEVRFEVRFEVRSikVsCmKoiiKoiiKopRSKmBTFEVRFEVRFEUppVTApiiKoiiKoiiKUkqpgE1RFEVRFEVRFKWUUgGboiiKoiiKoihKKaUCNkVRFAUAIcRDtzCnEGKGEGJICdX1sRBidknUVYRzbhVCvHAP6m0thLhY0vUa6z4mhGj9X5/3QSWEeEEIsfV+t0NRlNJLBWyK8ggTQtgJIaYKIWKEEMlCiINCiM55jmknhDgphEgTQmwRQlTMse8ZIcRu476tZupvK4Q4IIS4KYQ4K4QYVkh7xgkhjgghsoQQH5vZ38/Y1lQhxDIhhGch9b0hhIgVQiQJIaYJIezMHNNKCCGFEJ8VUM8YIcRR42t0TggxJse+skKIuUKIy8bz7BJCNCmgrtZCCIMQIiXH1+Ac+2sIITYb6zojhHiykGss6P2xM173TePr8L+C6irkPB8bX6eReba/btz+cQHXlyKECDXeyGd/rxdCpOf4/t08r5EUQryV51yBxu3ZZaKFEG8X95qUe0NKWUtKufXf1iOEGCKE2FkCTVIURXmgqYBNUR5t1sAFoBXgBnwALBBCBAIIIbyBJcbtnsB+YH6O8gnA98BXeSsWQtgAS4FJxrqfBcYLIeoV0J4zwFvAajP11TLWNRDwAdKAX/OrSAjRCXgbaAcEApWAT8y08QdgbwFtAhDAIMADeBx4TQjRx7jPGdgHNER7jf4AVgshnAuo77KU0jnH1x/G9lgDy4FVxrqGAbOFEFXzucbC3p+PgWCgItAGeEsI8Xgh11qQ08DgPNsGGbfnlPf6nKWUe4w38s5SSmdgB/Bajv1f5Cg/GO2zlfdc2dyNdfQCPhBCdPgX16QoxSY06l5KUZR7Sv2SUZRHmJQyVUr5sZQyWkppkFKuAs6hBR8ATwHHpJQLpZTpaAFAPSFEdWP5jVLKBcBlM9V7Aq7ALKnZB5wAahbQnj+klGuBZDO7+wMrpZTbpZQpaEHKU0IIl3yqGwxMlVIek1ImAuOAIXmOGQ2sB07m1yZju76RUh6QUmZJKU+hBVXNjfvOSinHSymvSCn1UsrJgC1QraA681Ed8AMmGOvaDOxCC1LNKfD9QQumxkkpE6WUJ4Ap3P0aFMU+wNEYPGcH0Q7G7SVCCOGIFoi9CgQLIULyO1ZKuR84BtT/F+draswS3xBCRIgcXfmEEEFCiG3GzOoGwNuSskIITyHERSFEd+P3zsZs6aAC2vGEEOKQMRsaZS6wFkJYCSHeF1qW+aoQYqYQws24766uhsYMZHvj/x2E1j00UQhxHGhUQFsKq+tjIcQC4/mTjZnTkHyOLfC8Qoi3jdebLIQ4LowZZSFEDeA3INSYTb1h3N5VaD0BbgohLggzmfgcdefqwpojQ2tt/N5TCDFdaNnxRCHEMuN2DyHEKiFEvHH7KiFEhRz1bBVCfC6E2IX24KiSmXPXFEJsFEIkCC0D/nSOfWWMdd4UQoQDQTn2VRF5uiYLIXaKEurWqyjKg0kFbIqimAghfICqaDfBALWAiOz9UspUIMq4vUBSyjhgLvCcEEInhAhFy/QUt4tT3rZEAbeN7S30eOP/fYQQXgBC6zo4FPi0KI0QQgigJXdeo7z766MFbGeM3wcYb+gDchxWVggRJ7TulROEEE7Zxc1VCdTOUf8NIUQLc9eY8/0RQnigBX95X4NC37tCzEILBEELimf+y/ryehpIARYCf+U4112EEE3RXpszxTmREKI8Wjb3M7QHDG8Ci4UQZYyH/An8gxaojSNHxq+gslLKBLTP1hQhRFlgAnBISmn2tRJCNEZ7HccA7kAYEG3m0CHGrzZoQYIz8LOFl/sRUNn41Yn8s5eW6gHMQ2vvigLaUdh5o9B+ntzQMuCzhRC+xgcMLwN7jBlYd+PxqWifCXegK/CKEKJnMa9hFuCI9jOR/T6Bdm80He33VQBwy8z1DUTLgLsAMTl3CO0h0ga097Qs2sOmyUKI7Ic4E9EeSpUz1jG0mO1XFOURoQI2RVEAU/fAOcAfUsrsjJMzkJTn0CS0mxRLzAU+BDLQusC9J6W8UMwmFrUteY/P/n/28T8CHxizdUXxMXdu6HIRQrii3QR+IqVMApBSnpdSukspzxsPO4mWEfIF2qJlM8fn2HcVGCOEsBFCdETrruqYfQ5jXdlBb0GviXOO7/Pu+zdmA32Nn5c+xu/z8jMGljm/nMwcZ85gYL6UUo8WMGWfK6drQohbwB60brHLincpDADWSCnXGDPMG9C6lXYxBtiN0D4jGVLK7cBKS8oCSCnXowWdm9ACi5cKaMfzwDQp5QZjXZdy/Azm1B8Yb8zqpgDvAH2yM0aFeAb4XEqZYPwZ/NGCMgXZabx2PdpnPr+uzgWe15gdvmy87vlAJNA4v5NKKbdKKY8Yjz+M9jumVVEbL4TwBToDLxsz0JlSym3Gc1yXUi6WUqZJKZOBz82cY4Yxe58lpczMs68HcFpKOdO4/x+0z2gv42e5J9rnKs14DbOK2n5FUR4tKmBTFAWhjcGYhZaxei3HrhS0bo05uWK+y2LeOqujjacahJZxqoU2hqqrcX/OCShaWtDMfNsihOifo661+Ryf/f9koXVVczHeIFpMCPGa8Xq6Sikz8uxzQLuhD5dSfplfHVLKWCnlceMN5zm0MXu9jPsy0W7mugKxaF02FwD5zapX0PuTkuP7vPuKzRh4ngG+ACLzCcAvGwPLnF+phdUthPBHyx7NMW5aDtijvR45eaMFpG8CrYG8AZ2lKgK9cwaWQAu0YNoPSMzT7hgLy2abjJYBnC6lvG68xoAcn9Xs98gfLdNUGL88bYhBG4fqY2HZnO9VTH4HWig2x//TAPt8AscCzyuEGCS0rqDZr2Ft8nQ9zXN8E6FNrhMvhEhCy8Lle3wB/IEEY3fpvOdwFEJMElrX05vAdsBdCKHLcVhBD54qAs3zfDaeRfts+AA6Sva9UBTlIacCNkV5xBm7+E1Fu5F4Os/T4mPkeHJuzJJUJp/ugHnUBk5JKf8yBien0LqQdQbTTHLZE07ssKC+vG2pBNihPcmek6OuzuaON/4/znjj3A4IEdrMibFoN1OvCyGW53dyIcRQjJOYSCnzju+xQ3uCfomCMynmSHJ0hZRSHpZStpJSekkpO6F1ffs7n7L5vj/GG9Er3P0aWPLeFWYmWjBZ0t0hB6L9XVppfF/OogVsd3WLNI7x+w5IB4YX83wX0MZY5gwsnaSUX6G9dh55MoMBFpbFeHM/Ce01ekUIUcXY7vM5PqvOOeqqbEF7L6MFAznbkwXEoXUVNGVijecvk+PYK2hBirlryauwuooi3/MauyVPQXtI5GXs9niUOz8P5paZ+BOtC6a/lNINbZybua7EkOc60LogZrsAeAoh3LnbaLQxqE2klK5oXVTJc56ClsC4AGzK89lwllK+hvZeGcj/vUgF01hOc+1WFOURpAI2RVEmAjWA7lLKW3n2LQVqCyGeFkLYo3VvPJzdXcs4Ns0e7Sm/lRDCPkf3tYNok0a0FZrKQDdyj6nKxdgN0B7td5O1sb7sp9pzgO5CiJbGm+hPgSXGLkvmzASeF9rgfw/gfWCGcd8HaGPf6hu/VqDdOD6XT7v6o2WUOkgpz+ZtM7AIbZzLICmlIb/rMx7f2phlEcaM0ldomaTs/XWN1+0ohHgT7an8jHyqK/D9Mb4G7wttEoXqwIsF1FUU84GOaNm/kjQIbRxT/RxfTwNdhXHsoRlfoWVu7Ytxvtlon6lO2Z9l4/tTQUoZg9bF8RMhhK3Qxg12t6SscX/2MgVDgf8DZubJ0OQ0FW2sZzuhTSxSXtyZOCanucAbQpsMxRntMzlfSpmFNlOnvdAm5bBB+7znXMZiAfCO8bNQARhRwOtSWF1FUdB5ndACn3gAIcRz5BiviRbcVBBC2ObY5oKWGUsX2ti/fgWc+xAQZvx5c0PrQgqAlPIKsBb41dg2GyFEdmDmgvbzfENoS4d8VMRrXoE2jrSfsV4bIURjIUQ14wOxZWifKwchRG1yTyoUa/waYPxcDSN3kK4oyiNIBWyK8ggzPuF+Ce3GOFbc6arVH0BKGY92w/w5kAg0QRu3lG0g2o3NRLSJA26hBT7Zk4IMRRuzchPYBixGuznNzxRjHX2B94z/H2is7xha96c5aOO8XCggsyKlXAd8A2xB63IUg/HGS0qZbOyaGCuljDWeJ1Vqk0WY8xngBezL8Rr9ZtzXDC0Q7Yh2g5erm6e40wUu+yn6Y2hjr1KB3WgZhZxrmw1Ey0pcRcsEdsjZ/TJn3Ra8Px+hdbWLQXv9vzW+Lv+KlPKW1GYIzRvgZ/MTd6/D9nQ+xwKmCUQCgV9yvjdSyhVoXTD75lN0Ndq1v1iM67gAPIEWXMWjZUbGcOdvYz+01zQB7bWcaUlZIURD4H9oAbwe+BotMDG7ZpyU8m+0hwUT0MYZbsP8Tfo0tK7L29Fmc03HGABJbczkcOB3tExvKrm70n6C9jk4hzYzaq5xU0KItcK4Fp4FdRVFvueVUh4HvkP7eYgD6qDNipptM1pGOFYIcc24bTjwqRAiGe0BRa6HBnl+PjagPVw4jDZ5zKo8bRsIZHJn7Ojrxu3fo81+eg0IBwr9mRFC/C6E+Nl43iS0CVYGoP0sxwJfcifofQVtiZA4tN+HpvGwUkqJ9ll+13j+KhS+7IiiKA85of1uUBRFUR51Qggppcyve9kDSQgxA9gqpZxxn5uiKIqiKMWiMmyKoiiKoiiKoiillCVTASuKoiiPhk/udwPugWWYX9NMURRFUR4IqkukoiiKoiiKoihKKaW6RCqKoiiKoiiKopRSReoS6eXjLxOuFneiKEVRFEVRFEVRFCWbJZN9FalLpBBCTlwT868alR+9PotFkz/lVMRO5s+dRJ2axV925NepK1m6YjPPv/1Loecc/1ZvunXvzCfvDCn2+RRFUZSiOX3FiojzOvQGyyaltBKSJxpmYmdT+LGKoijKwyczS8/AFz4i8tRpXv30Dxyd3Ypch0GvZ9o3I9BxmxWLfsDO9v79UYm9eoMa1RpZFLCVmi6ROp01z77yKa27D6Vbtz4sXxte7Lrq1w3mUvQpi8455M0fmPbbREa/+wuz565i6tQ5nDt3b4JSRVEURVPV10CAlwGdlWUPDYWAmGul5k+WoiiK8h/KyMikV7+3iI4+z4jP5xQvWDMY+POnt7mddoMl8ybc12AN4Kvxswo/yOieZ9hShzRHODiBTgdWOhx/XEXG7Alk/TUX4eYFgO3gMVg3amsqc/LQLqZ9M5JXR41i7Ot98qs6/3OmZRAU1JDvFh7Bxsau0OMvRB0jfOMiNi+fZtrm7e1Ju3ZhdOnSjrCwUNzdi/7BUBRFUfJnMMD6I9bcSLMsEHNzNNC5XtY9bpWiKIpSmqSmZfDks6+TftvAC+9MxNbOvsh1SClZPGUc5yMPsn71NNzdnO5BSy2XeCOFuvXbkZKUUDq6RKYOaY7jDysRbp6mbRmzJyAcHLF9+qV8y129HM3ET4bSpFkLJv/0NrY2RVuBoGa9x3l+7K+UD6pucZlXulSkdevm7N37D7dupZu2CyGoUiWIrl070L59GI0a1cfW1rZI7VEURVHuFhVnxYFoy7pGWglJl/qZOBf9b7WiKIryAEq6mUb3p4dj6+DOkDe/x9qmePffq2ZP4Mjev9iwbhZlve9/EubdT6fwz8GT/L11xYPVJTKvsn6BjPluKWfORNOh64tcvZZUpPKBlatyOabwbpF5zZs/hQsXDrFp02LefXcUderUQAhBZORZvv9+Et269cffvz5du/Zj4sQZnDp1BrU0gqIoSvGUdTUU6XjVLVJRFOXRcC0hmU5dn8fZw4+hb/1U7GBt05Ip/LN9BauWTysVwVpySjpzZkyj4zOvWVzm3v/lE3Dr/QGkjexK5to/TZszV84kbXgn0ie8iUw2H4w5OrvxysfT8PYLplWbZzh09JzFp61evapF49iyZQdd1jodOp2Oxx6ry5gxr7F9+wpiYg4wf/4UnnuuL+XL+3L7dia7d+/j3Xc/p2nTzlSq1IihQ0exaNFKrl27bvE5FUVRHnXO9mBl2bwjGKTgWrKFByuKoigPrMSkVDo8PgjfoFoMGPUNVjpdserZuW4uW1ZOZ8XyGfiX9y7hVhbP9xMXElT9McoHVrO4zD3vEmm4HoeVlw+GG9dIf28Adi9/gqhQCeHqCUJwe9b/IROuYv/G/xVYz461f7Jy1ndM+Ok7nu7WrNDzTpvzFzNnL+PlD6da1M6srCxG9KhMYmJkocdevhzL1q27WL16I9u37yElJTXX/sBAfzp3bkenTm1o0qQh9vaFj6NTFEV5VG07oePKDcv+GLs4GOhaX41jUxRFeZh9/cM81qzdyssfTkWI4j2o279tJYt/H8fy5bOpWyuwZBtYTLfSb1O7bgdefO83AqvW45UuFUtHl0grLx/tX3dvdKGd0J8+hJVHGYROh7CywubxvhhOR+RbfsvKPzh1OJyWnfvxwts/87+Ro/li/J/5Hp/tsXpFy7AZDJbfAPj5laNfv6eZM2ciMTEH2L59OR99NIaGDeuh0+mIjr7AxIkz6NlzMP7+9enQoTc//jiFo0dPqu6TiqIoefi6S3TCst+N6bdVhk1RFOVhN3/uQsK6Dip2sHbk700smPQxf86dWmqCNYBfp66gnH8VAqvWK1K5os3kUUQyPQ0MBoSjMzI9Df3B7dj2HYUhIQ4rTy2Qy9r9F1YVzacEd/01nwW/fYQAWnTuR7/XvuDN/1vCxE+GcuJEJL///C52+SzKU6t6AEmJ8aTfSsXeofCZYAxZxXtia2VlRZ06NalTpyavvz6MW7fSCQ/fz19/bWXdus3ExFxg//5D7N9/iI8++gYXF2fCwprSrVtHWrduTrlyZYt1XkVRlIeFj5tECMCCmC1LD3oD6NRQNkVRlIfSnn2nuJFwjRoNWhar/OnDe5g54U1mzJxMaCPLux3ea7czs5j8628MGPVtkcve24At8Rrpnw3TvtFnYd36CaxDWpP+7esYzh4HIRA+FbAb8cVdZWNOH2bOT2/z4ssvU7duDV4fMZoTB3Yw+ttFjPluKdO+GUGHri/y26/juJGUyvkLcVy8FMfFS7FcuRLH1bg4pN7A9dgLFs0UaTDoS+SaHRzsadOmBW3atOCrr97n6tVrbN26i7VrN7Flyy6Skm6yevVGVq/eCECFCr506tSWxx9vS7NmjXB0dCiRdiiKojwoXB2kJbEaoAVqqRngqn5VKoqiPJQmT1tEaPtexRq3Fn3qEFO+HM7PE3+gXVjRslj32u+z1uHqUZbgOk2KXPaej2ErjpSbN3hvcFPqPRbC+jXa2mhxVxPo0Kkfly7EMGDU1zRp8yRLp3/Bng2LcPMsi4d3Ody9yuHmVQ53b1/cvXzwLFMev8BqFqVTk5Ou81bfxywaw1ZcUkpOnjzDli07WbVqPfv3R5CZmWnar9NZUatWdXr06ES7dmHUrVsTKyv1GFlRlIffluPWxCUV/vvORidpVjULX3fVvVxRFOVhk3Yrg2o1whg7YTne5QKKVPbSuZP88F5/vvzmc/r3blt4gf+QXm+gXkh3nhz6HrVCWpu2WzqG7Z5m2Ipr7i/vYu/gwNqVv5u2+ZT15PDBdYz835fMmvAm/2xfxcsf/s7TL3xQIufUF7NLZFEIIahRI5gaNYIZPvw5MjIy2LfvEBs2bGPNmo2cOXOOw4ePc/jwcT77bAKOjg40a9aY7t070qJFE4KCAordl1dRFKU083U3EH9TYCjk75bBAKkZFvafVBRFUR4osxdswr9SzSIHa1cvnePnDwfx3ofvl7pgDWD2ws1Y29hRs2GrYpUvlekbewdnHByd0JkZpPDj+HdYtnI+Z4/v4+3+DRnZ807f1KP7NvPhC61IuHqJP8aP5sDO1bnKvv5UDQCux13g01c6AFo/118+eg6D/r+fdczOzo4WLZrwySdvsW/feqKi/mb69B955pkn8PLyIC3tFhs3bmPUqPdo2LA9FSs+Rq9eQ5k8eSZHj57EYCja+kWKoiillY+btGh6f70UpKSrB1eKoigPo9mzFxDa8dkilUmIv8yP7/XnlZEjeOm5rveoZf/OLz9PoWPv4cVOvJTKDFtZv0Ai9qzLd39Y8wacObOHrj1e4ND+vayc9R3BdZowf+JHjPx8Np5lyxf5nHr9/Q9+PD096NmzMz17dkZKydmzMWzevIO1azexb99BkpNT2LRpB5s27QDA3t6e+vVr0bFja5o3b0L9+rWwtS3eooKKoij3k5uj5ePYbqbd06YoiqIo98GJyIucPX2cF9/vaHGZmzeu8eO7/ek7aBBvjSxaoPdfcnVz58a12GKXL5UBm49/FdJvFfwX2dHBni0bZlPWpyZr5/3MXwsnMvrbRZTxrVisc2rT+peep7ZCCCpXDqRy5UBefHEgUkoiI8+ye/c+Nm3awe7d+0hISCQ8/B/Cw/8BwNrampo1q9K+fRhhYaGEhNTHycnxPl+JoihK4awEeDpJ4i1YGDslo/T8rlYURVFKxqTfl9C49RPY2NpbdHxqchI/vT+ATl27Mu69ofe4df/OZ5+M5pnegwnt0AsHJ9cil//XXSLPHNvHng0L/201ufhXqoE+K7PwAwFpkLi4OOHs4sqEsc9weO/GYp3TYNCXpnjtLkIIqlatzJAhfZg16xeiov7m8OFtTJr0f/Tp0xM/v3JkZWVx+PBxxo//jZ49BxMQ0IDGjTvx9tvjWLNmE4mJN+73ZSiKouTL18OAlQXrsd1Sa7EpiqI8VDKz9KxcuphmFnaHTL+Vyq8fD6FRkyZM+HLEPW7dv9c0pCqNm7di/aLfilX+X2fYTh7axeo5E2jc9kl0upJJ2HmU0bo0XrgYh38FnwKPtbGxpmnThgQG+nMxLoWJn75AkzZPIszNrlhAv1F95u3SHK+Z5e/vh7//EzzzzBMAXLt2nfDwf9i2bTdbtuzk7NnzREaeJTLyLJMmzQSgQgU/WrUKpU2bFoSGhuDnV+5+XoKiKIqJj6vkuABDITGbWotNURTl4bJ01S5c3L2pUKlmocdm3k5n0rgXqVylElN+egcrSwZAlwJffDKStm2eoFW3wbh7FRzf5PWv/9x17TcKgJnjR1t0vF6fxaHdf/HTB4N4pUtF01dmZsadRllZodNZcyDiZKH1WVlZMX36jxw8eJTH6gQxdcZvHNi5moM71xB3Mdp0XGryDZxdPfKtR5vA48F4w/Pj7e1Ft24d+fbbj9m/fyPR0f+waNE0Ro0aRu3a1dHpdFy8eJk5cxbzwgtvUKtWS6pWbcqQISOYPXshUVHRFGWZB0VRlJLk4SQLDdbgzlpsiqIoysNhxsxFFmXX9FmZTP16BJ4ersyZ9pnZCQpLq6qV/ej65DOsnjOhyGX/dUpMCEFo+97s2biQIW9+n2v2E4PBwMmDO9i+Zg4Re/66q6yzmxdhXfrTvFMfbGzscu2ztXfgxIkonuha+PSXjo4OzJ8/mS5d+jJ8+FBOnNhN85ZPsGLmN9g6ONDuiaHs2bCQqnVD862jtHeJLA5XVxfatWtJu3Yt+fjjMaSnZ3Dw4BF27tzLxo3biIg4Rnz8dZYvX8fy5etMZRo3bkD79mE0a9aYmjWroivGwoWKoihFZWUFns6Sa4WMYxNCm9rf1UE9YFIURXnQXbxynUN/76T38G8KPM5gMDDr+zEIQwaL/vwVG+sH7/503AfDCAnpRNuez+MbEGxxuRLpwzhg1Nfs2biQ797qjYe3L/u3rbjrGDt7R1p26U/Lzv0pWz6o0DodnFyJirJ8kW4PD3cWLpxG16798PLy4OSxLbTv1J9Fkz5h5R/fUq1+CwaM+sps2VMRu4g+fQhpMFCrVgumT/+Jxo0bWHzuB4W9vR2hoSGEhoYwZsyrZGVlcezYKXbv3sf69VvZv/8QN28ms3HjdjZu3G4qU79+HTp2bEWzZo1p0KC2molSUZR7poqPgRupgixDAV3YDZCm1mJTFEV5KEyZsZJ6TTsUOBmHlJIFEz8g6dpF/lo1FQf7B/NetKy3G4NeeJHlf3zDyx9MsbicKEoXOCGEnLhGC6Jupd5k0ZRx7F6/4O7jrKxo2bk/YV0GUD6ousX15/TlqG74lfVk7arfCz+4APsOHOfJnoNwcS/DR5M25Xvcwd3rmPbVa8THH/9X53uQ5Z6Jcju7d+8nISEx1zHW1tbUqlWNdu3CaNmyCSEh9XF2drpPLVYU5WGTpYel+23Q5xOwWQmJkx20qZmJo53ZQxRFUZQHhMEgqduwG8++8hnBdZrke9yy6V9xOmInG9f9gaeHy3/YwpKXmpZB3QadGDrmB/5vTC+klIX28St2hu1UxG5TsBbaoTdhXQZQsWq9Yi8Il5e7Vznirl4oUpl5dVtj4+yE0FlhZW1Nzy1LufnzJD5ydiT2YhSpQ5ojnF1x/HntXWWjTx7EycWtRNr+oMqeiTJ7NkqAixevsGePtpTAjh3hXL4cS0TEMSIijjF+/ESEEAQG+tO6dXOaNWtE48YN8PcvX2KfA0VRHi3WOqjoZeBsvBV5+6nrrCQBXgZCKunVhCOKoigPgU07IsjMzKRK7cb5HrN+0W8c/Xsj69fNfuCDNQAnRztGjX6dmdO+sLhMsTNsRWGQer7c3A13h3K82mw6s/4ZQ8yNIyAlZZ2DGBTyHfbWubM0U74czvXLkRzav9ri88yr25qeW5Zg7+WZa/vmbfvp/dQAxj/xHMLJFVvjRCk5/fzhEG6nxvP37qVFvr5HyfXrCYSH/8OWLbuMM1GwvM6SAAAgAElEQVTe/XlwcXGmfv3atG7djMaNH6N+/doqC6coisUSUwUbj1rnyLJJdFbQuJKeimUM97VtiqIoSsnpM+R9HDwC6fTMcLP7b1yPY9wrHdi2fSVVgnz/49bdO5lZeho26cmFsyfvbYatKDafmUY5lyqkZ6UA0KvuhzjYaBHyosOfsi3qDzpVy/1GpaelYm9v2cJ5halRLRCDQU/WjtU4fDnX7DHXYmOoX69WiZzvYebl5UnXrh3o2rUDAH37DuPIkZMMHNibrVt3cfjwcZKTU9ixI5wdO8IBLXMXEFCe0NBGpm6UVaoEYWVu6QVFUR55Hk4SBxtIydC6QDrYQqsambg63O+WKYqiKCUlMSmVHZvW8uFv+a+hvHn5VDp07flQBWsANtY63v9gDC8997xFx9/zgC0x7QpHYzfzeLXX2HRGG4+WHaxJKbmtz8Dc9IwZt1JxdXIs2smEYO1Tz4EQ1BjSh+rGbn2+5bwJAgwubljlM+HJzcR46tQtfO0HJbcjR07Stm0Lxo4dwdixI5BScu7cefbtO8TOneHs3r2Pc+fOExNzkZiYi8ybp2UwHRwcqF69CqGhIYSE1Kd+/VoEBgaorpSKogBQ1VfPgWgd/l4GGlXS8wBOBqYoiqIUYMacvwiu3QQ3T/Nrkt1Kvcnuv+azYdPD2futV4+WvGThsfc8YFt4+BOerP0uGcbsWraZ+9/kaNwWfF2q0KvO+3eVu52RhlPZ/Bd1btiwPWFhoUyYMM60rfu6eTj5+nAr/jprnxyCW3AlfJtrfWIbCMHNGg3Jr+dreloqLZs3LPoFPuJiY6/So8fjpu+FEFSqVJFKlSry7LPagt5pabeIiDjGvn0H2bJlFwcPHiYpKZmDB49w8OARU1l7ezuqVq1MaGgIjRo1oF69WlSqVFFl4hTlEVSprAFXR0k5NzUTpKIoysNo3p8LaPv0K/nu375mDiHNWlEjuMJ/2Kr/TlEW/L6nAduRK5twsfOiokcdTsfvybVvUMj/YZB65h/6kP0XV9Is8Jlc+zNvp+Ps4pxv3WfPxuDqmjv8cvLVInSHMl5U7NaB+AOH8W3eGENWFnWkJNrHn/Jm6kpKuIqUBkIb1ynehT4goqPPExgYUGL1RUQcw2Aw0LZtiwKPc3R0MC0nMHLki5w+HUWTJo8za9YvHDx4lN27/+bYsVMkJ6dw+PBxDh8+zqRJMwGws7MjODiIJk0a0rhxA+rXr03lyoFqbThFechZ61DBmqIoykPqn4gzxF25QO1Gbczuz7ydzpbl0/hz3tT/uGWl0z0N2KKu7+fwlY0cjdtKlj6DW1nJTN83iuca/QCAldDRsEJ3NkROuitgu52RfldAllfO/ZmpaUiDAVsXZzJT07i0eScN3noNgEtbd3Pd2prY1GSz9UQeCcfaxhYbm/9kSN99kZycQoMG7YiNPYqdXcnMhb148Sq8vDyKnAHbunU3Tk5OdOvWkW7dOpq2X7kSx6FDRzl06Ci7dv3N0aMnSUq6ydGjJzl69CRTp84BwMbGhipVgmjS5DGaNHmMevVqExwchLX1w/v+KYqiKIqiPCwmTV1C03ZPo9OZv3fbu3kpQcE1aNaoeMuDPWzu6R1uz9pj6Vl7LACn4/ewIXIyQ0K+52pKNGWdA5FSciR2I+VcKt9VNiszAze3OwHZtWvXcXV1ybVos0uODNyt+GtsHPAqAAZ9FpWf7o5/+zAAzi5ZxRkXN25cu2K2nedOReDi6v7vL7gUmzlTW4KhpII1gJ0791KzZrUil9u37yDlypW5a7uvrw++vj507tzOtC0uLp6IiGMcPHiE3bv3ceTICRITb3DixGlOnDjNjBnzAG19uMqVK9K48WM0bdqQunVrUb16FRXEKYqiKIqilCK30m+zbuVSRn+z0Ox+g17PhsWT+Pb/xpnd/yj6z+9mJZI/9v+P9KwUJJIKbjXoW//zu47LyryNu8edddEaNuzAzZtahiw0NAQAV9c7AZtrYABP7Vxp9pytfv2Gd1s9gyHhqtn9l2NOUbZc/uPlHgbffz+pxOs8c+Ycb75pfhrWgpw6dYbKlQMtOtbHpwwdO7amY8fWpm3x8deJiDjGoUNad8rDh49z/Xoip05FcepUFLNmab8ArK11BAVVJCSkPqGhIdSrV5Pq1YNzBf2KoiiKoijKf2fekq34+lfGp0Ils/sjwtfj4uJKt475r832qPnPAraqZUKpWiYUgDGtlxR6fFZmJl4ed7JeMTEHOHDgMO+//yV79uwHYO7cpcydu5TRo19h1KhhuTJueXmX8ebsuYtm912Pu0CjkPpFuZwHzrVrCXTr1qHE6ktJSSE5OYWnn+5W5LKXLl3JlUUrqjJlvGjfPoz27cMALWBMSEg0ZuKOsmfPPiIijhEff53IyLNERp5l7lztM6fTWVGxoj8NG9ajWbNG1K9fmxo1gks086goiqIoiqKYN3vWIkI7Pmt2n5SSDYsmMmLksCJNyvGwK7XT7xn0WXjmyLABPPZYXdasmUtiYiRxccf4/PN3Afjuu4kEBDTAwyOY0NDObNmy8676ypXzIS3lptlzJd+4Rt16BU/pX6FCPdP/16/fSsOG7blw4TKRkWfp1q0/LVt2p0mTTrz+ujbj5c6dewkIaEDLlt1NX1u37jLVsWrVejw8gjl9OsqyF+RfMBi0hWZHjRpWYnWuWLEeOztbypcv+roYSUk3adUqtMTaAuDp6UGbNi343/9eZuHCqZw+Hc65c/tZvnwmH3/8Fp06tcHHpwx6vYGzZ2NYuHAFb7zxAW3aPImfX10aNGjLCy+8wdSpc/jnnwjS0zNKtH2KoiiKoiiPuqjoWE4ePcBjzbuY3R95JJy0lJsMeKb4D/YfRqV2gI/BYKBMGY9899va2jJ8+HMMH/4coHXP+/jjb1m9egNPPfWc6bihQ/vx9tsj8a/gR3paitm6Mm6l0qpFI4vatW3bbsaO/ZQlS6bj7+/H009rbejSpT0Ax46dMh0bGhrC/PlTzNazePEqmjYNYcmS1bz99kiLzl1ca9duAiCkBLOI69ZtomLFok+zGhcXj15voHHjx0qsLflxd3cjLCyUsLBQRo16EYCkpGSOHDnOoUNH2bNnPwcPHuHKlTiioy8QHX2BxYtXAdryBBUq+FKnTg0aNqxPrVrVqFEjmAoV/NQyA4qiKIqiKMUwaepSQsK6YWvvYHb/+kUTef6lF7BRi2/mUqoDNp8ynhYfX6VKELNn/2oqu2DBct599wumTfuTadP+NB23b9sKQsK6mxZoTrx2BSkljRoWvmj27t37GDXqPRYs+J2goIoAxMbG4+d3Z/xbrVqFT8KRkpLK3r0HWLFiFv36vXzPA7aCxq/Nq9saG2cnhM4KK2trem5Zyj9f/cipmQuw99IC5kYfjMY/xxgygEOHjhIWVvQs2ZYtO7G3t7tvk4G4ubnQokUTWrRowmuvaavLJyencOTICQ4dOkp4+D8cOHCYy5djuXDhMhcuXGbNmk2m8jY2NlSo4EuNGlUJCalHrVrVqV69igrkFEVRFEVRCqDXG1i2eBHPj/3F7P6L505w8ewJhj9vfv+jrNQGbCApV867WCWtrKzo0+dJ+vR5EtAWd/7f/z5m7doNTPt6BDqdNY+10FKxpw+HY2Nrh05X8M12RsZt+vd/hZUrZ1O16p1ZLYcPH0KPHgNp3Pgx2rZtQf/+T+Pm5grAnj37admyOzZ6Pc0uxVLT0x0bWxsye3ahv5cHEYNH0PviFRZ06EXXmb+Y1pErafv3R1CnTo1893ddOQt7r9zBce1XhlB3xAv5lrl8OS7Xgtk5HTt2ikqVKuLgYH/XvvDwfyhTxsvClv83XFycadasEc2aNTJlbFNT0zhy5ATHj5/i2LFTHDp0lDNnznHzZjLnzp3n3LnzrFmz0VSH+UAumAoVfFUgpyiKoijKI2/V+r+xs3ckINj8uscbF/1G30FDcHLMf14Bc4mGTUNHkRR5FoDbScnYurnw1A7zExE+qEplwJbdddHVxalE6itXriy/Tx1Peb86/LQsEuscswRGnzqEi1vhU/rb2FjTuHEDZs9eyFdffWDa3r9/L9q2bcmmTdtZs2YTM2bMY8eOFcCdLpHbXnkLn5eHUH3QM+hv32bgs8N4/u2RtOvagUmT/iB69UYOfvMzLSbcu+lLS3L82tGjJwtcMLtFi27UqlWdnWZm7Tx27BRBQSW3ePe94uTkSNOmDWnatGGu7QkJiZw8eYaTJyM5evQkhw4dJSoqOt9AztbWhvLlfalZsyohIfWpWbMa1asH4+/vZ8ryKoqiKIqiPOymz1hEaMc+Zu9/rsdd4Oj+rcya8oGZkrnlTTS0m/aD6f/h73+JrWv+kxA+qEplwJaclAhQaNarKBwd7EEI4mNj8A0INm2/EnOacr5+hZa3srJi+vQf6dlzMN99N5HRo18x7fP19WHAgN4MGNCb0NAunDgRadp3+2YyV3bvI+zXrwFISkllS/h+jpw5h3jnc/R6PY1TUmlWJajErjWnU6fOAJiyfncRgrVPPQdCUGNIH6oP6QPA8SmziZy3jDINatPks3ewc78zAczixSvx9HTPt1tj7949WLhwhen7pKSbBAZqgY+PTxl69Sr6zJKlhaenhykbl1NCQiInTkRy6tQZUyB35sw5kpNTTIHc6tW5A7kKFfyoUSOYkJD6uTJyKpBTFEVRFOVhcvVaEn/v2synQz8xu3/T0t/p+tQzlPHK537VAlJKzi1dQ5cVs4pdR2lVSgO2a4h70I3M2tqGuItnTQHbwV3rOH00nFdHWjaGzNHRgfnzJ9OlS1/KlvVm4MDebNy4nVatQrGxsSEuLp7ExBv4+voQaUzNJsdcwMHbk+2vjiXh6EkSHB3o81Q3JvzyFfvGjefMvKVcyczC0KFViV8vQMWK/ggh6N1bG6+1bt18mjS5M+FH93XzcPL14Vb8ddY+OQS34ErUGNqPBmNeRQjB/s+/Z+/7XxL281emMjt2hFOzZtV8z/nFF++ycOEKoqKimTVrIT/8MBmAjRsX0blzX0JDH751NTw9PWjevDHNm+e+tuvXE3Jl5CIijpkCubNnYzh7NiafQK4qjRrdycipQE5R7p/ly9fSsWMbs928FUVRlMJNmbGS2iFtcHa9e0LBlKQE9m5eys5dqwuvKJ9EA0Ds7n04lPXGzcK1fh8kpTJgS0m6jpVVyc8OY2trx7XYGAA2L5vKoinj6N2vP+M+etXiOjw83Fm4cBpdu/bDy8uDXbv+5p13PjOt4/XJJ2Px8SlDZORZ9uzZz/PPjaRLVAwzbiQx5MPRnHnnc5pV0DJ6jT74H40++B+T+wxj1zc/E/Yv1ibLj729HQkJp4mKiiYkpAOPP66te7F16zLq1atlGjfnUMaLit06EH/gML45go7qg59h/bO5u1OePn2WN954Od9zentrY9RCQrR134YO7cd3331CSkoKmZmZtGrVtESvsTTz8vIsIJCL5OTJM8ZA7ihnzkTnCeQ2mI7PG8hlZ+TKly+nAjlFuYeysrIYMmQk4eFrqVatyv1ujqIoygMnIyOTGVOnMWT0BLP7t62aSYu2nQgKKHwuB3OJhuz71pPzlpJWrQoJCYl4euY/0/yDqFQGbGnJSeh0Jd80BydnrsddYuHkT9myfBpvvj2Wd9963qKyFy9GmP5foYIvERFbAOjSpb1pPbicWrRowvnzB0mLi2dFh94s/UfLojQp401Enlkb+37zEeuffbG4l2WRypUDSUyM5Pjx0zRv3pXWrXtiA2zZtJhaj9UlMzWNS5t30uCt10iLvYpjubIARK/agEeNO9m0tLQ0kpNT6NWre4Hnc3V14ebNZCIjw00B3LZt4djY2ODs/PD1LS4qLZBrQvPmTXJtv3btOqdOneHEiTMcO5ZfRu5OIGdjY0PZst4EBJSnevUq1KpVnUqVKhIUFECFCn73bTZORXlYLFmiPfFVwZqiKErx/Dp1Jd7l/Klc6+4ltDLS09i2aibLV/5ppuTd8ks07P/7AIf/XMwEg+R/y9by+uvDGDHiBZycHEv0Wu6XUnk3Fx8bg61d/jPEFJeLqyt7Ni7kdsYtfvj1ewb2Mb9oX0ly9CmDU3lfbkSexT24Epe278G9WhWSoqJNKdvz6zbhVrXSPW8LQM2aVUlMjOTAgcP0bvc0i9s9zWIguFJFqvd9Cv/2YWx96U2uHzkBQuASUD7XZCgrV27A1tYWf/+Cx/3t2LGCevXakJWlN23bvftvPD0Ln+DlUebt7YW3t1ehgVz2ZCfJySlcunSFS5eusGfP/lxlrKwEHh7ulC/vS3BwJWrXrk5wcCUCAwMIDPR/aH6JKcq9NGFC/suiKIqiKAW7nZnFb7/8yoBR35rdv3v9fGrUa0iDOnfug0+fjmLNmo0MGvRMrkxZZmoa0mDA1sXZlGio9+ZwvvrqR5Z9/RNtAL2zExkpqXz99U9MnDiDDz4YzeDBz2BjY3OvL/WeElJKyw8WQk5cE3MPm6P5/p2+CH0Ke3YstrhMemYGXSf2IyPrNnpDFj3qPM47nUax/cwePlj1FbezMrl2+iYJy66zaNEs2oSF3MMryO36kePsGPke+tuZuAb6E/bLV+wY+S5JkefAygpnfz9ajP8Upxzruf1Xdu/eR9eu/QCwtrYmImJLrnXl8hoyZATHjp1i3771hdbt4RFMjx6d+OOPnwHo0WMA6em3Wb9+Qck0XiEx8YZpUpNz584TGXmWU6fOcP78JRITbxRY1tnZiXLlyhIUFECtWtWoXr0qQUEBBAUF4O3tqbpaKgra7zGANm2ac/t2Jrdv38bNzY25c39TGWxFUZRC/Dh5GXNmL+aNr+fftU+vz+Kj58P4bfL3tG9V37Q9JKQDUVHRuLm5MHnyeDoa1wK+GX2ejQO0YUwGfRZlOrTm4x3hHDp0lGeBCs0aMWbJdPbuPcCbb35smk+iXLmyfP75u/Ts2bnULbXk4RGMlLLQG65SGbC93b8RXXt04Zfv37O4jJSS1NtpONs5kanPpPMvffi8x3sMnT2K5S/NpEqZID5c/g1+br683HrgPWz9g2nTph306jUU0Mbp7d27zux6aXXrtqZlyyb88svXhdbZtu1THDx4hMREbdbMOnVa0b59GBPu4fIFyh23bqUTE3OBc+fOEx19nqioGE6ejOTcufPExcWj1+vzLXunq2UFqlWrTJ06NUxdLcuX91U3qsojQUqJp6f5CZauXDmKvX3J9wRRFEV5WGRm6alTvzN9Xv2c6vWb37X/7y3LCF8/h91b55i2ZQ/dyenZZ5/g228/xsXlzpCapUvXMHz4WNLT03FxcWbatB9o3z7MtF9KybJla3n33c+Jjb0KQHBwJcaP/5QWLXL3YrqfLA3YSuVdV3LSdbp1bVOkMkIInO20ddsy9VlkGrLQWVlhZ21LlTLalPmP12nDhC2TVMBmRrt2LUlMjGTlyr8YNOg1qlZtSkBABbZvX55rSYArV2Lp3r0TWekZrO7aD33GbQz6LIJ6PE7Dd0axsnNfMlNSOH78FIM9PKgLLFu2hnHjxhMff40mTR5j3ryl/PDDFEAipaR//16MGPECUkq+++5X5s5dihACX18fvvnmI2rU0J5w163bGmdnJ9NyD82aNeLrrz+8D6/Wg8HBwZ7q1YOpXj34rn16vZ7Ll+OIjs7OzsVw6lQUkZFnuXTpCrdupefoarkvV1khBJ6e7vj5+RIcHETt2jWoWlV1tVQePrt3/w1AQsJplXFWFEUposl/rMHF3Ztq9ZrdtU9KyYbFv/Hee6NzbZ89eyEAvXp1p0aNYD7//Hvmz1/O5s07mTHjJ+rWrcmoUe+Zxhe3bNmUadO+N82XkE0IwZNPdqFbtw7MnLmAceO+IzLyLE88MZDw8HUEB/83Q5FKSqkL2K6cj8Rg0NOhTdGjX71BT+vve3Lu+nmeb9afhv71yNRncfDCERr412HFkXVcunHlHrT6/qhQoZ5pMpT167fyzjufsWzZTObMWcTMmQvw8rrT73fVqjkcOXKCfv1eJjDQn4yMDJ56qhtjx45g5869/PTT78yfP4Xu3TuRmBhJ5859CA//h8DAhtSqVZ116+Zx8eJlsrL0tG8fhk6no8vymdg4O2HIzGRl5z74tw+j+9q5AIysUI8ZzUKYtXI9S0a+y8aNi2jSpDM6nY6ff57KkiXT8fX1IT09g/nzlwEwZcps9u49yI4dK3F0dGDz5h306/cSe/asNT3JXrlyFl45FktUiken0+Hv74e/vx8tW+aetVNKmaurZXT0eSIjzxm7Wl4kMTGJ69cTuX49kSNHjpt+aWZzcnKkXLmyVKpUkZo1q1KjRlXKl/fF19cHX18fHB0d/stLVZRiyx6/poI1RVGUosnM0vPLj7/Qe9gnZn+HHv9nG0gDz/S8kxXT6/XMnbsU0GYYDw0NoVOntgwa9Cpnz8bQtWs/3N3duHEjCZ1Ox2efvcNLLw0q8He0jY0Nzz/fn759n6Jfv5fYtm0Pq1dv5PXXc8+Ant89tb+/X76JBtBmEq5WrRmDBj3DRx+9aaqvW7f+xMXFY2dnh62tDT/88Bl16tQs9utZ6gK2g7vW4ejsirV10af111np2PG/lSTdusmAP4ZzIi6Sqf2/592VX3A76zZtqjbH+h4sF3C/bdu2m7FjP2XJkummyUBeeWWI6cOUU2hoCPPnTyE1NY2wsB506mQ+kxkUFMDLLw/m2rUE3nzzY/z96/PGGy/j6elh6g5n46xlNA2ZWRgysyDHD4ytlJzfvJOTOitSk1OJjY1Hp9Mxffpcxo17G1/jLD/29nYMHqwtNfDDD5NZtWq26Ya+bduWNG78GAsXrmDgwN4l9GophdEyaB54enrQsGG9u/anpd0iJuaiKZg7ezaakyfPmLpapqamERUVTVRUNBs2bLurvJ2dLe7ubpQt60358uUIDAygSpUgypf3pXz5cvj6+uDlpcbQKfffpk07CAz0v9/NUBRFeeBMn/0Xjk5uVG/Qwuz+DYt/Y9jLL2Jldedv/Y4d4dy4kYS3txdNmzYEoFatauzZs4bPPpvAzz9P5caNJAID/fnzz0mmHliWcHR0YODAZ9i2bQ/Ll6+9K2DLlveeesOGbUycOMNsogFg8+adVKkSxLJla/jww9G57l0mT/6OBg3qMGfOIj788GuWLv3D4vbmVeoCtsgj4VQICPxXdbg5uNKiUhM2ndzOiNYvsHa4lvXZfGoHUfHR/76Rpcju3fsYNeo9Fiz4naCgihaXc3JypF692pw7d97sWLVszz/fn+ef7w9Ahw69cy2YbdDrWda6JzfPnafm8/0pG3JnwGiV9AyO6az45scvePXVt9mxIxxXV2dOnIikXr3ad53n5s1k0tJu3XUNDRrU5uTJSNP33bsPNHWJ7Nv3KYYPf87ia1ZKhqOjAzVqBJv9RanX67l0KTZHV8vzREWd4/z5S8TGXuX69UQyMm4TFxdPXFw8R46cMHsOKysrXFyc8fb2pFy5slSsWIHKlQMJDAzA19cHPz8fypUra1r/UFEskZqaxooV60hKuklmZha3b2eSmZlJcHAlnn66m9kyBa05qSiKotxNrzfw4w+/8OTQ98w+fI0+HUH8lfMMG5x7tvbp0+cBMHBg71zlbG1t+fTTsTz1VFcOHjxC375PFWsMcZs22ji6I0eOk5qadtcQDnP31BMm/JZvogFg8eJVvPzyYKZN+5N9+w7RuHGDu87bqFEDfvrp9yK3N6dSF7BduRBJ5y4dLT6+VasnmDt3ErauNtjobHBzcOVWZjpbz+xmVOsXiU+5ThlnLzKyMvhh6xRGt3vlHrb+v5WRcZv+/V9h5crZVK1aOde+iRNnsGDBcgDc3d1YuXJ2rv0JCYns33+IMWNe5fr1BPbs2U/LlnfWVrt48cpd2bfTp6MYOfLOenFWOh1P7VhJRtJNNg4YTsLx03gaA7oGQFrNahw+fByAc+fOc+PGTVxdXYp0jVLKXD+0qktk6abT6QgIKE9AQHnCwkLv2m8wGLh+PZErV2K5fDmOK1e0r0uXrhAdfYFLl2KJj79GWtotkpJukpR0k6ioaHbt+tvs+Rwc7PHwcKdsWW8qVPAlMDCA4OBKpi6Yfn4+uLm5qmzdIya/MbZT3/mMhFkLsQYuAgsBg7FMgwZ1qFTpzgOjM2fOAdpgd0VRFMVyM/5cj42tAzUbtjK7f8OiiQwa+hx2dnem2k9NTWPt2k0ADBjQy2y5+vVrU7/+3Q/9LeXp6UFwcCUiI8+yc+feXPe5+d1T55doAG1yt+3b9zBhwjiSkm6yePFKswHbpk3b6dKlQ7HbDaUwYEtOvEa3zm0tPv7w4eOsWrWBZt0aMXz+W+gNBgzSwJP1OvN4zbZ8sOor1p/YgkFKhob2JazK3TeRDyobG2saN27A7NkL+eqrD3Lty69L5J49+wkL64GVlRWvvz6MGjWC2blzr6mrZLbhw9/KVS49PZ2bN5Pp3bvHXXXaubni26IJFzdtx7NmVdITEilvMPDckhk83WcYtra2LF68Cnd3V+zt7YmIOHrXzbyrqwuOjg5ER58nMDDAtD0i4jjNjSvYKw8+KysrypTxokwZL+rWrZXvcampacTGXjUGc7FcuRLLlStxnD9/kfPnLxMXd5XExCRu3Urn1q1YLl+O5dCho2br0ul0uLm54u3tiZ+fDwEBFahSJYiKFSvg56d1wfTxKaNmvnyI6Oxs7xpjW6FtS2yXrGYOULFhXTpIGOvhxoLoC0RFRfP33wdyBWw//qj9PlRZXEVRFMvp9QZ+mPAL3Qe/ZfZhadzFs5w+spclc77KtX3VqvVkZmZSvXpwrt/FJa17946MH/8ba9ZszBWwFXRPnZ+//tpCixZNcHR0oEePTnz77S988cV76HTa8Kthw0aTlpaGXm9g69ZlhdRWsFJ1hxJ7MQqDQU+nDkULqvbvP8SwYQPZ/tIkdyUAACAASURBVMYKpJRs2bKT1q21tOe4bm8zrtvb96K5952VlRXTp/9Iz56D+e67iYweXXj2MG9gZqn167dhY2NDQEB5AG5du46VjQ12bq5k3Urn0tbd1BulZd/OLVvLaWsdLp7uzJ8/mZYte3Dp0hV69+7Bn38u5qOPvmHevMn4+JQhIyODGTPm8dJLgxk58gXGjh3HjBk/4eBgz9atuwgP36+WAXgEOTk5UrlyIJWNi8ubo9fruXr1milLl52xu3jxMjExF7h8OY74+OtkZGSQkJBIQkIip09H5Vufvb0djo4OuLg44+7uhqenB2XKeFGuXFnKly9HmTLeeHq64+npjoeHB56e7moClVJKCHHXGFuhs8Kg03ENGNHjcZ4Jqc+hCZOw7vcU48aNZ9euv+nT50lTHbNmLcTW9sFeaFVRFOW/NmvBJqysbajdyHzyZdPSKTz1bH/cXHN3R5w6VZva/4UX+t/T9nXs2Ibx43/jr7+25Nqe3z119erBZhMNAIsXr2Tv3gPUrdsa0NbG3bEj3BSDTJ78HbVrV+eTT/6PMWM+ZtasX4vd7lIVsB3ctQ5HJ5ciTziyf/8hDhw4TK9ez5sWC46I2GoKLh5mjo4OzJ8/mS5d+lK2rPc9m5xj3brN+Pn5mL5Pi41n+/C3MOgNYDAQ9GRnAh7XfjijlqzmqE77aHl4uLNu3Xzq1Anjxo1k0tLSad68MT17DgYkIEyp72HDBnHjxk2aN++KTqejbFlv5sz5DQcHe9N5c45hq1WrOr/99u09uV6l9NPpdKaZJwty82ZyjqDuTlfMmJgLXLx4hTNnzqHX60lPzyA9PYOEhBvExFy0uA0ODvY4Ozvh6uqCp6c73t6elC1bxtQ2Dw93U6Dn6emOu7ubyub9B/KOsS3TsB7C8P/snXdYU1kTh98k9CqgCIq9YRcLiAqiYAFEEV1791sbutbVVVdZe3ft7tp17V2wN1AQsYsgdsXe6L0l+f6IRJCOtHXzPk+ehHvPOXdugOTOnZnfSDBB9sX8wv00sW/f06yZLH3F1/dGhjUmTPhxUugVKFCgoLCRSKSsWL4G+z4TMo2uRYZ94pb3CdZdP5Nu+/v3H7l50x+RSIiLi2OGeQVJkyYNUFNT5ePHzxmyujK7ph4/fnimgYbevV3w87tFYOBleSbGrl0HOXTouNxhA5lK5fTp42nc2JZHj55Sq1b1fNldoq4aHty+hKGRUZ7nvXjxClvbbgDMnDmJsWN/LnGdzAsTPb1SHDiwBUfHPnIp/7Q1bAC7dq3/rmPcuuVPw4ZfU9gM6pnS9bJ7pmM7Hd9F2vJ9ExNjAA4cOEbjxvW5evUGV6+ezDBPIBAwZcoYpkwZk+m69+555dt+Bf9ddHS00dHRzvJDslmz9jRsWJcFC34nLCyc8PBIwsIiCA8PJyws4ssjnE+fQggJCSMsLJyIiEiiomJISUkhJiaWmJhYeWPO3KCqqoKGhgY6Olro6upiYCCL5hkbG1KunNEXlc5S8mc9vVJoaWkqavHywLc1tuEPnvDWpiVOx8+i8td2lHs5I1QSyeshgoNfEx+fgLq6GmFh4QD8/HO/4jwFBQoUKPhXsfvgRcQSKQ0s7DLd73lsK7b2nTExTi92t3//MaRSKdbWLdHTK1WoNiopKdGypTkXLnhz4YK3XFgvlW+vqR0c7Pj8OSRDoOH48bNYWVmmS5t3cLDDzW0xiYmJ6dZUV1fD1XUIa9ZsZvXqBfmyWyCVSnM/WCCQrj/5Ml8Hyg0Te9QnLiYKDQ11mjUz43//64uDg122zpelpT0PHz7l+fMbhf5LLir69x/Fli0rUVbOPB3nxIlz9Os3ivDwJ5nuLwyMjeuzePHMfEfwdu8+hKvrbxw6tJXu3Yfw6tVttLS0cp6o4IdEIhZzrE1XNIzL0mHfRi6PmUrInUCkUim61SvTeu0ieUpbYVOrliV9+rjg5vZrnuZJpVLi4uLlzl2qoydz+mSO3ufPoXz+HEpISCjh4ZFERkYRFxdPXj53UxEKhfJonq6uDvr6pTAw0MfQsDR6erro6GijqamJhoYa6urqqKuroaEhe1ZXV5e/Tn1WVlb+zziAtxetRklDnW0vXrF16x7mz5+GU63qPPrnALZbV1G/fmvevHnH6dP7sLBozIIFK1m8eE2RfsYqUKBAwb8ZiURKU8tutPvJFbOW9hn2x8dFM2NwK86eP0ydmunbpTRsaMOrV2/ZuXMdjo7fJ86RGWKxmKioaLmfsH37PsaN+x0rq+a4u/9T4MfLC3p6NZBKpTl+GZeoCFtCXCwbt6zjw9tX7Nt3lEGDfkEoFNCgQR0GDuxF795dM6QSOTs7sHDhqh/GWdu16yDHj5/L9kLq+fPcOc17G9igrKWJQCREqKSEs+cRrs1YyKszngiVlVGrUp6lTT6SLBUjlqTQuX5HpnYYy8uw1wzdOY7w+Egalq/L/A6/k5CQgJNTh3yfV+/eLqxduxVz80ZIpVIiI6OzdNiyawi+aNFqbt06Ly9IXbduK9Onz+fixcOYmdWnQQMbPD0Pp1OS3L37EDNnLsLYuCzJycmMHDk4nSSrgqLn/l/bKVWzGknRMQA0nzcNlS8Kon7T5xO0cScNxw8vEltiY+OoWNEkz/MEAgGamhpoamrI+x/mBrFYTGRk1BdHLyLdc1iYrCH5p08hfP4cQlhYBBERkURHx5CUlExsbByxsXF8/Pg5z/ZmZr+ysjIqKrKHqqoqamqq6Rw8TU0NtLQ00dLSRFtb64tTqP7FIVTP1DmUPac6imry4uuiJKsaW0HgQwCEEgn3Vm6k0ZcaBQuLxrx5846bN+9iYdFY3jBbQcHz5IOQ0GgBRqWkGOpI0FBouihQ8EOw78glkpKSaWiZ+bWiz6ndNG5ulcFZCwh4wKtXb9HQUKddu8xVJb+X9eu3MWPGQvlNOFtbWbPua9duk5SUhIqKSqEctyApMQ7bx7cvkEjEdOnUBmVlJUaPHopEIuHAAQ+2bNnNpEluTJ06D1/fE+lq05qm6f1VEnkT8Z6Re3/lU/RnhAIhAy16MsJqEAvPrmLHtf0YaMpSGGfYT6R9bRtGj54KkG2Ny7d9I7LD0eMf1NI4L+XbtKSZ2ySESkpcm7mIP8Ir0nr2dJLFydiv7YWdqTXrLm9lpPVgujXqxPhDM5jxzwLU1dUoVUonn++C7OLwypXjHDlyEhUVZcqXN85xTmYNwevUqcXhw8eZNMkVgGPHTmNqmnM+cNeujixZ4sbnz6FYWtpjb2+LoWHpfJ+PgvwT+/Y9r8960WjiSALWbgGQO2tSqZSU+AQowsBPYmJSoSpSfYtIJJI3Js8Lsvo6WSRP5uCFf3H2IomPjycuLv5LemYM0dFxxMbGEhcn2x4fn0BCQiKJiYkkJiaRnJyEWCwhKSmJpKSkQjpTGSKR6ItTqIKqqgpqaqqoqcmcOdlrVUQiEUpKSl8eoi8/i1BSUv7yrCR/VlZWRllZST5GKBQhEglRUlJCJBIiEokQfvgM+48ikAJSKcpNGnItOgblK9eZBAhXbKDihBGU+1JEbm1tyaFDx7l06SqurkNITk5mwIAehfq+/Bd58FZI4BsRYomAN2FSJFIRKkpQVleCscKBU6DgX4tEImXZ0jXY9/4lQ1ZcfFw0p/eu4crZfRw8tDPD3B079gPg4uKYK8epwXwbtFQ1EQmEKImU8Bx7JMtr6lQiI6PSrWFiYkz58sa8ffueGzfu0LKlRV5PucgpMQ7bHZ+TaGhqo6z81SShUEjPnl3o2bMLEokEa+vOWFra4+t7gkqVZB56kyYNANld6+K4k5sTSkIRcztNpaFJXaITYmizsis2NWXFiCOtBjHG5qv0flRUNECO4VlNzfynipm0tZK/LmtuxotjpwFIFqeQLElBIBBw+akfG/ssB6B3Exf6XRqZrwhEZpw5c5Fy5XKuU8yqIbijox0nT15g0iRXgoNfoaOT/m8mJ8qUMaBKlYq8fv1W4bAVE1enzcN81mSSYmLTbb/kOoXX5y6hV6s6zedOLTJ7UlJSqF69SpEdL7+oqalSrpxRrv5/ckNycvKXtggJXxw+2XN8fMIXJy/t6wS5UxgVFfPFKYwlNjaW2Nh4+fyEhAS5U5jalFosFhMfLyY+PqFA7M4Xx8/KHl/4c/p46g3qJf+5SZOGANy+7S+vPUjbc1LB95PWWQNI+fKckAwvQ0S8VThwChT8aznk4UNcXFy6VEiJWIzvuf14/LMMi1Zt8PE5TuUKhunmpaSkyPUW8pL55DHiHww00/fk/faaOi1amZRYdOzYls2bd3H6tKfCYcsLjwOuUr5C1ne5hUIhly+706ZNVywtHfD2dqdatSqUKqULwKNHz6jzpWlzScJIxxAjHdkfqLaaFjUNq/E+8mOmY8eOnQ6AlVXzbNfU0splhE0g4JTLYBAIqD2oF6ZpLlAAHu08SCVne6yWO/Ei9BVDW/SlikFFdNW1Ufqi8liulBERyZG0b2qTu2PmgL9/UIYm39+SXUNwbW0typc3IijoMSdPnsfFxYFduw7l+vjBwa8IDn5dpBEVBV95dfoi6qUNKN2oHu98rqXb13rtIiRiMVcnz+b5kRPU7Jt548yCJCxMpiqbk9Lkj4gsUqWc52b2eUEqlZKQkPiNQ/j19ciRv1KjRjUGD+5NSkoKEokEsViMWJz2OSXNz1+3paSISUlJISUlheTkr69lD9nPYrE43TixWIyeXik6dUpfI2FqWh0VFRVCQ8O5dy8IINuWEgryxotP6Z21zMjOgTPUkaCvJUUiBbFYQIoExF8eX18LkEqhdjkxxnp5rxFVoEBB/pBIpCxZkj669sjfl4MbZqGlrc0/uzZibZl531UvL1+ioqIxMjKU3zgrDDJz2BwcbNm8eRcnTpxjzpyS3/6rxDhs718+pkNH2ZdoYmQU3r9MI/zBExCA9eqFlDU3QygUsqpbJ264LcamWQcGjBwkf5Nv3fIvkQ5bWl6FveHeuyCaVGzIteDbbPTdyd5bRzGrUI+5naZy9OgpeV5tduQ2JdLp9F40jcsS/zmUU10HoVujKsZfmlDfWboOoZIStXo64y3oSmR8FP22j+LRx4x9qpKTU7DvlLniT16xsWnJP//sRyKRZCkmk1PzQheXThw+fJyLF304enR7rhy2I0dO4Od3E1VVFf78c84PU/P4b+Pjtdu8PH2B1+cuIU5MJCk6Bs9hE2mzYRkgU/ar6uLAvVWbisRhe/r0BUKh8D+lKluUCAQCeS2bvn7G/dWqVSE6OqbQZZxzQiQSUatWdQICgggJCctSbCS7+todO/ZjYKBHYmISrVpZsHTpHwiFQkaNmsyVKzfQ1tYiISGBpk0bMXPmRHmktEEDG7S0NOXtSlq0aMaiRTOL5sSLALEE7rzM3lnLjLQO3KtQEa/DpMi0erJfJzRGQJUyEswqixEp/q0VKCh0jp68SnRUJE1aOfLpXTBHtsznzfMgpk6fwqA+7REKs/6f3bp1NyCLruVWBEuAAJeNgxEgYFDzXgxqLgtGfHtNXUpDVz4nM80ES8tmKCmJePHiFZ8+hZT4rKsS83EWFR6Co4Os47jfb3MxsbXmp+tncPH2oFQtWZQl5s173l3yRcukHG5uk9i0aRe1aslqEG7evFtstueGmMRYBuwYzYLO09FR02aIZR/u/HYB7/HulNU2ZMTWSQBs2LA0x7Vy67BpfokaqJcxoFKndny+fQ+Ax3sO8/qsJ202LJP/g+iq69CqqgU3X90lMj6aFHEKALcf+kMstGuXsyOZG+bMmUJycgrLlmXdZiC1eeHt2wGZjuvYsS379h3DxMQ419GBrl0d8fb24Pz5Q3Tq1D7f9iv4Ppq5TaLPfR963fOizeYVlLNqjs3fS4n8IqQjlUp5ddqTUjlEYQuK58+DUVUt+cXGPyoTJozk3r0geTp4cWJtLcts2LfvKGKxONuxqfW1Bw9ultfXjhw5CG9vD/z8ThEU9JgrV67Lx8+ePRkfHw9u3DhLgwZ16Ny5f7raQQ+Pf/D29sDb2+OHctYAnrwXIpZ8/zoyEbWcL+jEEgEvPgk5eVeZiLj/hgqqAgXFhUQiZfHiNdg4DeLotoUsnuCMRbMG3L11iiH9OmTrrEVHx3D27CUA+vRxyfUxT7vu5dK4Yxz432Y2+e7iyvPrGa6pfz+eXjpfWztjhE1dXY3GjWVlVZ6eV3J9/OKiRDhsn74IjnRs14KkqGje+96g1hf5eJGKCqq6MrELv+nzMP9jMghkPRCePbtG/fp1gJL9ZieLkxm4YzQ/mXXGqb5MPcdQuzQioQihUMhAix6cvSv7o82NEEFuatiSY+PkCnzJsXG8veiDXu2avD5/mXsrN9Bu919ESOKIjJcVYsYnJ+D11JeahtWwqm7BsQBZbduqU5tQ+6haYAo6SkpKDB7ci5UrNyCRpP8Wl4jFHLHuTJ+EBDQ01Pm1YjmEi1axuZ41h62cEH1RxlNXV+OPP35l4sRRBWKTgmJGKuXSyMkcauHI4RaOxH34hNmvrkVy6Jcv36ChoV4kx1KQEVtbK3R1tZk378/iNgUXF0cEAgHHjp2mS5cBREZm7kSm1tfu27cxXX1tKklJySQmJmYq0iQQCBg1ajCGhqU5f/5ygZ9DSSNZDIFv8x5d+17EUgGxiXAxUImU7H1vBQoUfAceZ67xKOAGx3f+iSA5gitXTrDwj2Fo5qL49O7dQFJSUqhWrXKedBKMdWXBiDJaBnSq147br+5luKa+9epeujmZpUQCdOnSEQB399O5Pn5xUSJSIm9f+So4EvrwNeql9bnsOoWwwIcYNKqH5YLfeXfpKprGZTGoX1s+T0tLi8OHt6KvX4PXr98W4xlkjVQqZcz+adQ0rIZr6yHy7R+iPslr2zwCziINlbJoUcb0v8zITQ1b/OcQzveTXfRKxClU6+ZEBTtr9je2RZyYxKmug3itkcCO+hGoGZdFIpXQtaE9Heu0xbRsdYbuGs+8038S/TGWWoL8dWXPitmzp7B1617693dN19A7VeqdoEcAqKioYLVwJkNXbmDB1LGIv9SWAHTr1inDuqm0auUkv6vj7OxA3bq1CtR+BQVDuVYWlGslK/TtfGZfsdjw5s07tLUV/QCLE3t7O06dulDskaXGjRtw7NgOevUazpUr12nRwoGjR7dTo0ZV+Zjs6mvXr9/G/v3HeP36HXZ21vKbiZnRsGFdHj9+hoODLNXcyam/PCWyd28XRo0aXAhnWPQ8eickHy0HCwgBYqmUpx+FmJYrgBCfAgUKMrBnnwe1G5qzaOF0rJpn/ZmXGYmJsiyDVC2K3BCbFIdEIkFbTYvYpDguPvZhst3odNfUxwPPUdsofYlUVg6bra0106cv4PLlq9mW6pQESoTD9vieH+Uryu5USlLEhPjfx3LRDAybNuLqb3O4vXAVH67ewP7QtkznV6lSKde9yYoav+Bb7Lt9lDpGtbBa7gTI5EYP3T1OwLsHCBCQHJYMfvDzof65WjM1JVIqlWaZ86tTuSIuPh4Ztve4fSHdz2MzmVvZoCIXfpHVhZmatqBlN/Nc2ZVbVFRUOHp0O1269KdTp764u/9D/PuPcqn31MgggIFBKfz9PQHkFzffcvz4Lvnre/e8Mh3Tp0+3gjsBBT8MHz58UtQzFjMCAXlSei1MrKya4+t7HGfngQQHv8bKqjOzZ0/G1LQGFSuWz7a+duTIQYwZ8z+Sk5MZOHAMhw4dz/LG0reN0z08/knXO/JHICoeHr4r+uhaWsQSAfffiKheVoJSyRORVqDgX8/uLXMBsk19zIrk5GQgb5//n6ND6LddFowQS1LoZuaEnak1w/dMkl9TV9Qvz5/d5qSbl5XDVrNmNfT1SxEWFsG9e0E0alQvz+dRVJSIb8n3Lx/JBUc0yxmhWc4Iwy/91ap07sjtRauJfvmGw1Yyhyf23QeOtHamy4VDaJQtg6NjO1av3sT585ewsyucpnv5xbJKU8KXZCxgT9sfQk+vBkZGhrkuuEyt29LXr/nlWQ9X1yEMHtyrQC8+JRIJnz+HflfD7KywtGyKl9cxbG1daN26C25VKmUq9X5z7p/cXryW8q0taeY2CZGqQuNZQdZkJQpRoUI5tm3by7p1WwGZ2ujcuVMJCQmjTBkDOnXqy5w5v2FmVl++lo/PNfr0GUGlSrJUDQMDfY4e3V70J/WDExYW/l2tSgqaSpUq4O3twaBBv3DhwmWmTEn/xe/ndwtvbz8uXvTB3r4tVapU4sWLl1SqVBGQqW/a2lrh63sjS4ft3r0grK1bFPq5FAeRcXDvlYgPEUIkJUCsUSJFEWVToKCQyI+jlkpqrXB2fYe/pbJBRXwmZAxG/N07e/2HrBw2gUCAnV1r9u8/xrlzXgqHLSfSCo5olC2DZnljIp48p1SNqry9fBWDBnVwOLZDPn5vAxucPQ/LG0JbWDRm9WpYu3ZriXPYcuL9e5nE/8GDW3I9R1lZmfDwJ1y/foe1azfj7n6GOXOWMWfOMvmYzp07MHr0UJo1M8u3bXfuBCCVSjE3/7qGiUlD/AJPM3Lvrzz/8JLPH0MZ7zACwX1Ye3ULCZUTESUJKWtkyJIebhxdfZIOHdrQpYt9ujXevPFn/vwVLFw4g00TZ/JUQ52pP0+gb/PGpCa9/hMSRucZE3Ds0AafcTPwX7mBxpPH5Pt8FPx3+Lbp+unTF9m2bS+nTu3BwEAff//79O07EoFAQIMGdXj2LDjTdSwtm7Jv38aiNf4/xvPnL6ldu2Qp/GppabJ//0a2b9/L+fPeBAe/4v37j4SHR8oFUp48ec6TJ8/Tzdu8eRdmZvUICQmjWTOzDL3npFIpGzbs4OPHz9jZWfEjERErwP+VkE+RMkdNmguBkKJAEWVToKBkkpKSd4ctv2TlsIGsv+/+/cdwdz/Dr7+OLnRb8kuxO2wf3zyXC46k0mLxDLyGTUSclIxO5QpYr12Y7RqpvRtKah1bdgwcKHNA8lNnZW5uhrn5GvnP4eERbNmyh7Vrt+DufgZ39zPyfZUqmeDqOpQ+fVxyrTLp4XEGAwO9DDm9SkIRXcs5sPrvTVzce4hBR3/BJqUlTZs2oq1VK9ob2+Dg0Ae7GdYc5WS29j97FkyHmtWJu3GXvkpKKL96wzuRCM9hE7kS8IB5Fk0QqapSo283AlZvyuM7pOC/SGZN11eu3Mjs2VPkaWcNG9ald++urFmzhfLljbN02BQUPq9fv2PkyCE5DyxihEIhgwf3YfDgPvJt5cs3wNf3BK9fv8PfP5AlS9ZialqT58+D+fw5lLCwcC5c8AbA3/8+W7bsRkNDHXf3M0yfvgCBQIClZVPc3f9JJ+SUtoatbl1T/vprSdGe7HcQFiPA/6WIkBjBFzXIkuGopUURZVOgoOSRkiJTI1dRUS70Y6U6bJnVqbVu3QKBQEBQ0GOioqILtTfp91DsDtudNIIjqRjUr4Oz55Es5/T6pk7JyEhWaFi+vFGh2FhQtG3rgrq6Gi1aNKNFi2Y0a2bGjRt36P9FEfN70dMrxcSJI5k4cSQgu5vr6enDmjWb8fS8wuTJs5g8eZZ8fN++3Rg1akiW/euuXLmBqWmNDNufB75k1cyN7N+/iZo1q1HTsBrRr2Pk39O1alVHSUlEaGh4tvZaWDTBzW0x+0/vpXLlJjjZ25L04DGDqlSk6vRx6HfqR9myZZBKpbw8cQ69EnYXXkHJIytRiIcPn9CwYfpUBzOz+iQlJVGpUgXgaqbrXb16E6svqdhdutgzaZJCmbSgiY9PwN6+bXGbkSvevpUpj1WqVIFWrSxwdR0q3ycWi3n06Bm3bvnj43MNP7+bvH79jpgvad6xsXGA7EbYs2fBtG5tibl5Y7y9PdDVLZkXCNkhkYL3QxGfooQl1lFLRRFlU6Cg5FGUEbZUJy0uLj5DtE1XV4fatWsQFPQYb28/HB3bFbo9+aHYHbbHAX6YVMwojZwfqlWrUiDrFBYfPnzi/fuP+PreSLe9sNTRBAIBbdta0bbt19Sbd+8+sHHjTtau3cKuXYfYtesQbdu24tChrRnmP336gpEjB6Xb9u0FcWoz8J+UOvNJHMJG351s9dlDdKMYlDSy/2Zs1KguDx48Rk1NlYoVy+PndxOnOrWIiYnl2rXbdEtK4lALR5BK0a9fm1bLZwPw+XMoNjbOvHv3Id16LVuac/DgFtTUFHVu/1VyarqeFqlUikQioVq1rD9/FCmRRYO6ulpxm/DdiEQi6tSpSZ06NeU34WJiYvH3D+TGjbtcuuTL3buBREREcfv2PW5/6YuprKxEr15dGTt2GNWqVS7GM8gbTz8IvzhrOTtqMZFhnN6/luiIEGy7/o+K1evnOKegUUTZFCgoWaSk5F105HuJiYnNND3SyakDQUGPOXHiXIl12Ipdv/Lti4eYNW703esIhUJ++qlztmNMTBrKX58960WTJna8fv2OhQtXUadOK6ysnLC0dODkSZmSYtrtTZrY0b//KB4+lAmIiMVibGyc0zVHdXEZxNGjp7I8flCQD+HhT+SPVIryYqVcOSPc3Cbx6VMQ4eFPCAl5mGn9XEpKChERkXTt6pBue9oL4rTNwFWFKgQdeoTOKS0Mr5TBya4DM04szFRIJXWbqqoqpqY18Pe/T+nS+nz6FIJxK3Niezpz/fodSk0ZQzffE3S7epI2G5ahrKXJkCHjqFmzOe/efaBbt06sW7eIVavm0769DVeuXMfYuB6rVikusP+rZNV0vVat6vj7B6Ybe/eu7Ofq1auioHhJjT4VFG8i3uP0Vz8slnTAcqk9f3lvA2DIzrFYLXfCarkTDebbyJV7CwstLU1atrRg3LjhHDmynRcvbnH/vjc7dqxh5MhB1KlTk+TkFP755wBNm7ajS5f+XLlyLYOKZEkjIVkmLJKTs5aUmMCZ/euYMdSaC0c2cd3zKAt+6cRat0E8f3i7iKyVkRplU/RlU6CgZJAaYVNWLtyUEiqV4QAAIABJREFUSLFYzM6dBwDkNcjf0r69DQBnz14qsZ+/xRphe/fyMVHhn5k4/vvrF0QiIbGxsTkPJKMgAXyVZH706CkODn3o2NEv3XaAw4dP0KXLAK5cOU7p0gYsXfoHv/wynUuXjnLs2GkEAgHOzvZZHjctCQmJAOzYsSaHkYWLSJR5FMzL6wpKSqJ0PYjg6wVxZ+cBtJ7dhSHt++BUvwP3Tzxi9NCh8vfqVdgbem4Zhp2+NRERUfL54eER6ZqDm5ub4et7A7FYQtmyZbh1yx99fT3u3Qti8ODe6Y7du/dwTp++yNKlfzB0aN90+1LvaI8dOx03t8WIxRLGjx+e/zdGwb8WDQ119u3bgINDbwwNS9O//0/88svP/PHHEg4e3Iy+vh4BAUHs3HkQINMGxwqKDoFAQEJCQs4D84CSUMTcTlNpaFKX6IQY2qzsik3Nlmzpt1I+5nePBeioFX0PvnLljChXzkiuvhsU9Jg///yLI0dOcvmyH5cv+1G1aiUmTx5N164O6Wrd8opUKuXVqzeoqKhgbFy2oE6BWy9EiLO5ppFIJFz3PIL7jqWEf34HQJ0mrTGuUB3vU7sJvOFJ4A1PajVqiUPvX6hRzyLXKsnfgyLKpkBBySHVYSuMGrZXr94yYcIMeU1xKpGRUZmOb9iwLhoa6oSGhvHsWTDVq5e8jL1ijbAd3jwfY5PK1KhW4bvXUlFR5eXLnEVHUgUJ9u3bKBckSEt29VcuLo60adOKgwdlkqJNmzbC3NyMhQtXM2fOcpYs+SPL4yZGRnF+4GgOmHfggEUH5vxvPA2AxPkr2KRfk893AnJ9rkXBiRPnKVvWMNN96upqVOxbjvAXEei8+lp7ES3+2j8ttXFhy5bmHDlykqQkWYPE3bsPY2VlIR/XvHkTtm3bS716pvTo0YUrV65z8+Zd3rx5T+3aX+vnLl++yunTF9m8eUUGZy0tK1fOw9V1CLNnL6V8+Qby7d9GVPX0aqTr3bdu3Vb09Gpw58vvYefOA7Ro4UjLlp2+RF3PA7ILoKVL19KkiR1Nm7bDyakfDx5kbNugoHjR0yvFgQNbWLp0HSdPnsfBwZa+fbvRoUNPzM07MHbs77i6DkmXO9+z58/UrduKunVbMWiQQo20qBAIIDo6dzfbcouRjiENTeoCoK2mRU3DaryP/CjfL5VKOeJ/km6NCjfClhvq1KnJxo3LefDgChMnjkJLS5Pnz18yYsSv1KxpyZIlawkPj8j1etHRMZw8eQFX19+oWbM5jRq1pU6dVtSp04qxY6dz4sS5LC9acsPnKAHvwoVIpZk7WA/u+LDgF0e2L5tA+Od3mFStwy9zdzJmzg66D5vJvG2+dOw5GjUNbR7dvcKfU3qybPJPBN2+XOh3thVRNgUKSg5isUx0pDAibP37j+LCBW8aNKiDh8dOeVZbarDkW0QiEdbWlgCcO3epwO0pCIotwpaSksKDO97MWzgn58G5QFtbk82bd9K5c3vKlCmd6ZisBAnScvPmXYRCIaVLZ97EtGHDOjx+/FXK2c1tEvXqWTNixCCqVs26Fsbvt7mY2Fpjt30N4qQkFjZqS6NWFtgtn43P+OxrbYqD69fvUL++aab7/IJvcSTwJDUaVGWijxtLn6/DXGDGk/jnHF92Ll3jQiMdQ/z972Nj0xWRSEiVKhVZ/qUWDcDcvDHBwa8ZP34Ezs72rFmzmUqVVDAzq5dOyadLlwGAzGnOiblzp7J27Rbi4uKBzCOq9U1rcLZTXwz19ZCIU3gSFYOpaXWibgew33UKb5++YJZTR2z/XkJcQiKhoWEAbNy4k2vX7uDt7YGGhjoXL3rTp89wrl49paidK0Ls7Lpx69Y9wsIep7szn9qDDcDExFjedB1g6NC+6Zz9zZt3o/qlr1/a5utpadXKItPtCgoOgUBIVFT+HYicSK2zbVLxa0q874sbGGqXplqZyoV23LxSpowBv/8+nkmTRrF//1GWLFnHmzfvmD9/BUuWrKFnT2fGjh2W4c6vVColMPAh58554e5+hoCAB0gkXyNI6upqiMVi3r//yI4d+9mxYz8CgYDq1atgb2+LnZ01zZqZ5erzSyIFv6dKmaZCvn3xkMNb5hN0S3axo1faGKcBk7Bo0xVhmkwOLV19ugz8lXbdhuHlvo0LRzfz7P4NVv/en8o1G2Hfewz1zW0LLeImkcLZACV01KVoqYGGihR1FSnqKqCuIkVNGUTFXiyiQMGPT3KyzGErDNGRS5eOZbo9u5uDnTt34PTpi2zYsIPOnTtQvrxxgdv1PRSbw3b+0AZEIhE/D3YpkPW2b1/D0KHjMDVtSc+ezixd6oaGRnr5+uwECdav38b+/cfQ0tJi8+YVWX5ZfHsD0Nf3Bjo62jx48DhL25KionnvewPrdYsAEKmocO2eV5Eo4+SXly9fM3BgzwzbUy+IM2sGnhVTpoxhypTMIxZlyhikq+czNa2Ovn6pdCIoqc0Vr18/k2F+VsyZ8xszZizMVOIdoGOndhw+68XZS8d4/uQ5wXbdqWGgR/CiVZgun83qRatpW6UiT/YcoVb/n+RFqitXbuD48Z1oaKgD0LatFebmjTlwwL3A1D4V5MyOHWupW9cKff2a6f5+8sLr12/Q0spdiwsFhYdIJCIsLLJQ1k5bZ6uj9jUb4NCd43RrlHlT6+JGTU2VAQN60r9/Dzw9fVi0aA3Xr99m586D7Nx5ECsrWU1cREQUHh5nuHjRJ11dhkAgwNS0Op07d6BdOxvMzOojkUi4deseFy96c/LkeR48eCLvI7dq1UaUlEQ0aFAXR0c72ra1on792pmmyz96JyQhOf22iJAPeOxcxtXzB5FKJKipa9GhxyjaOg9FRTXr+mwNLV0c+oylrfNQLp34h/OHNxL8+C7rZw3FpGodOvYcjVlL+wwS3N+LWCIgKl5AlOx+HkKBFKFQpnEpkYJYAkpCUFEGdWUpmqpSNFVBQ/WrY1dKQ6pw6hQo+E5SZf1VVfOf9p1XYmJistzXsWNbdHV1CA5+TbNm7VmzZmGuggTfQ1R0fK7HFpvH4OWxDdv2HeS9Z74Xc3MzAgIusWvXQaZPX8CePYcxMNCnWbOGNG/elDdv3pOUlMz79x/x8rrCtm17AQGqqiqIxWLU1dXo2dOZUaMGZ/sFce9eEGZmMnnw2Ng43NwWc+zYDkaPnsrZs17ywsW0RL98jXppfS67TiEs8CEGjephueB3KKEOW0xMDLGxcXTtmrt6vIJk5MjBTJw4M12vjGvXZMXp39bTZUf37k7MmLEwy4iqto42ZSuWJyjoMSePnUJfVxupQIBQWZmm9rYYbt3D9O376KCsxPPS+tjb2xIVFU1cXHyGVFozs3pyMRoF2ZOQnIjj+j4kpiQhlqTQuX5HpnYYy8uw1wzdOY7w+Egalq/LX72WoKKU9Yd4uXJGXL9+BnPzDlSu3ITg4Ft5tuXt2w8ltt/KfwklJREREblP+cstyeJkBu4YzU9mnXGq30G+PUWcwvHAs3iOzbp1TEkgrcpv2jo3b+9reHtfSzdWV1cHW1srOnVqj41NC/T0SqXbLxKJaN68Cc2bN2HatHHExMTi63uDc+cucfasF69evZErV86ZsxwNDXUsLBrTqVN7WrduQdWqlYhPEhD45qvQSHxsFOcObeD8kY0kJyYgFCnR2qk/Dn3Goq1rkOvzVNPQosNPI2njNAjv07s5d/Av3jwPYtOCURhVqE7Hnq40bd0Zkahwvi8lUgGSb1IkUySQkghxiQJCYwBkDppQIHPoGlcWU91IUQenQMH3UFSiI6k0adIAM7OsFWr19Epx7dpphg4dx5Ur1xk6dBxHj55i9eoFBd565W7gCxYu3czl81n3Kv6WYrlH9PJJAJFhH1m8YHKBr923b3eCg29x/foZevXqwosXr1m+/C9OnbqAVCrF2LgsPXp0QVdXh549u/Dbb2OoW7cWpUsbMGfOMipUaMT06fPlNVdpcXc/jaenD926ye7MLl68Bmdne2rWrMayZX8wffr8TPNjJSliQvzvU3tIH7pedkdZQx3/FX8X+Lmn5XtU0k6cuICqqkqWqaWFSd++3QABf/+9Xb7t5cvXeV4nNaXVzKyeXB3oW7o6O3DJeQCaS9dRw7Ed4VqaSFNSCLsXxMGDW3C1skArRcz06fNZuHBVlseSSqVFUjD/I6CqpMKx4TvwmeDB5fHuXHh0mRsv7/DHiSWMtB7MrSnn0VXX4Z/rmf/O0lKjRlUuXDhEZGSUvFdaXvj06TP6+qVyHqigUNHQUOfBg6cFuqZUKmXM/mnUNKyGa+v0olZeT3ypYViV8qVKVrpLdnxb52ZkZEijRvVwc/sVH5/jvHhxk82bV9C1q0MGZy0ztLQ0ad/ehiVL3PD39+TxYz82bfqTn35ywsBAj7i4eDw9rzBxohtNm7ajenVznLsN58+p/Zk9sh0TezRgwk/1ObV3NcmJCTRq0ZGZ68/Rc+TsPDlraVFRU8fWeShztnjTy3Uu+mXK8+H1U7YtHc+sYW3xOb2HlOSM38tFgwCxRECyWIBAAIa6CmdNgYLvpSgbZwOcP38oxxv/ZcuWwcNjJ4sWzURJSQkPjzM0aWKbThH+e/C6Eoijyy84OfZCSdOYPzZ65XpusThsR7bMp2KV6lQwKTjVqm+pUaMqc+dOw8/vFC9f3iYw8DLq6mrs27eR1asXcOHCYby8fKlUqQJt2rSiTx8X3r69x/DhA9m+fT/lyzfkxIlzrFu3VS7rv3+/O8eO7aB0aQMePnzCiRPnmDhR1ki3fv06tG3bipUrN2SwRbOcEZrljDBsKmtfUKVzR0L97xfaucNXlbRrv57h7OgDbPLdxcOPT9jSbyXeEzzwnuBB5/odcKrfPsPcs2c9qVChfKHalxVCoZARIwYyY8ZCAgMfAmBraw1AcnJydlPTcfXqTQB27lyfQeI9FXsHO9apqnK9fWuiAh+iHRdPlRkT8Zs2H3e77pSvWglDozJs3rwCd/cz6Ohoo6GhTnDwq3Tr+PsHUatW9fye8n8KgUCAlqosvTRZnEKyJAWBQMDlp350qd8RgN5NXDh5/3yu1mvcuAFHjmwjMPAhPXv+nCdbQkLCMTQs+psSCtLTqVN7DhzIvN4gv/gF32Lf7aNcfuonv0F19oEXAIfvltx0yJxIrXN78OAKnp5HGDduGHXr1vruG0ZlyhjQrVsnNmxYzpMn17h9+zzLl8/Gzs4aVVVVwsIiuHHlIg/uePP+5WPiYiIRKSlTo54Fk5YcZPjvf1PWpGDaYyirqNHasT+zNnnRf9xiyhhX4vP7l+xa9Rsz/9caL49tJCUWrKponuwTgfa/v22gAgXFTqrDVpR92HKDQCBg2LD++PqeoGbNaoSGhtOpU1+mTZuXaTAnJyQSKUdOXsW63SCGDBpFuRrNmLPVh079xqNTKvfXIEX+LiUnJfI4wI+Va5YX9aGzFCRwcLCTb585cyKDB/dmyJAx3L//mLJly3DixO50qVMSiYTw8Ejs7KyZMWMhrq6DqVKlUpYNsDXKlkGzvDERT55TqkZV3lzyJUJNlT///JsxY4YWyrka6RhipCNTeUyrkmZaVqa8mKqS5j78nwxz794NoHHjhhm2FxWzZ0/h9u17dOzYi6Agb/lF9fz5K3Fzm5SrNSZPlgmbZCbxnoq6uhp//PEr1atXQXz6ImX3HkGrbi2qb1nBp08hGISGEfksmICAB3Kxkl9++R9Tpsxh27bVqKur4eV1BT+/m/z5Z8GI5/wXEEvE2Kxw5kXoK4a26EsVg4roqmuj9CXlqVwpI96lUfTLCRublmzduorBg39h3LjfWbFibq7mRUZGFajUuYL8MWPGRLZv38fVqzextGxaIGtaVmmaZZ3tul6LC+QYPyoCgYAqVSohRoVTngEoq2rSyqE/xpVqoqtnSCmDsugalEVTW6/A68vSoqSsQov2PbGw7caty8c5vX8t718+Zt96N07tXYNt1/9h7dAPNY2ibM0gpYKBBEVChQIF309iosz5UVIqmghbXqlRoyo+Ph7Mnfsnq1dvYv36bZw548WuXeswNa2R4/zkFDH/7D3PmjUbiI+LpX33kQyb0QUl5fzV7BW5w3Zq72pUVNXo37twC/nyilQqZe3aLcyYsVC+zd/fkw4delK9ugXa2pqIRCIkEglhYREIBALKlJGlfmzevAsdHW1atjRn+PABtG7dIt3aoaFhJHRsw07HPsRHx/AuMYkDQI1TF5HMXoqOSMSZnj9jUL829oe28vlzCJcuXeXGjTtERUVjb2+Hg4NtvkVK8qqS9u7dRyZObJWvYxUUR49up0EDG9q0cebGjXO0a9eaFSv+5vffx2fZOy6V8PAIHj58Ig+zp0q8Ozr2wcDgSw+42DgSI6Po1q0TKfEJnPptLtHqaiSHR5BsoI/b9PmY3b5HYNkypEREypUthw0bQEREFC1bOiISiTA0LM2uXX8VafPzfzsioQjvCR5ExkfRb/soHn18lmFMXiMGzs72hIb+waRJf2BoWJpp08blOCcmJrbYIskKvqKvX4p69UyZNWsJp0/vK25z/vN8Do3Cbd5G3A/upVXH3sza5IWGlm6x2SMSKWHexpmmrTtzz+8sp/au4dXTAI5sWcCZ/eto6zwUG6dBaGoXvo1KQqhgoEiHVKCgIEjNospKlb0koKyszKxZk3FwsKN//1E8fx6MlZUTs2dPYfjwgZnetIqLT2T9Fg82/bURdU1t2v80mgbN2333Da4id9h8Tu2mo2PWzlpWogT263oTkyBTdwmJDaNxhQbsGpQxzS2vPHsWjIvLYF69egPIUkOOHt1BnTo1AQgIuMS2bXuJjIwmPl6WhtGxYxsaN24gf/PDwiL4++/tHD16EheXwSgpiahY0YTQ0HCioqIRi8WoqKigr1+KmuZm9O/fg2VflGfc3Baz6O8dqMYnoHwngEiDWkgkElRVVTAw0ENZWZlDh46TnJyCvr4e9erVwtbWmp49nSlbtkyO55cflTRVVRU+fMh9hKMwUFJS4tKlozRoYIOJSUN5ymHp0qaEhDzM0mmLjIyiatVmAHz8GCTf/m1ENTTwISed+iERS0AioUpXezZPHsO1GQu5NnUufSVSas+YgNvIwfI1pFIpN27cpVw5I3x9Typk/L8TXXUdWlW14Oaru0TGR5MiTkFJpMS7iA8Y62TeAzA7hg7ty+fPoSxatJoyZUrz88/9sh0fH59A5crf3wNSwfczZcovDBjgSkJCAmpqipsfxUFcfCIL/9zNtg1/08DClulrT6NXuuTU+QmFQhq16EhDyw4E3brEqb2reRZ0k+M7l3P+0AZadxpA265D85RilFekQGntwu0Vp0DBfwGxWMy1azKxsLS9eUsqFhaNuXXrPOPG/c7hwyeYNm0+x46dZuvWVfJMnfCIGJav3c+ubVspV6kWvUfPp0b95gWmcSDIS6NKgUAgXX/yZc4Ds+Bp4HWWTenBw4d+lDXM3KOWSqXEJsWhpapJsjgZ+7W9WNDld5pVMpOPGbDdFYe6dvRq2jVfdkgkEpYsWZtOSGLatLFMnDjquz3glJQU9u07yoUL3tSqVR1Ly6Y0b94EFZWsQ6AJCQksXLgKDQ0NWrUyp2nTRhnGP3z4hP373bl06QqPHz8nJiYWNTU1qlatRIsWzfjpp840bdownf3J4mR6bRlG25pW6QrvU8Qp1JnbCs+xRzItvLeycsLExJg9ezLW4xU1UVHR7N59iJMnz+PvHySXr16/fgm9ejmnG7tgwUoWL14DwPv3gQXmUHl6+uDiMjjTfSNGDGT+/OkK0ZFcEhITirJIGV11HeKTE3DZOJixNj+z99YRnOp3oFujTow/NIO6xqb8r0XWDdKzY8KEmWzduodNm/6UCwRlhr5+Ta5cOU7t2jXzezoKCpDy5Rswbtxwfv3VtbhN+U8hFktYv+U4K5Ytp3zl2nQZNIVylUr+/4RUKuVJ4DVO7VnNw7s+ACirqtGqYx/adRtWKM6mmrIU+4bJqJbMDC4FCv41yPrzOmNgoMfTpwUj6FFUuLufZuTIKcTFxaGhoc7CxbO44f+KI/t3U7tRK9p1H06FavVyvd5Ih0pIpdIcLyLz7LA1t+vOTS93VrvnXcZ8yUQXBOJ4bl7LXYF5XFI89ut6scxlFk0rygQ7ohNiqD+/NfemeaWLGOUFPT1Z7mnlyhU4dGhrtg2vSypRUdEcPnySSZNmUqZMaT5+/AzI7kLa2FiiqqbKRbEPmiINyjwrzYwZE3FwsGXhwlVsOPUPiaaJGN00pE6dmkyfPh5T0xr06zeKly9fExz8mtjYOOrWrQXA0qWzsLBoXGjnklVU9fLTq8w4vpCklGQamdTjZ9P+2LXthoGBPiEhoZmuZWtrxZ49fxeYTGz79j24ceMOAN7eHtSrJ2smHh4ewbhxv+PuLusN9+aNP5qaip5eORH47iGj9k1GLJEgkUro2tCeye3GEBz6iqG7xhMeF0GD8nX4u/dSVJXy73D36TOCU6cucOjQFtq2tcqwPykpibJl6/LhQ6C8ebaC4mXIkLFcv36HwMDLxW3KfwKJRMohDx/mzlmCkrIazkOmUaOeeXGblS9ePLzDqX1rCLgmEytSUlKhebvutO8+kjLGFQvsOAKkqKmAbd1ktBSBYAUK8s2KFRuYNWsJLi6ObN68orjNyTMfPnxiyJCxXL16E4FASKuOvWjXfQRljPPuTxSawwbQ23Ue1o7Zpxt9S2J8LOO712Xztr/p2rlNtmO/FSWY5fhV/n/vzSOcCrrA9gFr8nT8tOjp1eDMmf2Ym5sRFPSYzp37ERoanu8GvMWJiUlD3rzxx9PzCqNGTcbSshn37z/kafRzJI5ShBFCVJSVSUxM4s++c3h//SNnEjzp3+Enhlj24fDhE0ydOpcrV45TurSsJs/FZRBXr97k/fvAIjmHzKKq8zpPZ8jOsRwbvoPqZaow/8wKtq7eQ6UEE86fP0R0dAynTl3g+PGzaGho0LlzB+zsrLONZOaVzp374+3tx759GzPtrweyXnwmJrLawM+fH6CkpCT/nQCcPevF1KlzOXp0B7t2HURTU4MxY/4nn9+ggQ2enrKegWnnpbJw4SpWrdqIv7+XvGYys3EKMmJj44y//33Onz9IkybpRXQePnxCixaOhIVl3fBeQdHy4sVLGje2w9/fi4oVFbWFhckl3/vMmLmETx/e02XQZBq16PhDZAm8eR7E6X1rue1zAqlUilAowrxtVzr2cC0wFUuQoiyCtnVT0NNUpEcqUJAf2rf/iRs37rJhwzJ++qlzcZuTL6RSKadOezFo0BgaWnZg6JTV+Vontw5bnmvYZqw/l690CY+dy1HX0MrRWYOMogRBHx5Tx0h2zIN3jzPA/KccVsiZDh16pPs5t8pyJRFf3xuMH/87x47tkDeIXrhwFcnJyagZquHp6YOf3y3GHf4doVCInl4p7oQGcCHOG2dne86e9eLgQQ9GjBgEQGDgoyLtT5WZ1LtIKERVSYXqZaoAkPJSTIhWGF5/HwVAW1uLHj260KNHl0Kx6fnzl3h7+7F9++osnTUATU0N3rzxx8SkIUOHjmP79q83Ei5d8mXKlNkcPrxVrjKZH/T19VizZjOzZhV838IfGS+vo1SrZo6dXXeuXTudrnn606cviqxZp4LcUaVKJYyNy7J48WrWrFmY8wQFeeZTSCTDXGdz96YfDr1/oWWHXohKqEJbfjCpWof/TV3Lh9fjOb1/HTc8j+J3/iDXLh6mqbUT9r1GY1zxe9M9BSSL4XygEq1qpmCsp3DaFCjIC0lJSdy9KwsIWFtbFrM1+UcgEOBg34bNW9czoN9QGll2oIl14bWMyXPBVn5z26+eO0DnrnmrOUsVJbjwUJYiExYbzu3X92hfO2enLzfUrWtKQMBlwsOfMHBgzwJZs6hJTEyib9+R7Ny5Pt0FKUCpUrr8+qsrs2dPoWzZMrx7dw8HBzuMjMpw6ZIvPXv+TOnSppw4cY41a7awadNOwsIiCAkJpXz5oi02F0vEWC13ouas5tjUaEmTCg1JFqdw53UAEomENcc3oVtep8jsatJE1uqhc+eOOY7V1NTA1XUI7u5nSI1Y+/reYOzY6ezbt5EqVb4v5bZfv+4cOXKS8PCI71rnv8izZ7LceAuLjrx9+16+PTj4NerqilTIkkb9+rUJCHhQ3Gb8kDx98R7b9n0RqJbij41eWDv2/6GctbQYVajOoInL+WOjFy079EIgEHLD6xhzRrZn4/yRvHkelPMiOSCWCPB5rMSLT8XSzlaBgn8tN2/6k5ycgomJca7E80o6Tg5WdO/dh61LxxEZ9qnQjlMknzRBty8THxvF/DnjcxwbEhNKZHwUAPHJCXg99aWGoSyV4ei9U3So3QY15YK50PLx8cDEpOSoYOUHZWUlzM3N2LnzQIZ969dvw8rKiRkzFrF58wrU1dWpW7cWPXs6c+/eJUJCHnLu3AHq169DfHw8bm6LqVatGVKplFKlilbGOTWqev93b26/vseDj0/Y3HcF0zzm02CGDeJECRXK5z9KlR+mTv0l12PnzPkNgMDAB9k60am/k9THhw85/3NramrQr183/vpre95OQAGAPO2xXj1rwsLCAXj9+i1aWkXZv0lBbqhb15R37z4Utxk/HLf8n9KxY2/M27jQY8Rs1NQ1i9ukdLx7+ZgLRzcV+LpljCvSb+wiZm+6hLVjP0QiZW77nGTeaHv+mv0zL58EfNf6YomAmy9EPHyncNoUKMgtFy96A2BnZ13MlhQcG9f+QVnj8iyd5EJeSs3yQpF8yrhvX0Ktug3QK5XzBdKHqM84/dWPlss60XalC21qtKBjnbYAHL57Iksp+rzQqlXJlxDNLUKhkK1bV3H7dgDLlqVvczBy5CC8vT04dWoPLVo0y3R+kyYNqVixPJMnj+bt23vcv++NSCTk6dPgIrA+I2mjquaVzTg1ag+ApMpIAAAgAElEQVSxu2NpW7uVPD2yqHB0bJ/rsan1H8ePn8vWiU79naQ+jIxyJ18/fPhA9uw5IlfJVJB7BAIBnz/LojYjRvwKwPv3H9HV1SlOsxRkgrm5GZGRUcVtxg/FWc87uHTtj1P/ibTrPqJE1aolJydyfOcy5o9xIPD6hUI7jkFZE3q7zmPOFm/adBmCsooq/n5nWTi2E2vdBvH84e18ry2WCHgdqnDYFCjILadPXwSgXTub4jWkgDl/dg8RIR/YtXJKoaxf6J8ysTGRvHoawB9uE3M1vl45Uy6Pd+fKxONcnXSSye3GyPcdH7kLO9Pv98i/bWz9b0dDQ519+zZw8KA7//yT0UnIDnf303h6+sjlz8uVM6J7984EB78iKSmpMMzNQFZR1c8xoezYsY+o2BjiayYw2LJ3kdiTSnJycp7nKCsrZ+tE5xddXR26d3di8+bdBbLef40BA0YDsGXLSgA+fQqhdGm9YrMnJSGRY7bdONzKiYOW9txasDLdft/Js9lm0jCL2f8eJGIxR6w7c6bnzwBcGjWZvQ3bcNjKicNWToQGpE9Na9GiGcnJKcTFxRWHuT8cOw9cZOjgEQwYvwwL227FbU46ngXdZMEYBz69CqJG7YY0tnIq9GOWKm1Ej+FuzNnig123YaioqhN4w5MlE7qyclpfngRcy8eqUsroKOrYFCjIDbGxcTx48ASBQEDLlv9OVdqsMDYqjb1TZ66eP1go6xe6w3Zs2yK0tEvRwa7kFBa2bl1ybCko9PRKceDAFpYuXcfJk+ezHZualtekiR3797tz7NgOuUIkQJ8+LgiFQn79dVZhmw1kHVVd5bWRCb5uaPRTx7G+HdbVi/b3duzY6VyPlUgkADg5yaJy3+NEZ4Wr62C2bdtLSkpKgayXGT4+17hz5/vShEoajx8/49SpCyxaNAMtLVkqWHh4BIaGxZc7L1JVweHYDlx8PHC57M6bC5f59KV9xOc7AST9IFGm+39tp9Q3acEWsyfj4u2Bi7cHBvXrpNuno6ONUCjk0aNnRWlmoZNXx7UgWLb2INOn/I7rH1up29SmwNfPL/Fx0exbP4ON80cycdJYDu5eTvCzRzRq0aHIbNDVN6Tb0OnM2+ZLx56uqKlr8fCuD8un9GDpr925f9Mr12lNSiIw0JIUssUKFPz7iY6OoUeP/yGRSKhZs9oPl+Wy58BZjh89jPPg3wpl/TyrROaVG55H6Tswby0AChszs/oAhIaGYWCQeQPvfwtp5d1NTIzx9/cEwMHBLtPxv/32C7/9ln1tlrW1JQsX/s5vv81lzpzf0NHJX7+73JIaVf2WFqJmrDuwFf8nXkWqWgmgpaXJihV/4+Y2KVfjR42ShcBr1aou35bqRDs69sHAIOdoTlxcPHXrtkqz5pB0+w0M9OnUqR3r1m3NlU35wcmpH46O7di5c12hHaOosbCQCccMGzZAvi0yMpry5Y2KyyQEAgHKX5xHSXIKkuQUEAiQiMVcn7mINhuXE3ziXLHZVxDEvn3P67NeNJo4koC1W3I9T0VFhcePn8s/p38EUh3XpOgY+TaL2ZOp0sW+wI8lkUiZ4vYXRw7sZ8Ki/QUoZ//9BFy7wJ51v9O0eUv8rp7AyLAUm3eepqppI7R1DXJeoIDR0tWny8DJ2LkMw/PYVi66b+HZ/RusmTmQCtXq0rGnK41a2CMUZn1vWypFIe+vQEEOvH//ESenfjx7Foympgbr1y8ubpMKlMtX7uA6YgytOw2kXbdhhXKMQnXYbvucJDExntkzRxfmYfKMkpLstL29r+HsXPBfmD8C//tfP5Yv/4s2bZy5du2M/D0rSu7cCUBfv1SRO2sA16+foU6dVmzcuJOff87+hsPnz6Hs23eUwYNlKZt5caLv3fOSv85NT7B586Yxb9603JxCnvHyugLA2rU/jqT61Kmydh2PH/ul2x4XF5/r+sHCQiIWc9TGmagXr6gztC+GTRsR+Nc2KtrbolHMthUEV6fNw3zWZJJiYtNtvzn3T24vXkv51pY0c5uE6JvG5erqqrx5864oTS1U8uu45ofkFDFDR83jzq2b/LrsMLr6ZQv1eLklKuL/7J11WFTpF8c/M3QISokBBiaKoiggAnagYrt2rLn2b3Xt7nXtXl1bV9dExE5ERcVE7MIGpJGe+v0xiiIdM4PK53nmAe9941ycuXPP+57zPWHsXz+TV0/vsmT5n3Ro9SVa4qDHcWo5t1ahdaBXpChtev1O046D8Dm2k7MeG3nz/D7/zB+GuYUVzbsMw75huwxVNfUKBWcLKSRDHj58Sps2PYmIiMTc3IyjR3dRvnze1LMLEo+evKJT+57Y2Deh61DFRaYpNCTy6L/LqVm7Lro62oqcBoCk6BjO9B3BPvsW7HNoQYjfbW7MW8aB+m046OLO8Y79iAsKSdXnwgVfhdsF8DYqCPe/e+GwqAX1Frvx98WtAPTfORqXpe64LHWnxvyGuCxVfAx/Tjh/3oOQkDCaNu2cEvKnTHR0dBCLJUqfF6BEieL06NGR8eNnZRrS+OFDGJUqOQKwZIlyQkgVRYcO/QB+mDCF4OAP/P33NkaMGJBSdPwzycnJmJur9mFWqKZGx4tedL9/kdBbdwm67EfgoRNUG9xbpXblB69PnEPHxBgT2+qpjted/ged/U7S/twBkiKj8V+xIU1fgUCIRKKaz70i+Oy48s0uzY258u+nq5PnIUlKyvM8cfFJtP/ldx4/fsqYhXsLhLMmk8m4cmY/c4e1oFyZEly/6pXKWYuOiefW1YvYOmVdPkUZaOvq07zzb8zZfIluw+ZgZFaa4DfP2b50LNMHNMDbaxvJSYmp+hjqyChAOi6FFFKg8PG5QuPGHYiIiKRatcpcuuT1QzlroaFRNG7UnlLlqjB0ev4r3X6NwrZNoiNDef/qCf/8rZjku2+5OnEupZu40nTbaiTJyYgTEilWpQJ1pshLCdxbv43bf63GedmclD7KctjUhWrMbTOJmqWr8TExlkYrOtCwUn029/oiNDDVawEG2gVLZrx4cVMuXz5CnTrN2bBhe0phbWWhp6ersHytRFESrdf1IEmcjEQqpq1NSya1GI1MJmPuiWV43j2OWlkhtXrZMGrUZEaNmszGjctwc2uCtrYWt27dZdiwCTx9+gKA0NCHBUp9Lad8rT45duwMmjZ1xcXFMSXn63ukatX6wJeSC18jFospWVJ1IZFfo2VoQAlnB4IuXSMm8BV7a8t3YsXxCeyt3YRfbilOPU9RhFy7xasTZ3lz+gKSpCSSP8ZyfvBYGm1YAoCalhYVe3YiYFXaL7jv+GOUhq8d1/eXvgha1J3+BzrFTZEmJ3Ppf9PwX7GB2uNHZjJS5kRGx+HeYSja+kaMmLMdjXwqfZMXwoJfs2v1ZOJjwtm5ayOu9aqlabP30AWsqtZC30B1AkDpoamlTYM2fXBu2Z3rFw5zcu8agt88Z8+66RzbvZImHQbi2roXOrr6mBQpDIcspJBvCQ+PYNmy9axduwWZTEaTJq7s2LEGHSVs4CiLxKRkHOq1Rle/KH8sOaTw+RTmsB3cNI+ixiY4OdZQ1BQpJMd8JMj3Oq5rFwKgpqmJmqZmqjbiuIRUTwLm5mYEBr5WuG0A5gZmmBvIQ5yKaOtTycyKoOgQqhSvCMhXIT38j3F4yA6l2JMTypSxwMTEiHfvlF8bSU9PR2E7e1rqmngO2Y6+lh4iiQi3Nd1oWsWVJx+e8y4qCL9xJxEKhYTGhhM+PIJ69VoxcGDaOoLLls2hX79uCrFRmQwf/kWGdvPmXWze/EWNMjLyqSpMyhNrPoWe3biRfh6YRCJVaQ5bQlg4Qg0NtAwNECck8s7bl5qjB9Hz8ZWUNltL1/wunTWAujP+oO6n/M/3l64RsGojjTYsIT74A7rmZshkMl4dPU2xqpXS9FVTU/thVCLz4rhml7CIj7RuNwjTUhXoMWIBQjW1/DI/V0ilUi4c2cbRXSvoM2AQMyb0Q0sr/VBCD49j1HbJe6keRaGmroFjk07YN+qA/5WTHN+zmjfP7nFoy5+c3LeWHkNnUWdAW1WbWUghBYYPH8JYsmQtW7b8l6K03aJFI/79dx1qKr435ScSiRRHp/YkJSUxb+t5paQNKWQGmUzG7UvHGTpqmCKGT8PHV2/QMTHCZ/gEIu49wti2OvUWTEVDT5frc5by7D8PNA2K0Mrri0PUoIETe/Yo3iP+ltcRb7n7/gF2ll8ku30Dr2NWxAQr07JKtyc7qKurk5CQmHXDfEZPT09hoVECgQB9LfnukUgiRiQVIxAI2HxlN//0WJqSZG6qb4xpFeMUpyU6+iNRUVGUKWOhELtUxZEjp3F3b8727WtSjsXHJyittEN+M3XqAtzdm2NlVTbNucRE+Xu5eHHVqUTGB4fiM2w8UokUpFLKdXDDsmVjldmjLM4PHktiWATIZBjZVMV56ew0bYoU0SckJFQF1uU/eXFcs8OHsGjc3PtjUaEmv/w2O1NxDGUQGvSancv/AJmYI0f3YFs949qZkdFx3Pa7TKehC5VoYe4QCoXUqu+GrVNLHt7y4cSeNTy9d42dq6di69SSR+90KGMqwcJYVhgiWchPy8aNO5k0aV5KZJSTU13evHmHQMAP5awBtGjTn/dv3zBrozfausqJjlOIw3b19H4kEhFTxg1UxPBpkIolhPnfp97CaZjVseXKxDn4L19PnSm/U3faGOpOG8OdpX/z4J+d2E0aDUDDhsp32GKT4uizfQQL2k7BQPuL8uKB20fypSC4IpBKpSQkJCg9p2TTpl3Mnr0YfX3FfRAkUgkNl7cnMPw1A5x6UsfSlsDw1xz0P8rRe6cx1jNiYbtpqRxpQ8MiGBoqVjVT2XwuA7F2bWrVJl1dHXR1dVRhUp55/twPI6P0w6yCPuWyqkJI5zPG1avQwSetMurX9PtKvOZ7pqSzAyWdHQBofTjrKAJDwyKEhoYr2iyVkh3HNSveB0fQyr0/FWwc6TRwmkpDsqVSKReP7cRr51J+Hfwb0yf0RUM98we0vR7eVKhmh14R5YtK5RaBQIC1XQOs7Rqw8Pf2vHx8m1u+p7Bv1J6H79R49B401MDSWErVUhJ0NLMes5BCfhRWrdqEWCzGyakuc+dOolYtGxYsWMHff29TtWn5St8Bk7jtd5WJK7woZlJCafMqZDnuxN7V2NdzRlMz/TCI/EavpDl6Jc0xq2MLQLm2LQn3v5+qjVVnd14ePpnyb1dXeeKzssQ0RBIRfbePoEuttrjbfKk3I5aIOXLvFB1qtlKKHTmlV69hxMbGMWbMUKXN+eDBE/74Ywbu7s25d++CwuZRE6pxcYwX96de5NabuzwIfkKyOBltdS3Oj/agr8MvjNg3SWHzFxR69pT/337P+WrfkpGzBvDuXdAPt9r3I2FkVIyIiChVm5HvlHR2oMWefwC549rJ9yidrhyj0YYlKSUessubt2G0aNWHKrVcVe6shYe8YdXUntw4f4DDXruZM6V/ls4agIfHcSpUc8h2vbOChmOTjgBcO3cQAKlMgEQqIFEk4FmIkNCPhdtshfxcJCQkALBixbyUsixDhvQlJuYjz58HqtK0fGPyjJV4eRxg6MxNWFilzctVJPnusIUFv+HD+5f8OX9C1o3zCd3ipuiVKkHUJwGIdz5XKFq5AtHPX6a0eX3iLIaVvtSj+Sw48OBB1lLqeUUmkzFy72QqmVkxvEHq2lreT32paFaeUkWV56Vnl5kz/+LkyfMcOfIvFhYllTbvyZPnMTAowurVf6KtrfgEVUMdA5zLO3D2kQ8lDc1p+8mhblO9OfeDHil8/pwgTkzCs0knDjq7s7+eGzcXyIVr3vtcwaNBOw7Ua8WFoeORZlOsJSoqGoBDh36sFbDMCA4ORUNDdbtryqJ06S9h16dOeWNn15Q3b97z558rsbZ2xsXFHXv7FowZMz1l4WrYsPF4eh4H4MSJc7i6tsXZ2R1Hx5Zs2bJbKXabmZkQnUXh8Oxcm4uLOzNnLkppFxYWjqlp1TTXUaNGQ5ycWlO/fhtat+7B69fv8veC8pnA1yG0aN0L2/putOs3QWXOmkwm4+Kxnfz5v7Y0auTM5Qu7qV3DKuuOn6hYqSI+R3cwqbc9W/4aycXju/jwLrBAOXCJCXE8unOZY7tXsmZGX6b0c+JJgLxEiJ2rO2rqGjy8fZHoiJA0fc0NC851FFKIMkhMlKvd6unpphwzMipK8eKmrFmjuPqxymL9pgOsW7WaHiMXUL1OI6XPn+9PLQc2zsXUvCQ1bSrm99CZ4vTXNLwHj0WSLMKgrAWua/7k4qjJRD8NBKEQfYuS6YadXLjgS/XqVRRq29WXN9lz6xDW5pVTpPunuY2ledWGHLxTMMMhHzx4wsqVG1m9+k/qfNq5VBY3b95RuCBEWGw4GmoaGOoYkCBKxPuZL6MbDqJV9ab4PLtCL/suXH7hRwWTjHMwVIGaliatPLejoa+HVCTCy60bpRu7cGHoeFp5bsewQjluzl/O090eVO7dJcvx+veXhwg3aOCkaNMLDCEhoWhp/TyxShcu+DJhwmwOHtySsvAydGg/Ro4ciFQqpVWrHly+7IeLi2NKH5FIxO+/T+PMmf2UKlWCpKQkpTkyxYub8fFjXNYNyfzavuXQoRPUqWPLgQNHUmomfsbLawfGxkYsWLCCJUvWsmLFvLxfiAJ4+iKINu59cGrWheN71tC6xycV5Ovn2Lt+Fv+bvwvfU3u5dHI3RQyNSUqMp1TZyrTt8wclLOV5cksndKXTgCmUqfRFEOzJ3SucPrCB4bO+PFRtWzoWG/vG1E6nRlrEh3fsXDmBpPhoPA7tpI5tzr/vVy0azYqFo3j49A0nzvhx6dI1ju9egQyobONIBRtHatVvhV4RwxyPnRtkMhnhIW948fBmyivkbSBlK1bDtnZtBvbvSkxMHKtXTGDK6hPoGxSjep1G+F89xdWzB2nR5UsUSlE9GZo//ppQIYWk4nPOu66ubqrjTZq4cPLkeVWYlG94HbvIpHGTadVtJM4tu2fdQQHk6y1FKpUS4HeWSVPTymgrGmMba9qf90h1rOlXAgoZ4e3ty/Dh/bNslxfqlatD5KL0lfbWdiuY1d67dh1E7do29OjRUelzP378nBo1rNM916XLAJ49C2TdukU4Otrleo7gmFCG7RmPRCpFKpPSoaYbLa0bU69cHQbtGsPai1vR19RlRZeC9eAmEAhSwqekIjFSkRiBmhA1LU0MK8idy1IN63Nn2fpsOWznz1+me/cOCrW5oBEaGqaUnduCgK/vdUaPnsLevRspVy5t7ZvkZBFJSUkULZq69l5sbBxisTgltFRLS4uKFcun6a8IbG2rs3LlP4jF4kzzDLO6tm85cOAIc+dOZNCgMbx/H5xuWYe6dWuxfv32PNmvKB48eUO7dn1o6N6PJh0GcXyP/Pvt0Z1L7Fk3g1HzdmJkVgqAJu0HYOvkxouHN5DJYPmkHkxde5IihsaZTZElMpkM31N7OLR1IT369mfO1AFo5mG3WigUUK2yJdUqWzJ2eGekUhn3H73mxJlreHtf4Oiu5fQYPh8bhyZ5sjs9RKIk3jy7x4uHNwl8eJNnD24iEEDVGnbY163N8IFtqW9fFV2d1CUSTp/x5si/S+k4YAoOTTrif/UUh7b8ybN7frT8ZRiVqtehrEnqVAuxRC5SraZaTZhCClEIUqmUR4+ekZwsV4XU00ud+z58+AB27TpIbGysQnUJFMXNO4/o12cw9o3a4957rMrsyPGdViIRo6aWfjdvr20IBAL+N6JXng1TBnXq1MTExEjVZhQ4FixYQXDwB7y9PbJurACCgkIYOLBnmuPz5y/n3LlL2NnVpFWr7nh4bM31zlD1klXw+T2t6IOhjgF7Byi2+GFekUokHGrYnpjA11gP6ImpXU2kIjGhtwMwrWVD4OETxL0LynKc/fu9AFi6dE4WLX8swsIivlsxlZyQlJRMz55D8fLaSaVKqUPV1q3byt69nrx5856mTV2xsUm9QFKsWFHc3JpQo0YDXF3r0aJFIzp3dleKCmGbNs1QUxPi4XGMLl3Sl0zPzrUBzJw5niZNXHj7NogPH0Kxs6tJ+/at8PA4lu5C3dmzPrRu3TT/LyqP3L3/kg4d+tKs8280dO+bcvzpPT92rpzIiFlbMS1RhojQ97x4eJPgN884vX89JS3LERcbS9nKtlw/70nj9rlfnPzwLpC962cQFx3Ovv07cKyTO2XLzBAKBdhYl8HGugzjRv3C4RPX+GPMZG5dOkLnwTPzvNsmk8l4dOcy5zw28CTAjxIW5alRqzadO7ag4bIJVLYqhVCYeYjp2hVTqV+/DbVd2lCzXgtadBnGucObuXf9HPeun6NCtbp47F8LyMVUJFIZQ8etIzzkLXu2zv4pwrEL+bGJj0/g1q27+Ppe5+zZi9y9+yBFfVlNTS3NQpu1dSX09PT4559/+f33IaowOde8eRtCq5ZdqFitLv3+WKZSW3L87bt79ZQMz531+Afnho1Q+06WkU6f3s+6dRnvcGUnT8LRsWXKgy/Ic0Bq1myEs7M7deo047ffxvH+/ZcaZjVqNMTNLfV2qouLO/XqFQzRkaCgEJYsWceMGX9gbKwaZzYhIRHNb+ronT9/icWL17J48UxOndpLjRrWLFiwIoMRfmyEamp0vOhF9/sXCb11l8iHT2m0aTlXJ8/Hs0knNPT1EGYj6X/QoDEAaGurvsiuMomMjP6hBFYyQkNDHXv7WuzcuS/NuaFD+3HxohdPn14lPj6BAweOpGmzcuV8Dh3ajp1dTVav3sSIEcqJnBAKhWhpaREREZlhm+xc28WLXjRp4gLAwYNHaN9efo/t2LF1mut1d+9NxYoOeHv70rmzez5eTd75EBZN+/a9ces+KpWzJhIl8/fsgfQatZBHdy6xZFwn5o9wIykunKZNXXn29BK+3rvo2bcnj+5c5u619GsSfubZ/evMG+GW8rp7Vd4+JjKU/9ZM4a+xHXCub8/Vi3sV4qylR9uWDly7chhTIz3mDm9OgF/u6hJKJGJuXPDiz9Ft2L9+Bp06tuLR4yvcuX6I7RumM7R/G6pWLJ2lswZQuoQxE6dOYcfycUglYtr/OoF5W31x6zYSgVDIs/vXefrw3qd5JfQdOI39W5Zx/tg+dnvdzpX9hRSiSoKDP+DpeZyxY2dQt25zLCxscXfvxYIFK/Dzu0ViYiLFihVFV1cHO7ua6Y5hb18r1bPy98D1Ww+oW7cZxsUtGDV/V9YdFEyOPavLJ/9L9/j7V0+I+PCORX8qPxxS0XzOk9i/f1OqPImLF73499+/GTNmWkqBQIDZs8dz6ZIX16+fokYNa9q27Z2qnlVsbCxv38p3QB4/fqbci8mCX34ZSNmyFowYMUBlNvTv34Nx42Zx9+4DwsMjaNeuN5069adbtw4puSf/+98Qbty4893WCcsPtAwNKOHswNuzPhS3r4X78d20O3sAc6e6GKRTf+xrPnwIA+Dkyb1KsLRgERUVjYHBj1WaIT2EQiFbtqzk1q0AlixZl24bDQ0NmjRxwdf3errnq1WrzLBhv+LhsRUvr1OKNDcVQqGQpKQvn+1atRpTrFhFihWryJw5SxEIBFle29ccOHCE3bsPUqNGQ3r0+I179x7x/CtRKi+vHdy9e4GqVSsWuIWgV28+oK2rnypvIjYmEoFAgEAoZM2MfoQE3mbM70N4+uQyXTo0wca6LJoa6giFAiaO7kafvt15/SyAf1dOQCZNv0RLhWp1mbL6eMqrWp2G3PQ5wuzfmmJsqIHftRP8OXNwhkWwFUUxQz22b5jO8pWL2Pv3DLYvHUN8bHS2+iYnJXLhyHZmDm7EpaNbGT9+JHdvHeV/QztSzDD3izZD+rWmRMlS7FwxgWtnD/Lm2T0q2jgi+yTe4+NzhQ0bdtC77+8c9diT0u/U2asERRaqRxZScJFKpdy//5jNm3fRq9cwKlZ0oGrV+vTrN4rNm3fx7JlcGKhsWQv69PmFjRuXERDgw4sX1zE1NaFq1fTzWQcM6Mnjx8+UpsyeV3b+d5yWzTpSrkptpq49pfIal5BLlUifozvTHDuwcR4lLcpSoXzpPBtVkPicJ7Fnzz/p5klYWZVFR0eHqKi0qmYCgYBhw37FzMyEM2d8Uo7LQ3KOAvIHiU6dCoboyNGjZ7h//zF79mxQqR2LFs3A2dmeZs26ULlyPZ4/f8XRo7tYu/ZLgdX27d3Q0NBg69Y9mYz045EQFk7SJwU9cUIi77x9KVqxPAmf6lZJkpK4u+Ifqv6aeVJsr17yBHl7+1qKNbgA8vFjbJqcrR8VXV0d9uzZwP79h9mxI+1ulEwmw8/vNuXKWaY6Hhsbx6VL11L+HRDwkNKllacUq6aW2mG7evU48+ZNBmDp0nXExydQqlQNgoND2LJlN9u3Z7zw8PTpC+LjE3jw4BJ373pz9643v/8+hIMHU++y6ehoM3/+FP777xCRkQWnrIC6uhpSiZSEuBiunNnPmul9mD7ABZlMyrRZ06lZoyrOdcrTvVNDdLTTF9P5GBXOuLG/oSZL4PWze4SFvM5wPolYxIUj27nje4LEmA+cOnOQTWsmU9JctekD7dwc8bvqhUkxXeYOa8G96+cybBv3MYpju1Yw9df6PL97gVWrFnH14m56dmmcLxFAQqGATevnYlnKiBcB5/E+tJ7/1kxOOb98+QYmTJjN8aPH0dDUplkneRjYozu+XH6qTlxSnk0opJB8IS4unosXr7Jw4SpatPiFUqVq4OzchrFjZ3D06GnCwiLQ1NSkdu0ajBs3HA+Prbx6dYvbt8+xYsU8OnVqQ+nScpXz+PiEDCOz3NwaIxCAp+cJZV5erpgwZRmjho2moXtfRs/fVSCcNchFDpuhcXF2r5mCa+sveWoxUWE8un2RBYvm56txqiazPInP+Pvfp3z5spiaZpzMXbNmNZ48eU6rVvLciHbtWjJs2KkGHRUAACAASURBVARGjhzIiRPn2LBhCXv2eCrkGrKLVCpl5MhJtGnTDCsr1SsjHjy4lW7dBtO8eUMGDkw/J9LU1JgnT54r2TLVEh8cis+w8UglUpBKKdfBDcuWjbk27U9enzoPUhlV+3en5Kc6gxlx/fqdDP+uPzqxsXEUK/b9FOvNjIiISN6/D8lU6bZYsaLs27eZ1q17YGwsFxH5nOclFouxtq7MgAGpc0ZlMhkrVvzD779PQ1tbC11d3VQLJorm2x02LS0thg37lWHDfgWgZEkbWrZsjIfHMQBGj57C6NFTqFKlIm5ujVONdeDAEVq3bpbqmLt7CwYO/B/jxo1Iddzc3IxOndqwcePONOdUQVBQCEv+WsaHoJdM7utEDbt69OrZgV86rMCmmhND+rXhl3bOtGrVHTMzE3qnIzR0+PAJzp+/xNy5Exk92ohadnf5d+UkRMmJODbpnKrtrUtH8dy2CPMSpXBxrU+fXu2xrmShpKvNms+7bZ7Hm/PH75O4VeMonQdNR1dfntsW8eEdZz3+4erZg9Rv1ByPQzuwq1lBIbaUKW3KhpVfyhfJZDKOHTvDkycviIyMJDw8kueBQQQEPKBsZVsEQiGBj+8QFxvHsTt66GnJ0NeSYaAD+toydLVk6GnJ0NWSF9/OCIkUEkWQkCwgIVn+My5JQGwiiCQCNNRkaKiDphpoqsvQUAN1NT79lH35XShDWzPzuQr58QgKCuHatVv4+FzBx+cKL168SlNKo1ixojg41KJxYxccHe2wtq6crdqliYmJmJml/ywsFAqxtq7Mtm3/0aFDwUgB+haJREr7zsO4fOE8vUb/hVPzX1RtUipy7LBNXO7Fmhn9Uh1bNbUXpuYlGNw/taJg6dI1efvWH5DngE2aNJdDh7ZjYVGSrVv/Y+1auYRwkSL6zJ07iXr16tCr1zBevXpDXFw8YWERlCkj37FbvHgWc+YsYc6ciSkF+V6/fkvXroO5cuVYji88O3ydJ/Hnn9NSnVu3bivbt+/l5cs37N+/KdNx0n4YDCla1IADB45QqZJVgRBAmD9/BXFxcfz996KsGysBoVDI3r2Zi3/o6ellmufyI2JcvQodfNKKpTjMmYjDnOyFI3+uQzV//uQsWv6YyFcBMy6s/T1x61YAXboMYNq0sYwZ81uqc5/vvQClS5fA318uq9yqVVMmThyV7nhr137J6d23T3XiO9ra2oSHR2R4/v37AAA2b16BTCbj6NHTTJmygEePnvLo0VOWLVuPQCBg9uwJ/O9/Q9LkaVavXoWrV+UrvXfveqc699df0/P3YnLBmjWbWb16E8HBHzA2NqJnn974376N38VTbFo7NVU4X2YOeXx8AlWrVsLTczsmJvIHKYtSpsRERbJj+Xh2r55K1dqulLCsyPMH1/kYGcL8BTPo5F6fYcPGq+Tas0M7N0dcnY4w6o/FzB3WAvfeY3nsf5l718/TusMv+Fw8glVZxZaG+RaBQEDr1s1o/U0VhNPetxnw6zCMi1sQFvQKv/OeuLTqSUyCgJgEeB8FagIZQiHIZHKHTCgEbQ3Q05KhpS4jPllAgkhAsgjEUrnapFAgby+VyYt2p48MoUCuUCkQwNetZDKQyOQOWxFtGcX05C9DXRkGOoVlCX4ExGIxDx8+wc/vNufOXeLatZuEh6d+ZhIIBJQta4Graz1cXevh4GCXsmOWU5KTkyle3CzD8126tC1wIeefiY2Np55zB0KC3vHH4v2Ur5p7FXJFkeOPZFHj4kxZfTzl3+c9t/Au8DG+VzPOb/i2Vs6JE+fYuvU/jh/fjbGxEf7+9+nZcyhnzx5g5861AFy6dI1VqzayZ88/ubis/OFzDkj79n1ZsmQdY8d+qbPyudaPl9dJhg4dz61bZzMUb7h79wGurqnVDDt2bM24cbNYs+ZPhV5DdoiJ+ciKFRuYOHFUmvoZBZkiRfSJjMxeLkMhX/DwOEaVKhXQ0FBuLkpBISEhEVNTE1WbkS80berKyJEDmTNnCRERkcydO0nVJuULFhYls53fKxAIaNOmOW3aNAcgOjqGZcvWs2LFBqZN+5Np0+T32Lp1bZkzZxIODrUVZnd+MXv2YlxcHDl2bFdKKH5sbBwWFrbY2LiyY8eaXDnkAEeO/AtAVEw8A36bxbnjB/G/chIAbbUkbK3loa9fO+8FkWKGeuz4Zwaex1uwcOFqGjRqwI4NUzE1Lljhzs0a1mLvvm10bN8NgN1rpiCVSWnQundKG4lMgOSr1EKJFOKSIC4pfUdMIoX0MxG/RYBUBmRSwztZDOGxAsJjQU0od/DEUlAXfuXI6cudOEMdGUpOYSwkB4SEhHLjxh2uXLmBj88VHj16lkpfAUBLS5Nq1arQpIkLTk51sbOrSZEi+SO1r6amxo0bt2nf3i3d8/37d2f69IX4+9+nZs1q+TJnfvD0+RsaNeqAUE2D2ZsuUtS4uKpNSpc8BWbGRIWxf+NcBv42hCqV0q+Dk14O2IoV/zB79oSUWNeaNavRvXsHNm5MmxunarLKAXF3b4GtbXV27z6Y5pxMJmP9+m2EhITStKlLqnOtWzdj1KiBKSpmqmTQoDEULWqQyiH9HjA0LEJMTNrcwUIyx8NjK76+me9KZ0ch1d6+BWPGTE9JIh42bDyenvLFnDZtenL7doDiLiIPyFcBTVVqQ6IoiSYrO+G81J16i91YcFK+6vgq4g1NV3bCbmFT+u8cTbI4a1Gd2bMnMGvWeNas2czgwaqrEfM1b6OCcP+7Fw6LWlBvsRt/X9wKQP+do3FZ6o7LUndqzG+Iy9L0FRkrV67AmzfvczW3oaEBM2eOIzLyS+1LZ2cHrl+/Q8uWXVm9OvOIiIKAUCika9f2qfKm9fX1iIx8iqNjHXr3Hs7QoXnbAStqoMuBXQsZ9fso7t2/zKZNy4iIiGLs2Jl5tF65tHNzxNd7JwtmDCpwztpnHOtU4tQZD3SLGCKTyfhvzVSO7FxGWPBrngZcw++8BxeP/cvH6HCV2imRChBJBMhk8p8RcUKef1DjdqAaFx+p43lTA8+bGnxMUKmZhQBJSUncuHGHtWu30LXrIKys7KlSxYlevYaxZs1mAgIeIhKJMDExRl1dnZYtG+Pj48m7d3c5e/YAkyf/j4YN6+ebswYwffpY1q3bRmDgq3TP6+rqUrp0Cdas2Zxvc+aVYycuUc+xBUZmpZm/9UqBddYgj4WzV03thWlxc/6aPybd8xnlgD169JSaNaunalurlk26Ts+3DB48NmUnSyQSIRAoPhkwvZCTrxk/fgSDBo2hb9+uAEyf/heLFq0lISGBOnVsOXx4RxqZ+iJF9Pnf/1Rbj+LOnXu8fPma06cvsHev6nYyc0vRooa8evVW1WZ8d2QnFv0z3+6Ow5fdZalUSqtWPbh82Q8XF0dFmZvviERiSpZU7U1ZS10TzyHb0dfSQyQR4bamG02ruLLWZwtDXX+lk20bfj8wjR1++xjglLYm4beMGjUII6OijBw5mZCQUDw9VVv8WV2oxtw2k6hZuhofE2NptKIDDSvVZ3OvL+EwU70WYKCd/sNC7do12LPnUL7Y4uRUFy8v+WKgRCJRagL526gghv43jg8fQxEKhPR16MpvLv0IePeAMQenkyhKQl1NncUdZmJn+WWRRF1dnejo9Bejjh/fzcaN/zJu3Ez++8+DDx8e5Gm3fNb0kQB07NiG6OiPTJgwB6lUWmAS7X8Uqlcpw+XLx2jcuBORYSEc3bWco7uWp2pzav/f/G/BLoyLF5y8QUi9A5iQLOPMPQ2a2YjQ11atXT8LMpmMN2/ec+PGHS5f9uPSpWs8f/4SiST1PqumpibW1pVwda2Ho6MdderYYmpqjKOjG5qaGmnqbeY3Q4b0ZceOfXTq1J9bt9IvweHm1iQl91jVLFq2jQVz5lGnQVv6j1+panOyJNcOW3ZCITPLAfsWmUyGQJC13O2GDUvS5LApisxCTr7G1rY616/L/w5ZhZF8my8BYGlZWmF5eBmxbt0WJk+ej0AA3bp1pGnTBkqdPz8wNi5GXFy8qs34Yfm8O75378Z0FVKTk0UkJSV9d4qLEomEUqVyF6OfXwgEAvS15HlIIokYkVSMQCDA59lV/umxFIDudh1ZeHplthw2gF69ulCsWFF69RqGg0MLrl07qTD7s8LcwAxzA3kuQxFtfSqZWREUHUKV4nLJZ5lMhof/MQ4P2ZFu/wYNnEhISCQqKibP76+va+7lZLEiP8jIcZ1x9C/GNxtJsyoNOPXQmxlH/+LI0H9T+mloqBMT8zHDcQcO7En9+vY4ObXCzMya27fPUrasZYbts0vfvl0ZP342//13iB49OmbdoZAcUdbCjKtXjtCw8S9EhAajq29IMdOSFDMpQfDb57wLfMjiPzozesEuzEunL3SmegQkiWWcvqdBcxsRej9XGU+lEBcXz507Afj53cbb25c7dwKIiYlN065UKXMcHOxwda1HnTq2VKlSId17XPnyZVKVMVEkf/01HXf33hmeHz58ABs27CA0NEylqQl9B0zCy+MA7fpNpEWX37LuUADI1RJadkIhIeM6QJUrV8Df/16qtv7+96lcWTFqToWkZtq0P5k8Wa7oOWfOJKWqv+Un1taV+PAhNFNxgkJyx+fd8Z0716VRSF23bisuLu5UqeKElVVZha/a5SdisRiAEiVUH/YgkUpwWepOpVmONKxYn3LGlhjqFEFdTb6OVrKoOe+jQ3I0ZuvWzfDy2smTJy+wsLBNI3ikCl5HvOXu+wepdpB8A69jVsQEK9Oy6faxtCyFoaEBy5f/nef59fRUVyTd3MCMmqXluRpfO64CgYCPifIHsJjEjynO7Wc0NTX5+DHtA9rXVK1aMUV8pVatJuzbl1aMKKcIhUKcnOrw++/TaNmyK0uWrCMoKGfvwUIyx8zEkCuXPLAoVwnLitX5Y/EBBk5aw9hF+7CqVpeo8GDWz1HcQnT+IBdAOR2gQXxhiYJ8ISkpialTF2Br2xgLC1vatOnF7NlL8PG5QkxMLLq6Ojg62jFhwkgOHtzCy5c3uXfvIps2Ladv365Uq5axkqO1dWWCg0OVch06OpmL6FlalqJoUQPWrdumFHu+RSQSU8+lM0c8DzFs5ubvxlmDXDpsq6b2wsQs41DIr0kvB2zUqEHMnLkoReEvIOABu3YdTCMtnV0yypcIePeAZqs647LUnUYrOnDztX/mA/0E9Oo1lNWrN6Gmpoan53aGD++vapNyTZ8+XSlRwpx27fqo2pQfjq93x7/lc9H4p0+vEh+fwIEDR9IZoWASFPQBIE2IsipQE6pxcYwX96de5NabuzwOSVuiIjtRB9/i7OyAt/chYmPjMDKqpFKnLTYpjj7bR7Cg7RQMtL8UKz9w+widbDOvP9msWQP278/be6toUUNatGiUpzHyi68d1/ltpzD96EKqzXVh+pGFTG/1R6q2mpoafPwYl+WYOjraREY+pVmzBgwePJbevYfl2c7du9czfry8pMHKlf9gbe1MyZI2uLq2ZerU+Tx48CTPc/yMBL4OYc3Gw3TpPQk7+1aEhrxHT78oErFcFEJHtwgN2si/y7R1i2Q2VIFAhoAkEZy+p0FC1qm2hWRCVFQ0bm7dWbNmM69evQGgXDlLevbsxLp1i7hx4zRv3/pz/Ph/TJw4ikaNnDE0zH7kQbFihojFoqwb5gMBAQ+ybOPs7MDhw8qvx/b2fSiVqzbgVeALpv99hup1G2fdqQCR45DI7IRCfsu3OWCtWjUlKCiYFi26ykOD9PVYv34x5uYZy4FmRm7DTn42GjZsj7//fXR0tLl+/ZTKw8LyAy+vHdSu3ZSVK/9h1KhBqjbnhyEzhdTPaGho0KSJC76+1wtM8fesePcuKF8K5+YnhjoGOJd34MbrO0QnfEQsEaOups77qGBKGOTunlizZjWuXz9F3brNMTKqRGjoQ9TVlavTLZKI6Lt9BF1qtcXdpkXKcbFEzJF7pzg/2iPT/uPHj8DevgXh4REZFmPNisDAG7nql99867jOO7GM+e6TaVujJR7+xxi1dzKHhnxZcdbS0iIuLmuH7TN7925k164DDB8+kWLFKhIcfA8trdzFqunq6jJ27NCUz3xMzEf27fPi+PEz7NnjyZo1W9DQUMfSsjT16tWhc2d3XFwcf7ict3dB4fjfe05xMyMsSpliYmSAUJj9BZSgkEiOn/HjvPdVbvpdISYynMo1HKlYw4kR7kMpXtoqzYLMzQteANRt0DZfr0VRyBCQmCzjdIAGzWuI0C5UkMwxr1+/o02bnrx58w5DQwM2blyGk1PdAlHuKafcvh3AmDHTGTw480X0IUP60K5dH8RisdK+l7bsOMy4MRMxLl6a6evPo62bf2IryiLHf6nshEJ+JqMcMIABA3pmuqPm7OyAs7NDqmOf5Yg/83XuV3r5ElmFnfwsyGQyLC1rERsbh0Ag4MyZAz+EswZQpowFv/0mdyoKHbb85fPueEZFeWUyGX5+t7GxqaoiC3NOcHCI0h2X9AiLDUdDTQNDHQMSRIl4P/NldMNBuFRwwDPgBJ1s27D75kHcqjXNerAMqFChHPfu+VC9uiumplV5/z4AHR3lqATIZDJG7p1MJTMrhjdIvYvv/dSXimblKVU083tQxYrlKVJEn82bdzNu3HBFmqtQ0nNcd9/04M928rzu9jXcGL0vdU1ELS3NHOfn9ujRCQcHO+rUaYa5eXWuXTuRJpw5NxgYFGHAgB4MGNADkIcVHzlymsOHT+Dt7cuuXXKxsAoVyjJ8eH969eryXTtvT56/Z8HiLZw64kEJywrERkcSExWKKCkJg2ImGBqZUMzIBBNTE8xMTSheXP4yMTUmIT4e7wvX8LtyhZB3r6hQvQ6Vajjx67julCpnnenfJT42mvs3vBEIhdi5ts6wXUFDhoCEZBnnH6jTrLoY9cJC3Nnm7t37uLv3JibmI5aWpThyZFeKuFd+oqurQ3KyYnfYgoJCaNWqOw0b1mfBgimZtnV2dkRDQ4Nduw7Qp09XhdolEonp0GU4vj7nadCmL12HzlLofIokx08u2Q2FVBXfhp102tifaUf+RCaTcWLEHlWbp3QkEgkmJlUAeXjVzJnjsLaupGKr8pcKFcohkUhVbcYPSWZFecViMdbWlTNceOnadRAaGvJbTN26tdi6dZXS7M6IoKAQhEIhDx8+oWxZiyzj7RVFcEwow/aMRyKVIpVJ6VDTjZbWjalSvAID/v2deSeWUaOUNb3tO+dpnlKlSvD8uR9WVvaULGnD8+d+GBkpvmj41Zc32XPrENbmlVOk+6e5jaV51YYcvJN1OORnatWqztGjp79bhy0jx7WEgRmXX/jhbOWAz7MrlDcpm6qfjo4OcXE51063sipLSMh9ihevhoNDS1asmEefPr/k9TJSoa6uTvv2bim1lqRSKb6+fixdup4//pjJuHGzcHFxZNq0sQWq1lJW3A54wYK//uGy92nqt+jKtHWnU0l8i5ITiYkMIyYylJioMD5GhREd8YG3AS+JuXCd6Kgw1NXVqWRTjy6/zaZspZqoqWd/y+npPT/E4mTU1DU477mVJh0HUsTQWBGXmu/IEBCbAFefqVG/koRcRHL/dJw+fYFevYaSnCyiVi0bPDy25ijMMSd06NCaMWOmExj4Kl0Bsbxy5coNunUbjKVlKfbu3ZitPjVqVGPnTsU6bNdvPaBjh76IRSLG/LWXCtXsFTaXMhDkJL9BIBDIrlw7k63dNVUQmxRHm3U9GdtkKO42LZhwaDb1y9unhJ1su7onVdjJz0CxYnJVNgMDfapVq8KxY7tVbFH+s379NubNW87r17dVbUohBZwRIyby778HEAgEKbld6urqaGlpoqOjTZEi+hgaGmBkVAxTU2PMzU0pWbIElpalKFfOkjJlSqOt/f1pWb99G4SNjSsAT55cxdT0+3gQ3L59D+PHzyY4+L6qTckVVwJv0Gptd6zNKyP89BQ7zW0sRbT1meQ5F7FUgra6Jos7zsK29JdSN+3a9SY5WcTx4//lat7P932QK24eOqSc7z2pVMq2bXtYu3YLz5+/xMioGF27tmPChJEYGBTMvCyfK/dZuGg9Abf8aOjehwbu/dArUjSHo3x+jsq9pxL3MYpNC0fy8JYPABpa2ri69aRppyEFujbU16gJZViXklCtdOECamb8++9+Ro6cjEwmo02b5mzcuDTXIczZpWJFBzp3bpvl7ldOSE5O5tdfR3P8+FkaNHBi9+6/s/39uH37HsaNm01IiGLu7ROnrWDDmrVUqFaXEXO3o6lZcL+3h7Yqg0wmy/LmkWOH7etipAUJkUREt82DaVzJJWUl03JaLV7NvpXycFZmWi1ez72jYkuVy+cvbm1tLQIDb3yXD5tZsXr1JhYvXsPLl7dUbUohBZyuXQcRHPyBCxfkO4Rv374nMPA1r1694+3b9wQHhxAaGk54eCTR0TF8/BhLXFw8SUnJiMXilPIj6upqaGpqoaurTZEiehgaGmJkVBQzM1OKFzehVKkSWFqWplw5SywsSqr8c2dhYUts7JecKH//81hallahRdnj6dMXODi0JCLi5xK66N59MEFBH/D2znktOm/vy3To0I+HDy9z9epNfv11FADh4Y+VGqoYHh7BvHnL8fA4SnT0x0/vNxnx8YkkJSUhEokQCoWoqalRqZIVp0+nFThSFFKpjGOnr7N4yd+8CnxK0w4Dqd+yB9o6OVcUjfjwlqLG5gjV8ifUOvDRbY7vWU3AtTMAqKtr4tTiF5p3/q3A1WdLDzWhDKeKYkoZqV6htiBy5849mjTphFQqZfjwX5k9e6JSPpd9+47g/v3H3LhxOt/GXLhwFUuWrGXPnn9o1Mg5R33FYjHFi1vj6bkdZ+f8q+MaFh5D85Y9ePXiGV1+m0nDNgVflC67DpvqkznygdyGnfwM+Pt7U7NmQywsSqn8oVFRiETi7zpnIickipJova4HSeJkJFIxbW1aMqnFaGQyGXNPLMPz7nHUhEL61+vBEOe+qja3wPH69TsqVSoPyHfWypa1zFH9quTkZN68eZfi5L17F0Rw8AdCQ8OIiIgkMPA1Hz/GER+fQHLyFycPSHk41dBQR0tLCx0dLXR1ddHT08XAQL6zV7SoIcbGxTAyKoaZmQnFi5tSokRxSpY0z/UOxb17j4iNjePAgc00aOCEiUkVatZslG+1uxRJYmLSTxdedfOmP6dPX6BChfK56t+hQz8AzM3NaN/ejdq1vWnbthdxcfEUKaK8RHtjYyOWLp3N0qWzuXr1Jlu37kZHR4dixYpiamqEoaFcuS4uLp7Jk+fz+PEzhZf2EYkl7D3kw4rlfxMdGUHzLkMZMLUDGhq5290IC37N9IEN0NLWo1ylGpSpXIvyVWtTrkpt9A1yF3pcrkoths3YxJvn9zmxZw23Lx/D5+hOLp34D4fGHWjRZRjFS+fuvaEMJFIBV56q08xGhKGuqq0pWMTFxdOz51CkUil9+vzC3LmTs+6UT/Tr143OnQcglUrz7XkpKioGU1PjHDtrIP/+LV++LOvX55/DtufAaUYM/R9Fihoze9OF72KBIyf8EA5bRvkSyzvPSxV2srzzXBVbqnwsLUshEAh4+vSFqk1RGCKRiLyEonxPaKlr4jlkO/paeogkItzWdKNpFVeefHjOu6gg/MadRCgUEhobrmpTCyShoWG4u7fIumEGaGpqYmVVDiurctnuI5VKCQ0N5/37YIKDPxASEkZoaBjh4RFEREQRHR1DTMxHAgNfExcXT0JCIomJiSQliRCLxUgkkhSn7/PunoaGBpqammhry3f59PT0UsI5ixY1xMjIEAMDAwwNizBxovy+Z2howLt3wbx9e4dffhlEdHTGhZkLCklJSfwsn22pVMrYsTPYtm0PDg61mTNnYo7HePPmPQDnz39R4LS0LMWdO+cz6qIUHB3tcHS0y/D8qlWbWL16E6tWLcj3uZ8FBuF13Jez5y5yx+8yJuYWNOv0G7XquyHMYyH1oNdPsbGrz387lnDh8l18r97Bx2sTmxeOwtDIjPJVa1Guih3lqtampGWlHM1nYVWNQZPXEvT6KSf3ruW6tydXTu/j6tkD2Lm0oWXXEZQqWzlP9isKsRTOP9DAraYIrULlyBTGjZvJ+/fBWFqW4s8/pyl17gYNnBAKBRw5cpq2bXP/Hfg16upqedIPcHdvwZYtu/Jsh0QipVvvMZw5cYx6TbvQa/TCH3IR/4cJiSwkY0xMKiORSBk3bjiTJ/9P1ebkO35+t2nZsisvX94ssHkSiiA+OQG3td1Y0nEWEw7N4Z8eSylvUjDzSwsKZmbWbNu2Cje3Jqo2JUdIpVKiomI+OX0hhISEEhYWQVhYBBERkURFxaSEcMbGxpGQkEhycjJJScnExsahrq6OVCpFKv3y5SoQCFIcQPnOnwaaml8cQW1tbXR0tNHX10VPT+/TTmARDAyKIBQKEYtFJCWJEInkjqVIJEIkEiMWi7/5twSJRPLp+Jff5T8lSKVSJBLJp5f898+2JiQkkpCQQHj4jx0S+ejRU9q370tUVDRr1y6kY8fclckICwtnzpylrFgxL58tVCz/+99UPD1PcO7cgTyLInyMTeTkuRucPHWJK5cvEhURStVa9alaqwHWtV0pamKeT1bDmYP/IIl9y5Z1qfOCRGIJN24/46Lvba753eHB3dtEhX+gbOUalK1cG9t6LShTqUaO5goNesWpfeu4cmZ/Su02W6cWtOw6kjIVbfLtmvILgUCGkZ6MJtXE/IDPzjnmyJFT9O49HKFQyIULnlSvXkXpNri6tkVTU4MzZw7ky3j//rufceNm8f59QK76h4aGUalSPe7cOUeZMrnbDbv/8AVt2vQkPi6OwVPXU82uQa7GUSUFPoftzBkfunQZQKEDqHj27TvM4MFjAfJUn6cgY2Vlj0QioWPH1kyaNApTUxOV2HH37gO2bv0PW9tquLg4KkSRdC3WfAAAIABJREFUSSKV0HB5ewLDXzPAqSezWo+n/Iy6DHP9laP3TmOsZ8TCdtOwMi2b73N/z4jFYkxNq/Ls2bVc1/X6Hvk2BEYqlRIbG0d4eAShoXKHT77TF53K8ZM7f/HEx8cTH5/waecviaSkZED2KcRTHuYpFKql/C5/CVFXV//kDMp/fv27hoYGGhrqqKurf/VTfkxDQx1NTS00NNS5dSsAb+9LhIY+Ut0fUMFMnTqfdeu2Ymdny/79m36qRafPvHsXRNOmnQkO/oCBQRGcnR3466/pOSo/s2ztQTw9j/Io4CYW5atStZYr1nYNsKxgk+edtIzYtWoi9epUYdKYHlm2DQqJxPuSP75X73DEYz9VbOvT/teJGBrlTFAkIvQ9pw+s5/KJ3YiSkwCoVqchbt1GYmVdJ1fXoSjUBDLKmEqxt5Ko2hSVEhQUQt26zYmLi2f27AmMHDlQKfMmRcdwcdRkIh8+BQGYDO1PpzHT2P/7EMIPn0SgroZFs4Y4zJ6Qq/EfP35GvXqt8pRjXKmSI+3aubFo0Ywc953310aWLFxEmQo2jJ6/67usrQbfgcNWrFhF9PX1ePPm5xIBURX37j3CxcWdEiWK8+DBJVWbk+9ERESxcOFKDh48Snh4JHv3/kPTpspfaencuT8+PlfR0FAnPj4BgUCArq4OJibGlC1bmqpVK2NnVwMXF0eKFzfN01zRCTH02jaMhe2n03xVFyY2H8WIBgPwCjjJ2otbOT7sx1MEzQu3bt2lWbMuhIc/VrUphWST2bOXsHPnPp48uapqU/IdecHcHgQHh7Jkyaw0dQ5/RiIiovj7761s2rQLU1Njrl49nq1+J87eYthv/6PLkBlUrumErr6hgi2Vs2xCFyZPGkk7t5zl4ERGxTJl9noOH9hD805DaNS+f47z6KIjPnDWYyM+R3eQlCiv2VepRj1+GTKTUuWUv3uTEWpCGbZlJFQ0/zmVI6VSKW5u3fHzu4WDQ22OHduttHC9C0PHU7xeHar0+QVJcjLihER6NGhHrfBIJj27hpqWFgmh4ejkUjVYKpVibFyZBw8uUaJE7pRMf/vtD3x9r3P37oVs95FIpLg27sbDe/606zuBFl1+y9XcBYUC7bDt3evJkCF/8PjxFczMVLMT8qPzX42GaOjrIVATIlRXp/15D5o6tab2wyfULmuBQVkLmmxZiVZR5XyxKZNmzbogkUg4d+6g0ue2s2uCvX1t1q1bhFQq5dGjZ/j6+nH7dgBPnrzg7dv3REZGkZSUjFAoRF9fDzMzE8qVs6R69arUrWtL/fr22V5lX3hqFbqaOuzw28f+gZuwNCotV0SdXpvXcwrLHHzNhg07mDNnSeEi0XeCWCymQYP2SCSSbD+4f0/UrdsckUjEuXMeGBnlVEb+x+b580Dq1m3BgQObsxQ0kEplOLp2w6llLxybdFKShXIm9LTj3DkPrMrmLszy7v2XjBm/gDevAukyeDrV6zbO8RixMZGc99zM+cNbSYiLwdzCiul/n0WQS7UewacSBbJ8zB1VE8poUFWMmcHPpxy5cuU/zJjxF3p6uty4cRpzczOlzJsc85GDLm3peudcqvfC1iad2HD3Pr75ELUQGxuLhUUtgoICMhW1+3anz3XVn6jraHFpzHTiomJ48iyQ/kd2YlnfIVvzbt15mLGjxzN13SlKWChWqEgZFGiVyCFD/qB06ZKFzpqCae21A+2vQr/6lSnNwYdPOJqczC5XJ/yXrcd+1ngVWqgYJkwYQdeug4mPj0dXV7kyVSEhYdjZ1QTkqoDW1pXSLVQuFou5dSuAq1dv4O9/n+fPX7Jjx15Wr96ESCRCTU0NQ8MimJsXx8qqDDY21jg41KZ8tTIU0dXHUMeABFEi3s98Gd1wEK2qN8Xn2RV62Xfh8gs/KphkXxTjZ+H+/UeFD8bfCVev3qRbt0FIJFL27dukanPynQsXfHn+/CW3b58tfE+mg5VVOVxd6/G//03F398707bb95whIT4e+4btlWPcJ+Jjo0lKTKCcZe5rpNWoVpYzR9ezx8OHmdPncOHIdjoPmp4jFUh9g2K49x5L046DmDbAleA3zwl5+xzzXD7IKsKlkkgFXHykTosaIvR/TLHqdAkIeMisWYsB2LBhidKcNYCPr96gY2KEz/AJRNx7hLFtdeotmEri2/dUVFfHs2kn1LS0cJgzEdPaOcun/MydO/dQU1PLUoH86sS5lG7iStNtq1N2+s79Oora40di0awBDc2rUXLEJAbfPpetedev307ZyrY/hLOWE5SeCrpx478AXLrkpeypf3okdx9wA3j/PgRtZ3teHTujapMUQtOmDdDR0WH58g1KnVcqlRIXF0+DBk5ZtlVXV8fevhajRg1i06bleHsf4unTa3z48IB37/zZt28jgwf3oVw5C549C2Tdui107PgrNvYNKDfCDpPBVSj/ex1iHnzk+fmXNCpWH8+7J3Ba0prZxxazosv3JTqgDJ4/f0nJkvknOFCIYpg+fSGtWnWnTh1bnj/3y1Rd8Htl9OgpuLg45DrR/megWDFDxGJxpm2SkkQsnL+YDv0nKyxPLSNC3r6gpEV5hMK870R17eDKreteNHB1YNEfHfHYPJ/E+NgcjaGjZ0D1Oo0ACPA7mwdr5NejJsxf100kAe8HGoh+knS2hITEFAn/7t070KpVU6XOLxVLCPO/T9X+PejgcxgNXR38l68nOTGJolpatD29H/vZEzj762hyEmn3Nf7+D9DV1cm0TXLMR4J8r1P5U8i3mqYmWoYGIBCQ/FH+HrcuX4ZXkdHZmlMikfLkwT0adxiQK5u/Z5TusI0bNxMbm6oYGhooe+qfC4GA4x1/xaNhex5t/Q+A2OAPVK5jC4Bj819ICP1xpd8bNqyHp6dyw6gePXqGQCCgYsW81cjR1dWlUSNnJkwYyc6d6/D1PcaLFzcIC3tE4M2b7Oi4jhEl+1M/2J7ka8ksXLiKjm1+5cw4H14sesmbte/5vc80hg2bwPr12/D3v59KHfBn5d27IKysyqrajEIyQSqVsnbtFhYsmML+/ZvR1NRUtUn5zokT53j9+h1r1/6lalMKNMeOnWH06CGZtlm27gBFTUpQtbarkqyS8zE6nENbFlC7rn2+jamjrcncqQO4fPko0oQwZg1pzNWzB3J077axl6vfBlzLi8PG/9k767Cqsi4OvzfoMBCQFEUFBQTFsUEdsVCwx+4aO8ccW0cZ67Nj7C4sTFTsQkdFREUUpERFVDrvvd8fV68iKSKgw/s8PgPn7LPPOsyNvdZe67cQCaFcGWk+O20CElLgqr+YPPoHPxQTJ84mNDQcQ8OyLFo0q8Dvr2FYFg3Dsuh9WPOVd21BlI8f0UBsOXm7Jz17WwRCAUlRb/N0j8ePA3LMEPh8p++QoyuXRk4hNT6BOn9NxXu6G7utHKgZ8Zp9cXG5eq2v3bAfoVBI9Xot82Tzj0yBpkQuWrQagJMn9xTkbf+TuJzag4aBPomRUZxs14doFWWkUilLl85BKpXQsGHbHKOXPzK9enWmW7ff87VJ5OecP3+FuXOXsHTpXKpVqwrApUvX0ND4vimYJUtq06qVE61aZYzWRUS84upVb/799z6PHj3hxo3beHicJj4+AZlMhqqqCqVLl8TIyJDKlStgZ2dNvXq1sLSs+FP2LPmSqKh3WFkVzb5Fxcg5duwMAAMH9ixkS74fHz93/fz8v0oF8b9EXFwcKSmp9OqVtRDLu+h41q5YztCZm/Ncr5UXQp76sn7uYFq6tmXJ/BH5Pn85Y13271jAuUs+TJg4m8vHt/P7jI1olchZGKKqvSNCkZhnD28TH/seDa08ptvKoIS6DD1tGa+iQZpzeU2ukMoERMaCT4gIu3I/71bbqVNebN8udyx27Vqb4y7U90BdXxcNIwPeBwRSslIFwi9dp6RFRfz/vU/FVPlnUPTTIKQpqelKZ76GwMBg9PWzT/P8uNNX120aejXtuD5pjnynLyaWOn9NobxrC54ePIZ//zGcPOmV6drmczZv2kmFqjX/E2uWLymwJ5bJZMybtxRHx7rffVFbDGh8UOxR09WhXOum7FywnGQlJSqUKU21alZoAS/jEwrXyO+Ik5M84nr69KeGsQ8ePCYmJn2z4OPHz9Kr1zBu3869EMX79zF06/Y7ISHhNGrUlkOHTgDw77/3CzRH/UsMDPTp2NGF+fOncvjwVu7cOUdo6D3evn3C/fsXWbp0Ds7OTVFVVebKlZvMnLmQBg1ao6NjgaGhDdbWjrRs2YXRo/9ky5a9BAQE/lQ7c/HxCdjb2xW2GcVkw44d+6lUqcJP/WXcunUzunZtR48eQwgKCi5sc4okd+745lgbM8dtMxbV6mFaseB6kIU89WXFtF5M/nMSKxaORkn8/dIwmzja4n1lP7p6ety7djpX16hpaFPJpjZSqQS/2xfyfG+JTEBolJB6ldNQVYL8rGyTSAX4RwiJTcy3KYsUr1+/YeDAsQBMnToaW1urQrOl3t/TuDBoHO71W/PW9xF244ZQ1rU5bwMCOVDXGa/+o2m45m9FwEMmk/Hw4RP69RvNmDHTePbseZZzS6VS7ty5j7Nz9j1Ns9rpC9h9CDMXeQNv83atKCcUsnHjzmznSk5OITDAn6Ydst95/1kpsB226dPdANi/f0NB3fI/S2p8AjKpFGUtTVLjEwg65YV3SDgN27YkYPchbMcMZtfY31m7ZC3btu2jV6/fCtvkfEcoFGJubsb27ftp3rwxvXoN4/jxswgEAsqXN6FLl/YMG9aXiRNnEx0dw7FjZ9DQUKdRo3qMHTuE6tWzXgQ4O3ehdOlS+PpexNm5K6tWbaRdO2eePHlGhQpFs3G1iYkhXbq0o0uXdhnOBQUFc+WKXMnS3/8pXl6X2b//KAkJ8m9UZWVltLQ0KF26FAYGepiaGlOpUgWsrCyxs7P6IXqavX8fg1Qqxc6u8L48i8kZa+sqXLt2q7DN+O6sWuWGn58/TZp04OHDKzkW7f/XuHfvAQIBDBo0DolEQsWK5Zk8eZTifHBYJPt2bGXSsoKthX987ypNnV3p37NFgdxPJBLStFkjPM/dwKFlzr3eQJ4W6X/vKr7e56jVOO9CLG/jBAiAhlVS8fRVQpKPsTsVMWj8hC95mUxGv36jiIuLx97eltGjC9ex0LGpStvzh9Id+8ttGsY73THv0pZRowYBIJFIGDhwrCL4/JEtH8ppBg7siZvbtHQ72QcPHic1NY1hw/pla0NWO30xwaFEXPXGsEFtXly6jkhfF2/vO9nOtWLNTsRKylj/0jjXf4OfiQKT9S9VqhLAf65pbWEQ8zyEsz2GASCVpHFHKuNofAK3Lx3Bq+8o4sJeoGlsyOLXb7jzOIC3b58UaEpJQTFr1kL++WcnamoqJCQksnv3OkqU0GbRolWcP3+VhIREZDIZ9+55oaNTilWrNrN372GePw9FU1ODxo3rM3bskHQRsj///It167Zx544XJiaG7Np1kDFj/uTVq4dUrFiLfv26MWXK6EJ86vxDKpUSHBzKvXt+PHr0hGfPnhMWFsGrV5G8f/+e+PhE0tLSEAgEqKgoo6WliY5OaQwM9DEzM6Fy5QpYW1tSrZpVoTcDPnv2Il27/k5k5KNCtaOY7ElJScHQsBrLls2le/eOhW1OBqQSCUcat0PdQJ/me/9BJpNxe+5Sgo6cRCASUqVfN6wH987VXElJSVhZOWJuboan577vbPmPxaVL1xkzZhpCoZC3b9+RlJRMePh9xfmeA2aSJFOjw4BpBWrXzmUTaFDHmomjuxTYPX0fBuPq2p2/tt3M1fd0ZEQw0/s7oqahzcLddxCJlfJ0X7FIRv1KaRiUkhHyRsDNZ2Ik0m9fJ4iFMmqYSaig//Nkb3xkzZrNTJnyF2pqqty+fabIilyNHz+TvXsPExx8h8TEJIyN5crWgwf3Yv78PxWvM4lEwqBB4zh48DgAkZGPEIvl+zx9+47k4UN/bt7Mefc3yvchl0dORZKSiraZCY6rFvDuUQDXJ89FliZBpKpM9dkTsW3VneDgO1muF+zsW6JRyogRc7blx5+hyFDk+rDFxcVjYiLfEr1x4yQWFv8tOc7CxNy8Fr16dWLGjD/SHU9MTMLQ0IbBg3uxYEHBfvEVBOHhEVhbO2Jvb8vhw1vQ1NRMd/769dvcv+/H4C8WWDExsaxatYl9+47w/HkoIpEQmUyGVCp/r6xa5Ua3bu0BeT2Kvr4Vf/01halT5+PuvilXKpE/C1KplCdPnuHj85DHj58QGBhMWNgLIiOjeP8+hoSERCQSCUKhAFVVVbS1tShTRu7UlS9vSuXKFbGxqUK1alW+6y7D33+vZO3arQQG/vy7Nz86XbsO4t49P3x8zhc50RHfVZt4c9eXlNg4mu/9hyc7D/Di8k0arnZDIBR+dRPaUaOmcv78la9qGvtfo23bXkRHx3L+w07BXd9AXFt3ZcZ6LzS1SwHw6M5lgh7fIfrtK5q0H4SeoVm+3T8tNQWxkvx1uOSPjkydOvKrG2V/C1KpjIoWjoyevwc9o9y1a5k1uAkvQ58yev5uLGzz+n0kw1xPyi/m8lqzf4NEBL4WfrPTpqIko02NVH62rOeHD5/g6OiKRCJhy5YVtGlTMLuweSElJQVjYzumTBmlaDsQEnIXLS3NTMe/ehWJpaX8dfTRB9DRqUzz5r+ya9daPD0vMHnyXA4f3sbOnQfYtm0fOjqlSE1NZfz4YXTs6AJA69bdmTNnkiKDKSQkjM6dBzF37mRmzvybBw8eo66uhqFhWVRVVbCysmTt2oWAvKTBxMSOMW57qWSdu35tPwpFrg+bpqYGUVH+6OhYUKdOS/ZtW4nggEe6RnrxL15yx2057/2f0eacO7rZpKUVkztSUlJ4+/YdnTtnTI1QU1Ole/cOrFu3jdmzJxa5xdG3YmRkkO2Obt26Nalbt2aG49raWkyePIrJk0cRExOLn58/GhrqlCihRalSJdNFf8RiMZMmjWTSpLkA1K5d4/s8TBFFKBRiaVkJS8tKWY5JSUnh0aMA7t9/iL9/AEFBoYSHR+Dn5090tDuJiUkKcRhVVZV0Tp08/bI8VlYW2NhYUaJE3nbqHj8OQPcrFtLFFB5//z2T+vVbYW5ei40b/0ezZo0K2yQA4sMjCPW8gN24Ifiu2gTAo027afTPEgQfVp9f46wB3L3rWxy8zIH79x/Sr193xe9Tpi2laYdBCmft2cPbbFk0mhau7Th2aje/th2Qb/f2u32BDfOHMW2NJ6X1jHgZFoit9bepAH8tQqGAava1eeJ7I9cOW7XaTrwMfYqv97lvcNgEhL8T8gtyh626mYSoWAHv4vPeVFsklGFjLPnhnTWZDN7GC9BWk6EkgqSkZLp3/x2JRELHji5F2lkDeZlD9+4dcHNbAWTvrAHo6+vy6NFVqlSpz/bt++nZsxNSqQxbWysuXrzGxImzOXhwMyYmhgAMGdKHESMG8OzZcxo3bkubNi1QUsp6p7dJEwcaNqyLrm4VtLQ0Wbt2oaKf7UeWLNuKsoraT+esfQ0F+rYRCoW8exeAra0V7r2GE6ikRCfv07S/7EFJC3NKVamE07ZVlK33S0Ga9VNz4sQ5xGJxlgvqFSvmA7B58+5cz/lx+xzA0/MC9vZOhIa+YMGC5VSt2gAHBxdq1WrO2LHTFaIVMpmMRYtWYW/vRM2aTXFx6cGjR592a6tVa0RUHqVls+Nb02+1tbWoW7cm1apVpVw5k0y36v/4YxiTJsnrK34mkY78QllZGVtbK3r27MTcuVPYuXMNFy4cxs/vMmFhPkRF+fPixX1On97L/PlT6dChFeXKGRMZGcWpU17Mm/c/2rbtg5lZDUqXroyBgTWVK9ehTp2WtG3bm5Ejp7B8+T94el7g1avITG0ICgpRfJkUU7QxMTEkMPAWTk6OdOkyiC1b9ha2SQBcnzKPWrMm8PlqMyYohMCDxzncuB2nOvYnOpsi/cwIDg6jXr38k4b/GYmNjSctLRUAz/N38X94n0aufQFISoxny6IxVLWtgW01SypWrflVTaez49HdK2xdPBZjs4r43vIiPvY9qSnJmBrp5sv8X0OD+rV46nsj1+Ot80neP1WCQhxEKABHyzSUviHMLxJCeb0f+ztSKoVrT0R4PRBz6JYSp3zE/D5qPs+fh1K2rB5Ll84pbBNzhbm5GUlJybi4NMvWWftI2bJ6mJubMXLkFMUxbW0tRo2ayt69/1C+fMb6fXNzM9TU1Hj/PibH+cViMevXL+b16zd06tSfBw8epzu/d487lnYN0h0b3b6K4ucHt7yYPqAhb1+Hc2zHUib1rMW84S2ZPaQpPjfk6sMvw56xZGJn5g1vyazBv7Jz+SQAnty/zhDnclw9/UnBPvTZA4Y4l+OM+7ocbS8oClTW/yOeR7ezwcqBie7H8NNQZ9myeZ+a6RWTrxw75pntQlUgEBAV5Z8nVbbsIitSqRRn525cveqNg0Md/vlnBzdv3uXyZQ/U1dXw8rpMt26DuX79JKqqKnl+vqJCq1ZOuLktLxYPyCNqamrUrGlHzZpZqzimpaXx5Ekgvr6P8Pd/SlBQCOHhEVy6dIOjR0+TkJBA6ge5YmVlZTQ11SlVqiT6+rr4+z+lR4+iVxNVTOaIxWI2b15O3brOXLhwhT59OheqPSGnvFAro0MZO2teXLmpOC5JSUGkqkLb84cI8jjNpeGTcTmZu+CXVColJiY2R5W1/zrz509lwoTZlCtnytpNR3DpOQ5lFfnn7P51szAtX4kbFz159SoSB+ce+XLPx/eusvnvkazbuIrQsFfs2HkYkwpVMTDNn0bZX0uzX2uxevlKZDJZrurYKlSpgYZWSV6/COJl2DPKGpvn7cYyePFeiIWa3MlSVZY7becffn09m0gow9pYgugH3l1LlcDFR2LexQuQfMhgu3zeiyP75OqGW7auRFNTozBNzDWBgXKF2o9B+9ywZs3fNGv2SaRuwYLlHD++i8qVM399+fj4UaGCWa6zWzp1cmXTpl3Exsbh6OjK4sWz6Nu3K9HRsYSHhtBz3MpMr3t87wp718xg5LwdlNYzAqBJ2/407TCYiJAAFk/ohM2uO+xbO5MmbftjW7cZAOFBn5xCIzNL/r10jPrN5fWpty96YFyhaq7sLigKxWGLDQ7FqLI5CwUCwrftY4LHaeb5XkKpWO4/37l9+x516thnOyYvztq1a7cYNWoq+/ZtyDSykpKSSnJyMiVLyp3wZcvWc+zYDkU/kl9/daBWrRrs33+Unj2z7rXzo3Dx4jU0NTV+ajnywkYsFlO1amWqVq2c5RipVEpISBj37z/i8eMAAgOfExr6gqSkZIyNi3fYfjRKltQmKupdYZvBq5t3CD51jtAzF5EkJ5MSG8f5QePQMCxLeVe5NLVZ62ZcGjYp13Neu+aNUCj8KVMi91RrhJKmBgKREKFYTNvzh7g5bQEhp88jVFJCu7wpjqsW5CpIO2BAD96+fc/YsdMoVcaA2o3lSre+N8/h73OFG9c8iI6Jx9GhNTUaOH+z7U98b7DJbQSr1y2nZRN7IqNimDF5KlbP/DA1y11KYn5jXaUcUqmENy9D0DXIWYlYJBJjVbMx3ucP8cD7XJ4dNolMQOgbIRYGn3bFymjJaGCRRsR7IQnJkJgiIDlVQHIapElAIJDvxgkE8tRB6Yd/QgGY/8BCI4kp4OWnRHzyp750r8IC2bRQnl2jZ2jGxu2e1K5VvTDNzDV+fv4A+Ps/w9//Kd27d8hx/fIxTTE09AUg30HbsWN/Bg2ENWu2sG3bPp4/D+XAgY2K45kFG748JhKJWLFiPjt2HODPP+fTu3dn/l68ATV1TcpVrpbh+oAH3uxYPonhs7Zk+t4wMK2ESCQmLuYtMW9fU7LMp96XRuUtFT+X0jUkKSGOmHeRaJUsg9+/F7GuWbTUKAvFYfvYSM/11B78YuPY0r4vPY1t2fnmMSLR9+tr8l8kPDyCNm3ytyN8cnIK3bsPwcNjR4bIypo1W9i37wihoS9wcnLExqYqMTGxJCQkZnDsqle35vHjvInYZEZmi4Rz/UYRHRAIQEp0LMoltGh/Of+loG/fvoeBQeH1YCtGjlAoxMzMFDMzU1w/LKQBypSxxM7OuhAtKyYv6OiU4vnz0MI2g19mjOeXGeMBeHHlJr4rNtB4/WK8Zy7kxaXrWPToRMRVb0pUzP2C/vHjp6ipFXxD3YKilcf2dA15jRrX55cZ4xGKxXjP+BufJWvlKaa5oN+A3syfvwzX3uMRikTERkexc8UkVq5eSpnSWvy9dAf2Ds6oqH5b0Pep3y02/DWU5av/R+vm8lRVXR1tzC1tuHR8B84u3+4Q5gWhUICtfW0CfG/kymEDuby/9/lD3L95Dqf2g/J4ZxkqShmF6QxKyjAombHxtUwm34VKSoWkVAHJH/6bmCJAX1v6w+6uJabA6ftKJKfBR20ImUzG5kWjSUqIxa5eC7qPXIDbGFc2brctsLYP34KLS3O8ve/QsmUXpFIp+vq6OdYLJyUlAyhqyZs0ceDixessXryGceOGKMZ9zLTy8DjNkCETuHPnHKqqKpQuXZL376MV4969i0ZHp1Sm93Jzm8auXe706DGUM2cvYZWJ85SamsLa2QMY47aXsiaZB76CHt9FIBCgVUKHX9v253+Tu1KhSg2q1nCkbtNOqGuWUIyt3sCZO1eOY1LBClNza4XYUFGhUN4+nzfSa9y4AcPXLsII+aIqLi6+MEz6Kbl//yESiZSmTRvm67xKSmJq1arOjh37M5wbMqQPly97EBBwg4SERNzdj2U5T27TO76GVh7baX/ZQ9F7pMmmZbS/7EH7yx6YuTbHzKVZvt7vI0+ePMsyLaCYwkcikWBublbYZhTzlejqliEmJq6wzcgS2zGDeX70NO71WnF79iIcls3L9bUqKirIZD/ujsPXYvyrA8IPkuB6v9gR/+Jlrq8dPtZqiXCgAAAgAElEQVQNh5ZdqdOkIzKZjJ3LJ9HM2ZXWzWshkUg57H6Aes2+TWo//Lk/6+cOZunyxbR1Tq8C+atTY14E+2NRuXB22AAqVjInMiIk1+OtajZEKBLzzO8W8bHROV+QCSIhVDXO/WtUIABlMWirgZ62DBMdGZXKSqlmKkG/ZP413y5ovJ+JSE795KwBhAX6EfzEBw3tUvQeuxhN7VJ0GjSDDRu3F6KluWfYMHkd6NWrxyhbVg8vr8s5XnPqlBcgr10TCAQEBYWwd+96Dhw4yvbtGdeDLi7NsbOzZvfugwDUr1+bffuO8lGdfvfugzg4ZC4iIhaLmTBhBJ6eF0hLTaX5b8MyjBGJxVSoYs+10xnrnM8d3si84S1x3ziP/pNWIRAIqNfsN2asO4e9Qyue+N7g77HtSE1NVlxj79CKO5dPcOviUWo2cs3x71HQFIrD9nkjPQBhUDCuA+S55yYmdiQnpxSGWT8d+/YdRkenlKJvRn4hFArZvHk5d+74snjxmkzHKCkp0aSJA9eu3UJbWwt1dTWeP0//ZePj87DA0oFkMhlBh05g3sHlu8wfHv4y22bbxRQe797JFysGBvqFbEkxX0vZsnrExycUthnpMGxQm+Z7/wFApYQ2zfdtoMO147h67kfHpkoOV39CVVXl5xUpEgg42b4vhxq15fGWPRlO++84gLFT7gKJB45e4db1K7TrPxWAG2cPEPUymKVu8n6Xxzy9UVZRo1xl2+ymyZGz7mvp2a8/HVzrZzjX3rURAFaWBasQ+TmpqWkofUXEX01Dm0rWtZBKJfjdPp+ne2qpytDR/HEdrZxIk8jTNbMj/K2A1zHCDMqYN87JnZBfGrVBVV0u2lGlegOeBzzixcv8F1DLbz4Gyxs0cKFixfLcueOb4zX9+3/qMSsQCHj+PJRSpUqyf/8mFi1azYkTZzNcM2HCcHb+bx0HHVzQ2bYXK88LrCljyaAq9Ul6+56qV7zZZ+/EiXa9SX6fPrAwZsxg3Ba7IRIrUd4iY327UCBk4OTVBAf4cHJv+vq2Jm37M3XlScYvPEAl60/CTiV19KnXrDNDpm9AKBLx4vkTxbkSpfUQisU8unsFS9uMnwOFzVev5A8dOkGbNi2+uVan3t/TuDBoXLpGerfq1+Jw35FE3r7H8fZ90a9hQ0v3zd90n/8yly/fxMbm+xRNqqursXfvepydu6KnVyZDHZpMJsPb+y42HxYwI0cOYOLEOWzZsgI1NVUuXLjKjRu381dR6cMiAYGAKn26YNnnU8T15bVbqOmVocR32mWJjY37T/Vf+5F4+jQIoVBYXF/4A2JsbEBSUlJhm/FdUFFRUfR2/NlwObUHDQN9EiOjONmuDyUqVcCgvnzRdHfRaoRiMRV/yzmC/fZdLBP/+JPuIxegpq5F1KswDm78i70HtqKhLher2rz1APWadf6mbI2Y92/wuXGGzasnZ3rezro8fQaPwNbaLM/3+FaSk1MQKeWs5vc5NrWd8Pe5hq/3OWo1ztjaJzvEQhlWxhnTHn8G3sUL8H8hJCRKKFeu1JViri+lhHr692OqhHQNw+P71EegpoFMKMQ25AleQH2LGiSMbQuJCQj0jalmU5sDRy4ycnC7Qniyr+PAgU107NgPHZ3SXL16M9uxu3a5A3D9+gkAmjdvTFiYvJbN2NgAHx95UMDZ2SnddXZ21pz1uaD4XSqRsLtqAxaf3sfDDTtQrVIZ2zGD8Vm6Dp+l6zh2bGe66/fvP4pBFumOAMqqagyduZnFf3REu2QZhWhIZvjdvoClXX1EYiWi374mPuYdJXX0eRX2KYvDpcdYYt9HISyC5VlfvYIZPHgcurpVsLdvwqRJc3j2LChPN9axqUrb84focPUYTXeuQaVkCSq2bcm4t09YqleGMe+jietS9F/wRZmnT4No3rzRd5s/s8jKmjVbcHBwoV49Z9LS0ujfX94/Z9CgXtSoUY369Vvxyy/NWLhwFTt3rkVNLf9UFV1O7aHdxSO02L+Rhxt2EnHVW3HumfsxKnRonW/3+pzg4FCkUmnxDlsRJSgoGGXlrHvAFFN0MTEx+mkzLlRVVZDJZNm2SSlVqpJCzQ1g9erNlCpVibt35dHwHTv2U69eK+rXb03dus6Kz+GhQydga9sYBwcXGjZsg7f33QJ9No0Pu9lqujqUa92UyDv3AXiy+yChnudpvH5xrhysEeMXUrWGA1VrOCKVStm2ZCzd+/an3i9ysYDIqBi8r3hR69f232Tv9dN7aPBrC8rqlcxyzNIFI1FXKzxF49TPGnjnFpsP8v5+/15A8qE1Qm4RicCo9M8TUJBIIfC1kBP3xJx9ICb4jRCpTECqREDASyGevmKO3xXzJEJI8oc/lU+wiLQvfFa1BXsI7PUHSyUSyppUpPThDaj0nYT6Gk/E9ZrTEDh50qvAny8vNGniQPXqNhw5cpK3b7MWd9q8eTfDhk2ifftWihZRkZFRlC6d9fslK15cvIaWmSlapkaEnDxHpa7ydX6lru0IzmSH7sF9H2xqO2U4/jkaWiUZPmcbJ/eswOe6Z5bjHt25xOwhzZg7rAUrpvWiff8plCidXnvAvGpN7Oo1z2KGwuWrd9hev37EpUvX2bJlDwcPnmDdum1oaKhjZ2fNb7+50qVLu29qwCwQCPD3v06PHkMZNGgcjx8/Zdq0sXme779KVNRbEhIS6dSpTb7PHRbmo/j5y8jKpEkjM71GIBAwceIIJk4cken5+/cvfLNdmS0SDOrXQpqWxvNjnrT7UNeW33h5XUFdXa14B6eIEhIS/lOLO/zMmJmZIpH8nFF+FRXldDVsmbVJqVrVgoMHjzF+vLx+48iRU1hayqPN4eERLF68hgsXjlCihBZxcfHpelnOnj2BNm1a4uV1mTFjpnH1atb1xPlJanwCMqkUZS1NUuMTCPe6QvUJwwk9e4n7y9bT6thOxOo5vx8PHrvG9csXmbb6NADnDv2DQCZhzp/9FWP+2XoMK3tHRRPtvCCRpHHxxE62bF2d5zkKguTkFLRLfV3gSc/QjLIm5rwMfcazh7epXK1urq4TCWVUMZRQCB0M8p3YRHgSISIoUv79nJZJOwIZAiRSiE0S4BMi4F6wiDJaMqLiBApFyM+5cU6+21SnSQeke1ch/NDMWVTdAb39a7j37g3xCcmKXeDCIjoxhpH7p/DoZQACAazotIBaZnIVyxUXNjD9uBtPPW7Std3v3Lp1l1KlKjFt2jhat25KcnIKHh6nWbhwFSCX3F+/frFibjMzE+7de/DVNgUePI75h+B54us3qJeVO0zqZfVIjIwCIC4ujlGj/iQs/CXxsdE4tMq8Xcf/Dj5S/Fxa15C5m68CKGT7v6TjoOl0HDQ9w/HK1epm+t5o3WPMVzzZ9ydPK0xHx7ps2rSMJ0+uExx8h0mTRpKYmMSECXMoW9Yaa2tHhg+fhI+PX54N27FjNZMnj2TJkjX88cesr7o2u4jlihUbMowvVaoSgwePV/yelpZGxYq16Nx5IDt3HsDBwQUHBxf09KpSr14rHBxcmDlzYZ6frSDYt+8IGhrqeYqA/IikxieQEhun+Dnc6wqlqsjl38MvXKNkpQpoGBlkN0We8fa+g75+wTdTLSZ3hIe/REtDnUOOrpzuPBCQp+zemrOEfTWbsr92cx6s21rIVhaTGcbG8vdsXFzRFR7JK5GRUYhE8pjpxzYpXzagbdXKiRMn5M2Pnz8PQVtbC50Pyotv3rxFU1MDTU25MqKmpgblyplkuE+9erUICgrOcPx7kRj5hmMtu3KwgQtHnDpg0qwRJk6OXJ8wi9TYeE6268NBBxeujJmW5Rzv3scxcfxUuo+Yj5qGNi+Cn+B5YC0bN7ihJP6UqrR/z37qfqPYiO/Nc5TRK4tjXatvmud7k5qamifVOpta8t2J+zcz7l5kx48swS+VQViUgDO+Yk76KPH0lZA0qSBTZ+1LJFK5k/Y6Rpix15wA4id3xfHKCeoAtX5th9CsMpIPjZnTLh+Ht68xqVCFoyevf4cn+zomHZlLEwtHvCec5vIYDyz05cJoYe8juBBwFeOS8sCQp+c+RculOXMWU7t2CxwdXVm4cBUqKso8eHApnbMGULOmLS9fvv4qeyQpKQSf9KJ826yVy72972JpWZ8TJ85x30fuECqJi5ZaY2HxzWoU2tpaDB/en+HD5VGvu3d92bhxJxcuXGPXroMoKytjbW1Bu3at6N37NzQ1c5+DPWHCCGxtrXn37n2ebMssYpkZGhrqPHr0hMTEJNTUVDl//qpCoKB794507y5vuFutWiM8PLYrvjCLMqdOn0fiKqXzpoHs7fcPFwOuMf24G1KpFA0VDVZ3dqNCmdzJA/8IJEa+4WwPeRRaKknDvIMLJk6OAAQePKaI6HwPHj0KKFYgLMK8evWaOmlplKxsrnDqA3a5Ex8eQSfv0wiEQkVkr5iihVAo/FDcHoa1tWXOF/xAhIdHoKqqQnx8QpZtUrS0NDEyKsvDh084ceIs7ds7s3OnPLpvbW2Jnl4ZbG0b07BhXVq3bkbLlhmbcJ865ZVt78L8RtvMlPZXMrZO+e3OuVzPMf7PFVS0roVVzUakpaawZeEoRo0fj5WFqWLMVe9HxES/w9KuwTfZe+nYVvr26/lNcxQEKSkpiPOwcLWp7cQZ93X43jxHx4FZO8kfEQhkVNCTolT0SnhyJDEFAl4KCXgpQibLfDftW1BbdJCrN89yZOUURqiqox0RgmD0QpLXziRl9zLEtZuCWIlqdZricdyLrh0a5ev9v4aYpFiuBd5idWc3AJTFyih/eP1MPTqPma0m0H3LJyl+U1NjKlY0Y/v23O00N2pUn8mT5yGVSnPMLvq403f/2T1SWidhkRBKLcqgpleGJR7/Y86lVfgOOU6iSESLFp1p2rQhoaEvePToCSpq6tz0OkiTdgPy+Jf4ecj3HK7q1W1YuXIBDx5c4sWL+yxYMA1VVVXmz1+GiUl1KleuS79+o7hy5Uau5mvevDFd8lDLllXEMiucnBri6SlP7XN3P0aH77jALwhuJ93DVNtI8fu4gzNY33Uxl8d60LG6C4vOripE6/Kfj4uE9lc86Hj9JNXHD1Wca7j6b6r06/bd7h0W9gJb2+IeX0WV+BcvKZ+UjEWv3xTHHm3aTfUJwxF8+KJR09UpLPOKyQElJTHBwWGFbUa+ExHxCg0N9WzbpAC0b9+agwePceLEWVq1aqo4LhKJOHBgE1u3rsDcvDxTp/7FggXLFeenT/8bBwcXtm7dw/Ll87/78+Qn1WwseeJ7k7evwzm2cwn6BgaMHdox3Zj1Gw9Q16njN6Wivwx9SniwP727Ns15cCGT1x22ClVqoKFVktcvgngZ9izH8QLA0vDHSkOOTYQbASI87ijx+IWIVEnudtO+BqlUSlRKEldP7yEekFR3QPLkHkKTiqjN24H68uOIG7oiNChHaT1jfP69la/3/1qCo0Ipo1maYXsn4rjUlZH7pxCfksAJv3MYlNDHxjC9oq2VlQWPHuW+L26lSnLF1MePn+Y49uNO3+LQmuyrOUWx06fWvBanbh7HuKQhfrsPcvntO2bPnsjevf+QnCyX2y9nVgHfWz9GTeD35rs2zlZVVaVPn8706dMZgGfPgli/fjtnzlykTZveiERCKlc2p3XrZvTv3w1d3TL5ct/sGjtnRfv2rVi4cCXNm/+Kn99jevToyPXrt/PFnoImJCqMhNKJDHfqz7EQeQGmQCAgNlm+uxCTFEvZEsUS5/nF+/cxODrWyXlgMYWC1dMgXtatCZ8t7GKCQgg8eJzg42dQ1SlNXbdp301BtJhvQ1lZmbCw8MI2I995/foNWlqaREfHsHnzctq27Z2hAS1Aixa/Mn26G9WrW6OtrZXunEAgwN7eFnt7Wxo3rs+wYZMUdcQfa9h+REYNboef3xMW/dERqSSVyxePIhQKMDa2JSzMh9i4JE57uKOpVYp6zTpTWs+Im14HOXNgHVKpBKFITLlK1egwYCrqmiVYMrEz0W9fo6SsglisRPeRCzAxt+LfSx6kpSTh1KQ9IpEQiUTKn3+OyaB0VxRISUlBJP568SSRSIxVzcZ4nz+E782zlDXObk0ko2wJKRqFW3qVa97FC/ANEfIyWohMRgbp/bwSHxvNi+ePCX/+iPCgx4QFPebN88ekJieSDGiqqKH39hXCchZI379BWLIMMqmUlD0reGlhx+5VU1m0pHDLZtKkEnzC/XBrO42apnZMOjKHBZ7LuR54C/eBWzKMb9CgTqay/FkhFArR0FDn0qVr2e7gf9zpW+4ykz0XFtJg6RyU1eSfY3vMIml3WpvF+n7cunQYn9Il2fEhW++jOnADx/rs2515MOu/xnd12L7E3Lw8bm7TcXOTRyuOHDnFzp0HWLt2C25uKyhVqgS1a9egR4/faNny1zxHzj6PWC5YkHMKAMjTS0JCwnF396Bp00Z5um9RYcCGMYjuiCg/xxQ+tD5b1nEev20ciJqSCloqmniOKH4DfA0fFwogr4ucPHkuhw9vY926rUgkEurUsWfo0AlcvXoLLS1NkpKSqFnTjunTx2FoWFYxz/37fjRs2JYDBzbRpIlDYT3Of4aQU17ESKXoVLVId1ySkoJIVYW25w8R5HGaS8Mn43JydyFZWUx2aGioExHxqrDNyHdMTY04evQ0YrE42zYpamqqzJz5BxUrpm/aHBHxitev32BrK6+98vV9lG3q/4/G+uUTmbPQkKoWFTAxTh/MnTl3NVKJhFHzd1Fazwi/2xc4d3gjw2dvpWSZskglEm6cO0DM+zeoa5YAoN8fyyhXuRrXPPdxcONfjPprJ37/XkBNTVVR6hAQEEj79n2LnMOWkprGq/AwVFTV83R9tdpOHxy2czTtMDjLcSIhWH1Fo+zCQCaDyBgB90NFvIuXi4WQR0dNkpbKq/AgwoPkjtlHB+3dm4gMY0sDv4vEKCmroKGhjXJtJ8Q1G5FyeBOpx7YBEFHWmA13L7NtxwYaNyhc1WjDEmUxLFGWmqby/mWuNi1wO7OC4LdhOCyV96N9Ef2Shv9ry7kR7rRo0ZgxY/4kKSkJVdXcqXcnJ6dgbJz9Z87Hnb5RHjN5MMKAW57zmd/mT3Z4HSA88DXu74S81ZWy+HUUC2b9qbguMVG+w9azmyub1q0jLTUVsdJ/W+25QB22zxEKhbRr50y7ds6A/Mvnn392cPLkWXr3Ho5MJqNChXI0b96IQYN6Y2pqlMOM6efOLmKZFS1b/sq0aW54eOzIc91cYXPqoRdR4e8wUUv/JlpzeTP7+v9DTVM7ll/4hz895rO801+FZOXXsadaI5Q0NRCIhAjFYtp+pvZ4f8UGvKe70ePpTVQLoLbwy7rI589DEYtFCmXUj1FtmUzGmjVbcHXtybVrxxXnDxw4Rp06NXF39yh22AqAVzfvUCEpGa3t+zi/5xApsXGcHzQODcOylHeVS/eatW7GpWGTCtnSYrJCU1Pjq4vbiypv3kRRpow8/XbmzAlERb1jx44DbNiwgwEDerB//yZateqGjk561cPMUvRTU9OYNm0BL1++RkVFmTJlSrNkyewCeY6CYtofGWvLrl27xfbNm3Dt9Qe6BvJyh5N7V9Kh/1RKlpEHx4QiEfWadc50zgpVanDGfR2x0VFEhDyjTOlPu5axsXGULKn9HZ7k2xg+bglapXSxsM1br8+q9o4IRWKePrxFXMy7LFU1NVVl6GgVTSl/mQxevBNwP0REXLIgoyBIttfKePcm4sOumb/iv69Cn5GWlrFtiJKKKoblLDAys8DIrApG5S0xMrNEs0TGNYZy234otemLx7ZF/Hv5GB4ndmNjWfj6APrauhiVNCDgdSCV9Cpw6el1qhlV5cjgbYox1f5qxPlRB9HRKA3aIBaLuXDhGi1a/Jrj/OHhEaSmpuL0QSsgKz7u9LUs2YTkBykcvnGSHZsOINOTUepmSawrW6CtrcWxKzuwrvgpTTMxMREAu2qVEYnE3L95hhoNnPP41/g5KDSH7UsMDPSZPn0c06ePQyqVcv78VbZu3cOePUdYtWozmpoa2NtXo0uXdnTs6IJYnL3pOTV2zozu3Tuira2FlZUFV65k30SwqHLz+R2CZWGo/KpM/x2jiU2O47eNAwh4HaiItLSzbUWnDf0K2dKvo5XH9gwOWVxYBOEXrqKZQ4Qnv/hYF7lv3wZFXWRY2As0NDQyjBUIBAwd2pdjxzw5e/YSzs5OyGQyjh49xaFDW3B27kZSUjKqqj9I7skPyi8zxtNq1UZ2rF2Etboavis20Hj9YrxnLuTFpetY9OhExFVvSnyxe1FM0aFECS0iI9/mPLCIk5SUTKVKddi/f6NikbNixXzKlzdlwoTZBAWFMG/elCwb0H7k88ayR49uz3TM6tV/57P1RYPk5BS6dfsdmQwauvRSHI8IfoJpxdzVEfv9exHbus15dOcSNvZ1ePn8IS4uPZHJZAQHh7Jp07LvZX6eWL/tJF6eJ5m07Fiem/mqaWhTyaY2/veu4nf7PLUz6VsnQIapTtHcXXvxTsDtQDEpaTkLiSTERadzyl4E+/PiuT+J8TGZji9T1hSj8h+dMrmDpmtQLtd/a0laKjtXTOJV6BPOndmDsWHRqYf+u800Bu0eR0paKmY6Jqz6bUG248uUKc3581dy5bBdvHgdkUhEWlpahnMhIWHs3XuE8+ev4Bfoj6SRhL/Hr8TExJBf6tjxyjaSVymRqFmo8Zww4qLj6bJ3MOdGuKOvLVfcTkpKVsynZ2DMnasnMjhso9tXUUj7P7jlxb51sxj91y6uee7jyundaJXQITUlmcrV6tJl6ByEQiEymYyTe1Zw45w7AgSULKNP5yFzMCwnT+u85rmXc4c2IhAIkMqktOn1R5ZtAgqaIuOwfY5QKKRJEwfFDsS7d9Fs2bKbI0dOMWrUnwwdOhFjY0OaNHFg4MCeWebPfmzs/HnEctGi1axdu0Uxxs/viuJnIyMDfv+9z3d7roJghvN4VvbewPotSyhhqcWKixvY2XsNFrPr8TQyiIq65bkQcJXKermr7SvK3Jg6j1ozJ3Cme+52UL+FrOoic2oeaWtrxZMnz3B2duLGjX8pV86E8uXLUb9+Lc6cuYCLS9Fs0PgzkZqahrl5OYj4tEtjO2YwFwaO5cHqLShpquOwbF4hWlhMdpQqVZK3b3/MjIfPUVVVoWxZPTp16s/bt08UjaPHjh2CmZkJAweOw8fHj6ZNG+LoWJfq1Qs3paoooqQkpmLlSvg/CUJJKfNgV3jQY7YsHkNSQhxtek+gZkN5+temhaNISUpAKpUwZcVxDm38iyZNHNm58aEiJTIoKJg2bXrToEFtNDUzBuIKmlt3A5gzfSYj5mz7pl5zANVqOeF/7yq+N89l6rDJEBAVV7Qar0ll8ubVT19lIrH/gYf/XsTf5xrhzx/z4rl/pumMAJrapTE0s8DQzAIjM0v5z6aVUVXPvXL5lyQlxrNh/hBUlIR4nd5OCe28paxmVXKRlJTEmDHTiI6OISUlhbp1f2Hq1DE4OXXE03Ofop3QuHEzMDY25Jdf7OjW7XfMzExISkqmefPGnJ+Tdf/Z+1MupPu9YsXy3L2bu95q7ds7M2vWQurVa4Wb23SOHfPE2/suISHhpKSkUKKENpaWFfm9d288lS+w/sFiKulVYIHncuJTEpjT+lNWS7qdvs9QU5OnZtaoWYMb172ztOXxvSvsXTODkfN2UFpPno3XpG1/mnYYjFQqZcmETgT43sDCth4Xj20l8NG//LnyFMqqajy8c4k1s/ozfe0Z4mLecXLPSqasOI6ahjZJifHERRcdBeki6bB9SalSJRgz5nfGjPkdkPdp2LRpJ6dPe7Flyx7U1FSxsalChw6t6dGj41c3dv58/EcaNKhNgwa10x3Lj+bO35sHDx4jkUho3rwRN4L/BUAsErOs41x6bRuOUCCkpJo2K3/7gVTDBAJOtu8LAgFV+nTBsk8Xgk+cQ8NAHx2bKjlfnw9kVRcZHR2DrW3VLK+TyT6ll7i7H6N9+1aAXPlt377DxQ7bdyYhIQGAcuVMEJuXx/DDe1qlhDbN92XsyVhM0UNXV4egoJBCtSEpNZlWa7qRnJaCRJqGq00LJjcfRfDbUPrvGM27xGhsjaxY22WhQjo7M+7e9cLAwJru3Yewa9daxfH27VtjbGzEoEHj+N//1jFr1iLs7W3Ztm2losVMMfJgbss2HXj890JO7l1Jy87DATAoV5mQpw+wsK2HUXlLpq48yZ7V00hNSVJc2++PZRhXqMKhzQvYvWoaz/xusXzhGHZu/PT/oXz5cujp6eDv/xR7e9sM9y9I3ryNpWfPYbTvPwXTipk77x7bF3Hv2mkqWtXE3Ko2Fa1rUVo384wTm9pO7F8/C79/L5KWmpKp4mRUrBAoGgqRiSlw6bGYmMTM0x/jY6PZs/pPbl88mu64kooqBiaVFE7Zx/9ql9JVBEnyg5j3b1g9oy8WVSzZvmEWykrfvpz+suSiQ4e+DB36qabSz88fXV0dRo0ayLRpC1i/fjE+Pn7cuPEvFy78yc2bd6hbtyZ79/5DYmISDRu2oVWrptSpY5+r+9esacuOHQeyPJ+WlsaFC9c4fdqL27d9SEhI5PXrN/ToMRQjIwPs7asxceJwWrdulq4OrnV406/a6fvIxzk6dWjJyaNHMh0T8MCbHcsnMXzWFkWK9OdI0lJITUlW1LJ67l/LGLe9KKvK+85VreFIhSr2eJ8/jIm5FarqmqioyoM1qmoaqKoVfuDmIz+Ew/YltWpVp1Ytebf2hIQEdu06yIEDHsycuZCJE+dQtqweDg516NevW65fqD8L+/YdpnTp0ojFYhqY16aBuXyB2tqmGa1tisa27tficmoPGgb6JEZGcbJdH0pUqsC9Jatp6b6lwGzIqi4yMTERMzPTLK+7f/8hjo71kEgkeHic5uTJcyxevEaeU//uPbGxcaqypvUAACAASURBVGhp5T3CV0z2PH36HIFAkGMKdTFFF319XeLi4gvVBhWxMkcGb0NTRYNUSSotV3XBydKR1Zc2M8SxLx3sWjPGfRrbvffTv173LOdRVVVh/vypTJ48j5CQMExNjRXnatWqzr17cvlqHx8/+vQZgbW1Iz16dGTx4lnFr+EPBAWFUa9ZZ26dP4x2yTLUb96FFr8NxX3jPIZM30CpMvJm6587ax8RiZVw7fUHU3vXQU1Tm8rm6Z2byMgogoPDMDHJfc3890AikdK9z0QsqzegrlPm5Rw3zh3g9sWj/G+5G7duP+D69ZPsXz8LFVV1KtvUpn3/P9PVXOkamGJgWomIkACe+nln2r8uVQJJqaBayNoOb2IFXHwkJk2SufLj43tX2bZkHO/eRKCiqk7jNn0xrWiDkZklZcqa5jl1NLe8fvGcldN64ezahiV/DUco/HZHMLOSi5cvI9OJlllZycWz+vTpwp49h7h8+QZz5izh77+no/SFIIeamirW1lW+SrCpSRMHli+XBzJTUlI4e/YSZ85c5N9/fQgODiUmJg6RSISeng4WFpUYNWoQLi5NsbColO28NkZVOT8q9zt9nz8DQOuWjkhlUp4/8cGs8qdASmpqCmtnD2CM217KmlRMd+25wxvxPn+YqNdhWNk3wsTcisSEWJKTEjI4duUqVSMi+Al1nTqhVbIMf/ZrgKVtfezqt6Ba7aIjQJTvfdhyQ1JqMk2Wd6DBEhfqLmrJ/NPynHGZTMack0uo6daU2gubs+7K1hznUldXZ8CAHpw6tZcXL3y5fv0ELVs24ebNOzg7d0VfvyoNG7Zh8eI1P0VaTU5cunTjp2owK5PJ0PgQYVbT1aFc66a8vOZNbHAYBx1c2FOtEfEvXnKoYVsSXkVmO1dqaioDBozB1/dhnmz5WBd54MBRtm/fT0xMLFKpLNM+fzKZjHXrtvLqVSROTg5cuHANa2tL/Pwuc//+BXx9L+Li0pzjx3Mvo1vM1xMYGJzhiyw/MTb+9OXh6XkBe3snQkNfsGDBcqpWbYCDgwt16rTgwIH0jYTT0tIwN6/FrFmL0h1v3bo7v/zSjAYNXGjevDMBAYHfzfYfBQMDfRISEgvVBoFAgKaKPNKaKkkjVZqGQCDg0tMbtLFpAUBX+/ac8Mv5/fwx7d7WtnGWY2xtrbh714v//W8u7u7HKFeuBnv3Zh5h/q/x7GkgpubWDJ+zjZN7VuBz3RPrX36lsWtfVk7rzazBTVg4rh1CoYiq9hkFEZRVVDGpaI2G2qeUSheXnjg4uODq2oMZM8ajp5c/LYbyyqSZ63jzJoqOA6dnej74yX3cN8xj2/Y1tGxiz/SJvTl5eAXBgTfYt28DstQ4rpzaleG6arXl/ebu38y8iblQSKGnRcpkcD1ATKpEkMFZS01J4sA/c1g2pRvv3kRQ3rI6U1aepE3vCVSv3xI9o/LfxVmTyWSkpaaQEBdNgO9NFv/RkYG/D+J/C0bki7P2seRix4416Uouhg7tg6trTzp27M/q1ZuJjpbX4QmFQhYvnkWvXsOpWNGM+vVrZZjz/ftoAgOfU6/eL7m2o06dmkilUoyMbNHXt6J37xGcOXMRfX1dxo4dwp07Z3nz5jEPH17l0KEtjB8/NEdn7VtQV5fvgolEQkrp6HFsx9J050ViMRWq2HPt9N4M1zZp25+pK0+ycNcdUpITufXFTuznyJCBQIBQJGLEnG0MmrIGPaPyHFg/O8M9C5NCCdllFa188voZ4e8j8P7jNEKhkMi4r88dtbSspFDKSktLw939OLt3H2TZsvXMnbsEHZ1S1KlTk169fsPJyfGbmm4WRZ4+DWLq1NGFbUa+sGnTLiaNm4H3jVOYWZiTGp9AuNcVqk8YTo+AT6Iwe6o1ou35g1mqRMpkMqZMmcfatfIAwIgRA/Js0+d1kc+ePUcoFKKi8im1ZPr0v1m4cDWJiYnUrGnH0aPbUVZWxt3dI13TWwAXl+Zs2rSLLl3a5tmeYrInJCQMNbXvL+zyZSoLwJAhfRgxYgDPnj2nceO2tGnTQuE8enldoWLF8hw+fILp08elS9VZv34x1avbsGXLHqZPd2P37nXf3f6ijIFBWVJSUgvbDCRSCY3+15agqBD61+tOeR1TSqhpIRbJv0YNS5blRXTuotk+PuextW3MmjWbGTKkb5bjevbsRNeu7Rg3bgZDhvzBxYvXWL3aLV+e50ckLMwHKztnmnQyp7SuIXM3X1Wcq+vUkbpOHTO9bqxb+gVdUkIs02fLJcSLWqnDviOXObB7JxP/55Fp2mLMu0jWzRvM7L/mULtG+sWyUCigRjVzxozqz+jRU2j+27B0ny02tZtwev9qfG+epdOg6RlSBNMk8CZGiFGpwkuLfB0jIDmTt3tY0CO2LBxN+PPHCIUinLuNokXnYYhEuVvGpqYk8T7q1Yd/L4mOesnbyBckxL4nNTmRFMW/pA//PvyeJP9ZIBSirKKKmoY289zm0qNTzsIcuSWrkovu3Tvy668OnDt3iRMnzrFlyx4uXz6KiooKNjZVqVKlEv37p9/Rv379NvXrt+bp00BGjx6sqHPLDWKxGKFQSI8eHRk2rN9XqbN/Dz7usAGsWbOQrr/1xuvwRn5tK+/VJhQIGTh5NcumdlOkSL+PeoXvrXNUrysPpInESlS1b8jTBzf5paErKqrqREaEoGvwKTMq9OkDKtnIs9EEAgFmFnaYWdhRpboD25aOp3WPMQX41FlTKA5bVtHKTdd380+3JQonSlfz29R2xGIxnTu3oXPnNgCEhISzYcN2Tp06T7dugwEB5uZmtGzZhIEDe2BkZPBN9yts3r59T3x8Ar/91qawTfkm7O2dWLZsHn37dmXeuBlsq9OCKpaVECDDvIMLJjnIyH7Otm37GDVqKgDdu3dgxYr5ecpjz6wucvLkeejplVE4gNkps2V2ztm5Cc7OTb7almJyT3h4RKYqnvlJZqksn2Nuboaamhrv38egqyv/THN3P8bvv/dm06Zd3Lp1T5Hi/Tn16v2STiDpv0paWmq+1p7kFZFQxOWxHkQnxtBj61D8Xz3LMCa3dpqaGtOyZROmTPmLPn26pluYfIlYLGbZsnm0atWU7t2HoKNTijlz/pttKFJS03j9Ihg9w7yrusZFvyUi5BnNG9fIR8vyh4dPQhk/egIDp6yhpE7G2sW01BT++WsIrdt1oG+3rEscnBrakZqSTOizB+nq38pbVEdTuzRvXobwMjQAA9MvBdsEvIou3PeaX5gogxJkzLtIFo1rT3JSAnqG5ekzfinlLTN+ZiYlxnPn8nGiXoUSHfWS6LeveBf1ivdvXpKcmEAJHV1KlylLGT099PX1CXv2CEvLijRs+Csa6mqoq6uiqaGGhoYamhoqaGqooaWhioa6KioqWWdqBAYGs3OnOzt3HqB27Rps3bryq545u1ZUBgb69OjRiR49OlG3rjOPHgVgZ2etuO7LTYePNWxPnwbRsmUXWrduio1N1nX2mdGhQ+tCd9aAdHVwzZ3qMnr8OP63aC5mFnZUqCIvd1JWVWPozM0s/qMj2iXLYF61JiEBvoQ980MgEtOs42ACH/6Libn8b+DUYTD71s5g4JQ1KKuo8ujuFZ4+vEW3EfN5H/WKmHevFe+Z0EA/hYhJUSBPDtvnKjYfo8kNGrhgYWHOxo3/Szd2xYoNbN++H5FIhEgkYvjwfjx/HkpiUhJe2pcV0UqVaGXuBT7goM9xjj84g45GadzaTMNc1+ybH/IjpqZGzJ49idmzJyGVSjl9+jzbt+9n27Z9LFu2Hm1tLeztbXFxaU737u0VvbN+FPbvP4K6uho6BdCP7HuirKyMi0sPrlw5hn/kI3R1q8DjACIiHmQqg98lkwjp5cs3cHWV9/Cxs7Pm5Mk9+S6h7+v7kHLljHMeWEyh8fLla0qU0Mp5YB7JSj30c3x8/KhQwUzhrCUmJnHp0nWWLp1DdHQM7u4emTpsp055UfWLht//RRITk/7P3nmHRXV0cfjdQm/SRBBQVMSCgL2jiFERG/ZuNCZ2jZrY8hm7sXejxhI1ltgLVhQBsYGKig1BxN7oTdqW74+VVQSkSDW+z6PLzs6dOxd2986Zc87vIBKVnEgIPQ1dmlVqyLWnN4lNikcilSAWiXkZ8xpT3bK5HmfnznUYGFSldu1WBAVdyrF/mzYt+fXXUSxduo7p0yeU2PtTdgItLn/2ISE5AYCIxCjqWNix8/t1eRo7KPg5egZllYIB+SH0/nVsbGujWQSe97zy0/DfaNN9ONa2mUPcAPb/NYsyZXRZPn/0Z8cRCgW079QFf69DGQw2oUiEbYNWXDm7n8ArZ7Mw2CD2nQC5IkKsyIlPUuSvfYqahhaq6pqkJL/Dxr4JFW0cMryelpaC74mdnN77J9VsHahRszr21eywKG+CpYUJFSzKYlpWP9P3iJvbINz372T7xpm5mp9cLsfPL4CdO/ezc+eBDKJi6eTVOEonq1JUZ8+ep0WLxqioqPDmTTjR0TG5FiGqUsWK8eOHs2LFX5nW5TmhUgACKgVBekhkOr9PG4affwArpvZl/rYrynYtnTKMnrOdZZN60OOnGeiUMSI+JoLDf//B0e2LsK7ViH6uCqETp07f8y4hlrkj2yAQitDTN2bE9E2oqqkTHxPBgU3ziI16i4qqGtq6BvQdU3LqFef5r5JV6M+DBw+RyWRcvnyNxMR3aGkppE23bNmFt/dFzp7dj66uDrGx8Zw4cYZu3TrQo8cP3LzppdytjPSLRqQqQl2shte4Q7jfPs3ofVM5OXJ3wV7xe4RCIS4uzri4KDwcERGRbN68i337jjJhwnQmTJiOoaE+tWrVwMXFmZ49O5fIgpofc/q0N1W+gnpSly+fQF/fmmbNOnD79nmeP7+Fubk9pqa2REY+yDaMVSqT0mSRK8E3QsEDhCIhP20YwJmHPrRY3YkhjfsyrNmgApvn48fPaNs2+zyUbxQ/irILXyaH/TmyC2UBWLduK9u37+Xx42fs379Z2X76tBfNmjVEU1ODTp3asnjxWubP/w3R+9yLn36aiLq6GpaW5ixcmHUOS0lHkpzCcde+SFNSkUklWHVqR92p43h5/jJ+0xcgS03DyMGW5qvnI8xBTCMpKbnYQ9cjEiJREamgp6FLUloy3g8vMa7ljzSv0pAjt0/RzaEDu68fxKVm7hPUBQIB+/dvoXv3IVy6dDVXuSa//DKSVas20a3bEI4c2V7sv5esyC7l4eN7+cBto2ifh99VOrfvPcLUskrOHT+DJC0VzUL2uucXVVU1DE2y3gS8cGoXwbcvc8F7X642MAYP6EjnTv1wGzItQ9hgrQbOCoPN7yxte47MfKAA4pJAL38K9V9E0EsRWdhAqKlrMnz6Xyyf0gffkzsxrWCNU6fBSKUS/DwPcHzXSqyq2LDr3800bZB75eidO9dTvrwdW7bsYsiQvhleS01NxcPDmx079nP6tFeWx7u5tadfv+60bNlE+f39JXxaiuriRX+mTp2Lmppic2HWrMl5CnEcPLgPa9Zs5smTZ1SoYJGrY+RyeaHmfeeGxMR32b529MA6ati2YsHPHVi2/66y/eMQaX1jM/4Y24GDR3Yxd94qAvwvsXbGIEb8vhl1TW069PuZDv0ypw4ZmpgzfsG/BX9BBUSeDbasQn/273enV6/OBAeHcvKkJ927K+qeLFu2Hnf3f9DVVexw6+np0KdP1/c/63Lt2k3q1XOgWaWGrD+5DbMG5ehUSyFz3sG2DaP2Fl3Yh5GRIZMnjyE+Pp49e47g7r6DXbsO4uNz6b365Gx0dLSpVq0Kzs6O9O3btdiVpD7l9u17yvDP0k5UVDAGBlWpVcuRsLBrBAdfoWrVRhga2mSoYZROTEwsNXo1J0kzCVTB19edW0l38H3ol2NOZHY1UHbu3M/27XsxNNRHIpEyffpE2rd3ZsGCVWhpaRIREcn9+yEcOXKSzp1dshzvG8VLVFQM1asXXlL050JZ0nPY3N1PM2LEJAICPFFXV+PAAXf8/AKws2sJQHR0DL6+V2jZsinwIYetNCNSU6X9ke2oaGshS0vD3aU35q2a4zNiEu2PbEevihXX568gZPchbAZkrYKXzrt3SQWyGPoSXseFM3LPJKQyGTK5DDd7F9rVaEU1kyr8sHM8804tx658DQY0yDqHKjucnZujrq6Gq2vfLL/XPkUoFOLu/g8uLn1o3rwjXl6HSpynLbuUh3TikxM4H3qFNb1yJ+39MfeDHmFSvvTXEM2Ops0bc/vmBWo3dcnQHnrvGke3LeGI+y4M9HMXMeBga4WxiRkPbl6kRt0WyvYadRwRi1UJCwogPjYSHb3MqSeRCUL0NIu2iHaqBB5HCLNUhQSoVL0uA35exN+Lx7Hvr9nERr3l5sVTGBqXZf2G5XzXMnOUQk5oampgbm7GxIkzEAgE7Ny5n+vXA7Ps169fd/r374adXc08nycnPleKat68adked+zYzgzPPy1HpaGhzr17Fz49LEeK2sOWkJDIjBmL2LIlo1COj0/myAORSMh5n4PY2bVgw5yfGDEjc3keyyq2lLeyYcrU+fhdPIi373V6dhvIyT1rcBtcesPJ87w996mKDcChQydwc3OlW7cOHDhwDID4+AQSEhKzzOmISIikvVtrDh48TlJaMsdueGAgLEOX2i6cf3gZgIuP/KliVPTeonPnLlCnjh3Vqlkze/ZkfHyO8PJlIPfuXWD8+OGIxWLWrfsbO7uWmJra0rRpB6ZOncetW3dzHrwQkUgkREZG07Pn1yFgIRAICA9XVLC3sqqHjo42AQFnlc/TSUtLo0uXQVjVrEeSYRK/df+ZNm1bYmtbjS2XdzPpu9G5zolM9x7v3785g3CEr687W7euYsyYqchkipuYRCIhJSUVU9Pch0B9o+iJi4unXLnCrWP1qXrop3Ts2BYHB1t27z5IXFw8V65c5/ZtHwIDvQkM9Gbx4hnK782vBYFAgMr7wsOyNAmyNAkCkRCRmip676MAyrdsStjR0zmOlZycglhcvAabrVk1zo8/ysWJx7j8ywkmfTcGgIqGlniOPUDAFE+2DliNmjjvYXbBwYrQnpEjJ+Wqf+3atbh61YMXL15jb+9UItWPpTIpzZd1pOqsRrS0bko9yw8hbMfvnKFFlcboquc9VDk45BEmFl/mYSvJuLRpwv2bFzO0xUS8ZtMfI1mwdAG1a1XK03idu3bG3yujnLq6pjbWdo2Qy+Xcvead+SC5omB1URP6JuflaAOnLrTvMxa5TMbZA38xd/50fD2358tYS+fsWUXdsQkTfuf69UAsLc2ZNm0cgYE+REeHEB0dwosXgSxa9HuhGGslDblcjqpqwXrYYpPiGLR9NA0WtaXh4rb4P76hfG219yYsZjmwZafCWBs9+gfu3Dn/2fFMyhqwZ99Wbvt7cnrf+iz79B+3iOB7d7h1O4SWzetiYGxCYlx0wV1UMZAPgy3jgiQgIBBDQwMsLcvTokUTAgPvEhMTi1wuz3a38HVcOIdTT7IxcgetVnZFPUqdIa37Mt5pGEdvn6bJUldmn1jCyh7z8ndVX0Bo6GOlh/BjTE1NGD9+GCdO7Obx4wCePbvBwoXTKV++HAcOHMPJyQ1j42rUqePMyJGT+fvvf9HXtyY6umhupmfO+CASCbGzy1/8dElELBYrd55MTW2xtDTH0/MAsbFxtG7djenTF1C2bA18fC5R44eqeC06RKNGH4y5sMinHLx1HKeVbnTf9AOh4Y+zPVe6cMSePRuz3GSwsamCWCwiMlLxgQ8Le4ZYLMqgEPmNkkdi4jvMzQtfTCg9lGXJkj85cSKztPukSaP588+/OXr0FM2bN1aGuIBiF/XkSU9SUlIKfZ5FiUwq5WDzjuyo2ojyLZtiXNceWZqE8Bu3AQg7eorEF69yHCc5OaXYPWyFiY6ONlOnjuXffw/z+vXbXB1jYWFGYKA3Kipi7O1b4u9/I+eDipB0gZa7//Ml4Fkg914HK1/bf/MY3Rw65Gvcx48eUc786/WwNaxTlaSEOKLevgAUyoYb5v1Ej7796dutZZ7HG9y/PYF+Z0lOyljHML1W3bv42EzHCISgLi56iy30rQjk8P6/TAiQIxLIGfDTWPT19ZFKJRjpCr5YVt/ExFhpmEVHh3Drlhe//jpauWn7MVKZFMflnei15UcAfEIu0WJFZ5ov60i7tb15FPHki+ZSUhCLC9Zgm3JkLs42jvhPOo3veHdsTBSf4ecxr/AOuYh5GTMehvoRHR3CnDlTlAKA+vp62Y7ZsnldpvxvCke2LuBB4JVMr1esao9ZBWuGj5wKgJqaGslJCQV6XUVNng22gIDbLF36IVH4wIFjhIQ8ws6uJbVrOxMfn8DRo6fR1dVBU1ODx4+fZhrD1qwalyedoN5TBxY1/J2Xx17TpYsLehq67P1hE5cmHsdjzD5qmeU+FrkgCAy8R1qahM6d2+XYV1tbm4EDe7F37yaCgy/z9u09/v57FbVr1+LChStMmKDIZ2nSxJX+/UewZ88RkpMzF/IsKI4cOVnqVS6zQktLU7kDbWRUjdq1a9GliwvXrweyZs1mevXqwu4LG2jkUA8Hc9sMx6ZKUpU5kYMa9mT0vqlZniO7Gigfc+3aTYRCIUZGCkGXx4+fUqaM4svk998X0bx5R+W/0kxKbBxnB41mX4O27GvYljf+N3h0+CT7G7uwyaCqcrFdWkhOTi5UYZisQlnat2/NlCljM5SPcHCw5epVD/r378GWLRkTwPX1y/DwoT9qamocO7az1IdDpiMUiejq606fu76EBwQSfT8Ep80ruDJtPkecu6GirYUwF56zpKTkYvewFTaTJik8dtWrN831Mbq6OgQEeFK3rj3t2vWiTZuevMiFAVyUpAu0eAYpdsyjEqMJeBZIm+p5z/2VyeS8ePIQE4uv12ATiYTY12vMutk/sHhCZ2b91AozMzMWzByWr/HMTQ2pblefW5czerLDHigM/Io29pmOEQAF7GDJFS2qpdGgipTqZjJM9GRoqMoRCOSIhHLEQjlVysloZ59GOwc5Q4cq8s3WrdtapHNc77uNqmU/vP8mHpzBX32W4jvBne61O7Lk7NoinU9hUZAetrjkeC49usqABorQd1WxKnoaCj2I347OY6brJGQyGcuXb6Bp0w4MGPAhr9La+vMe5UkTBtOydVvWTB9IbLSiDq9EIiE48ApH/1mKQCgi6M4tnr8MR11DI9PGRWkjz4GqH6vY9OvXjcOHT3LhgruyGruv7xWWLPmTgQN7Mn78cH75ZRZbtqxAV1eHuLh4Dh48zvff9wYU0qHTps3DysqyRBgb27fvpWxZo3zlBIjFYjp0aEOHDm2wsWkMwJEj2zl8+CQXL/ozduw0hg//BQODMtjaVqNdu1b06uWGgUGZApm7v/8N6tVzyLljKcTY2JCAgLPUqdMaAwOFqpWZmQl+fqfR1tZi1oklnLrnyZkgH1LSUohPSeCnXRMx08tdTmROwhF79x5BW1ubzZtXKL3GL1++VuYwzp49KVMOW2nlypS5mDs70nrbGqSpqUiSklHV06H19rVcGD895wFKGGlpEipVqpjv40eOnIS2tjaLFpVO8Y+SgJqeLqbNGvLc8zx2Y4bS8aRCfOL5OV9iQx/neHxKSgriHIRJSjtz5ixT/rxjxz769/98Xl86YrGYw4e3cf36LX78cQJ2di3p2tWV1avnZ5DELkqyE2gBOBx4krbVnVBXyXvo6Ms3UQBZ5lx9TSxfPImbt0PR09NGX08Lu5pWX+RF6tmzE//sOEjDVgr9gKTEOF4/DUEsVsWiim2m/nI5qBWDh01HA3Q0ZFT4qGa5TAYJKaClBh/rrAwc2IvFi9dy9ux5IiOjikQZ+0XMKzyCvJnoPIK157cAitDv+BSF1yYuOZ5yeoUbfl9UFKToyJPIZxhpGzBqz2TuvArCwdyWOa5TWLxzLQFXb9Px937Etotn+7m91KlRi+PHz3L/vsIj37Wra47j79u9kloObZk+uBkCgUBZM09bRw9Ts/J0690HI0M9NDQ0SPyvGWyfqtiYmZkojTVQ1A568OAhr1+/5Ycf+pKYmIizczfEYjEqKmJGjfpB2bdLl3ZMnTqXhQtLxkLQx+dSlvLaeeGvv/7h7dsIjh/fRZMm9XF0bKx8LSTkEbt3H8LL6wJz5y5n2rT5aGlpUa1aZZycmtG3b9csw/Fyw7NnL5k5M3c5EKURK6sKnDt3kMGDx3Lq1B7KlfuQOzaj/S/MaP8LABdC/Vjts4m/+i5l5onFnH94mf4Nenw2JzI3whGfEhkZTaNGdZU5bV8DqXHxvLp0Fcf3hXlFqqqIVFVR0yvZ6qjZkZqailwoZ5THZNJOSTJIjMvlcuaeWs6RwJOIhMJsFURv3brHvXsPvhlseSQpIhKhigpqerpIkpJ54X0J+3E/khQeiYaxIdKUFAJXbsTho89adnztBtuyZetZtmwd06aNw8vrImPGTKNXry55WjTVrWtPQIAn+/Yd5ddfZ1KhQl327t1IixZNCnHmWZOdQAvAwZvH+dkpf96iW3ceUc6iUomoyVeYVLEypYpVwW1g9+nWitnTfyc26g16BiaEPbiJXC7HokpNVLIwnGVyUC9ekUAlQiHoZlHBwdzclMaN63H58jV27z7I6NGZ79EFzbSj85jlOomElA+L/pXd59Fz849oqKiho6aNx5jMOcylEVXVgvu+TUlL5ebzO1g+N0N8Tcwe3SP8s2kfmILNoyr0+cmNndIDnL9xBEMtAxo3bs/QoYpC1cOG5azqLRIJ8fU5wPRZq6hRvQqu7Ryxqpg5nFVTU5PouKyF50oL+fqrfKpi8zEikShDTZlx435i3LifshzHyMhQKSxREnj8+CkzZvyS7+OfPXvJ5Mmz6dmzc5YSzdbWlfj994n8/vtEAMLDI9iz5winT3uxadNOliz5EzU1VaysKtCsWUN6Jp1oIwAAIABJREFU9+5C3bo5e2vu3QtGIpF89UWYa9euxc2bWcvrZsV4p2H8uGsCf/puRVtV87M5kVnVQPkcCQmJNGhQmytXrud6PiWd+CfP0DAy4PyoyUTdCcLQwZbGf/wPFa1i0HcuAMLCnoIM3EfsyCQxHvw2lBcxr3JUEO3RoyOzZj0o4pmXft69Duf8yEnIpDKQybByc8GyXSv8pi/gqYcXyORUH9IHs482tLLjazbYNmzYxpw5Sxk37id+/XU0EyeOxNDQhubNO3Llyqk8j9ejRye6detAq1ZdmTlzMV6fCE4UBekCLVlxbMTOLNtzw527oZhaFJ7i69eKro4GDZs7c/OyBy1cB/DofgAAlaplXThcLocSUobrs4wcOZjLl6+xfv02Ro36oVAN+VP3zmGkbYiDuS0XQv2U7et8/2bvDxupZ+nAKu+N/M/9D1b1KDl1u/JLfpVnU1NT8fT05cwZH65fv8Xjx8+IS4uHTuB3PgAbG2t61e/MqbdeRMgiedcuiX85zJuEcFqs6ILnmAMsXToTV9d+eTqvoYEuf678X5avSaUyfho1gysXfGjcpme+rqukUAo+lkXDlSvXkUplmQzQ3CKXy7GzU0jnbtiwJFfHGBsbMXr0D4werfA6vnv3jsOHT3HsmAfu7qfZvHknQqEQc3NTGjSoQ9eurrRp0zJT7Z29ew9jaKj/1S5qcsuJE2dJTHzHniEbAZQ5kbnlU+9xdshkMiQSCU5Ozb8qg00mkRJx6y6NF06nbD0HLk+Zw60VG6j32/jinlq+ePToCSpilSwlxrdc3s3GvstyVBDt1q0js2YtQSKR/Oc/X3nB0LYabuczL9obzplCwzl5k1VOSUktMYVcC5pZs5bw008DmDnzV0Dh7d+2bTWDBo3J95hCoZBRo4YwenTpla/Oinv3QzCt8OWF5PUMyvI4NBipVFaiCrIXJk2b1Oes9zVauA4gLEhhsFlVr5upn0gop3ZFKV+o41HoJCSDeQ1nVNU0ePHiNc+evcTSsvDKLPk9DsiUdtFz81BC3j5SKqC62bvSY9OQQptDUZAeMZSbe927d+/w8PDB0/M8N27c5smT5yQkJCIWizExMaZ6dWu6dnWlY8c2jDo1lVWz52FdthILPFbh/LI5/44/xLU3HqiqqmI3vyVe4w5iqGWASRNjRCIRUqn0i6/n6InzjBw2ntS0VAaOX0Kj1nkru1LS+Drvgvlg5879mJmVy3ch0tbv3wiPH+d/Aa+pqUnfvl3p21cRay6TyfDw8ObQoRP4+QVw8OBxZDIZZcsaUbu2LR06tMHNrT0+Ppexta2W7/N+Dfj4XKJfvxGMGjWEHj065enYz9VAyYpWrZqzdOk6LCzM+PPPRZ8drzShZVYOLbNylH2fC2nVqR23Vmwo5lnlnydPnqGuroZUJqXlii6ERT7lhyb9qGfpoFQQPX7nDIZaBizsPJ3KxhUzjZGuFObjcxln5+ZFfAXfAIXBVtJqjRUUL19mFvHp1Kkd0dEhXzSunV0N0tIkXzRGSeNhcDDO3b/74nEq16iHuqYOf+86zdABLjkf8BXQrIkDG9dvQiaTERakEBypVD2jh00klNOoigQLw2LQ9M8FqRJ4GiEk5I2Q+CQBoIKeoQnhLx8TERlbqAZbVmkXOwetw2Z2Ex6Gh1HF2ArvkIsZBElKI6mpqQCZ1sEvXrzi5ElPLlzw486dIF6+fE1SUjKqqiqYmBhTs6YN/fp1w9W1TZZ/h0Wdp/PT7omkStKoaGjB2p4LODj5GEeOnMpyvZZurH2aopJboqLj6dpjBLcC/LFr+B0/TFmNqmrx5PQWJN8MtvdcuOBHo0aZd5xyw6FDJwgICGTHjj/RK8B8H6FQSLt2rWjXrpWy7fr1W/z772EuXPBj4sQZjB6tUD40NjZiwoTf6dixDS1aNMm34VkaCQ4OpUuXQdjYVGbu3KyVIAsSX98r6OnlvYZQSUfTxBit8qbEhDyijHUlXpy/TBmb0lvz6Pnzl2hpaSolxmOT4ui/bST3XgdnUBB1v32a0fumcnLk7mzH2rfv6DeDrZhITU3LkM+Vm0L3AM7Ojsyc+SunTp1j/vwVyGRyJJI0hg0bxODBfViwYJWy/7t3SdSoUZXffhtPtWqlP+zOyMgAubxkLrzzy7OwEMwsq37xOAKBgPZ9xrFy+QIG9237n/Cy1bGrRGzUW8KCAkhKjEPfyFQp7Q8gFspxrC6hrG7Jes9IZfAqWkDIGxHhcQIEApDKBMhkMs4d3kTkm+cAPH8ZTp0vkx/IM2KRmJXd5zJw+2iEAiFlNHRZ0/OPop1EAZOamgbAwoWruXz5GiEhobx9G4lEIkFLS5Py5U1xcLBl3LifaNfOCWNjoxxGVFCrfA28xmUMz65Y0ZLDh0/So0cnAqd5ZzqmadP6LFiwko0b/+Hvv1fRuHG9TH2yYsGSLSxZuARtXX0mLTuMlc3XI8b3zWBD4cl6+vQFS5bMytfxQ4aMA8DV9ct3/3Kibl37DHltT548Y9Gitbx9G8Hp015s374XmUyGvr4eVatWpmnThnTt6kqNGl9+oysu7Oa3RFtNC5FAiFgkxmvcIaLfxTBkxzjCIp7y5M5zUCVfOR/54caN2xmEdr4mmiyajvdPE5GmpqFb0QLHtQt4fMyDS5NnkxwRxeleP2JYqzouB/4u7qnmyKtXb9HV1VY+/1hiPLcKouns23eU9esXF+p8v5E1qampWcpMpxe6P3jw7wyF7j8WCUpLS2P8+OmcPbuf8uVNSUlJ4enTF8rXP+5/8OBxOnceyMWLxzAyKt1KhPr6CvVhxe+u9Hsnn7+KRCpNQ8+wYFT4atZz4tiO5WzbfYYh/dsWyJglGRWxiMrV7bh+/hgAlZThkHJURdCqpoQyWiXDWJPLISJeQOhbIc8ihQgEIJG+j9GUQ1x0ONuWTeTedR8AqtaoRQeXottMa1a5Ic0qNwSgQ602dKjVpsjOXdikl09Zt24rlStXoH3773B2bk7Llk0KXHW2ZcsmHD58MlN7+kbT4sWzMDU14fvvx+Dq2peHD/0/q6oeePchvXr9xNtXL/mux3C6DPr6RPi+GWwoPCYATk65r4HzMTdueFK7tjNt2/bi9Ok9BTm1HKlQwYK1axdkaLt3L5jDh0/g63uFv//exdKlfyISiTAxMcbWthqtWjWja1fXXO+OlATch/+DodYH6d7l5zbQpGIDvCdfAjsYs7nwVaLSCQl5hL19zSI7X1FiWKsGXT4RKqjYoQ0VO5S+m1J4eATaRlrEJsVlkhhvb9s6VwqioAiNzaoY9jeKhtTUNPT0MkrFpRe637t302eVdRMSEpFIJBgYKLxuampq2db26drVFQ8Pb/bvd2f48O8LbP7FQXqERXh4ZIkomfOlBNx6iFmFqgUmLCEQCGjfdxwrli9mUJ/v/hNeNofaDvh4eQNgVb0OAuSoq4CzbRraJSBaLCUNgl6KePRWiFQGEhkoqsJ94F7AebYtnUBcdDgqquqYmlfA13vvfyqiqDDR1NRELBaxefOKQo8o6devOxs37siUHx4YeA+A6tUVkQ6HD2+jcuUGzJ27jGXLZmcYIyj4CYeOnsXr3AWuXbmIReWazN9+ED2DsnyNfDPYgJ07D2BhYZbvD33Fipbs2rWevn2H5zvmtiCpUaNqBo+aTCbDx+cS7u5n8Pe/zpw5y5gyZS5qampYWJhRt64dbdu2wsWlVbHV7skrJ+968nBlGAABez3puW0osztMLpJzp5es+EbJJjIyBqOq+nRc3z+TxHhjq3q5VhDt0aPTN4OtGJFIJKipffASpRe6d3ffkanQfXrdRICZMyfh7NwcFxdn7Oxa4OjYmLZtnejevWO23/X29jUIDn5UeBdThAiFQp4+ffFVGGy374Rgalmwoaq1GjhzfOdyduw7x6De+RMbK000bmjPvp2KyIgq1WujrS7H2VZS7BL+aVJ48FLI/Zci5HKQyTMb5ZK0VNz/WYrH/vUAmFWsRmJsFMeObEX1KxUkKi7KlNHj4kX/QjfY7OxqIBaLOXr0FF27dlC2Z+V169PHja1b9yBU0+Xa1Rs8CQsjLiYKmUyKuqY2hmXNGfzrKuq3zJt+QWnj2zsduHz5Go6Ojb5oDBcXZ0aP/oG5c5fRsGEdmjVrWECz+3KEQiFOTs1wcmqmbEtISODYsTOcPu2Nn18Ahw6dIDU1DR0dbSpXrkijRvXo1KktDRvWKfbdKwECum4cjAAB3zfqzfeNevPwRRgkwf37FylnUjZbWfaCRiaTkZiYmOF3+Y3ckV3ukYWFGf/+e4iVKzcCcuRyOf36dWfMmKGMHDmJixevoqurjVAoZPHimTRoUDtDu1wO8+ZNzVRzKjY2jsaG9VgyfmamueRFQbRtWycAIiIiS32oXGnk05DIzxW6z6pu4qpV87l79wE+PpdYs2Yz3t4XsxQLAkU41teCvn4ZPDy8cp37UZK5FxRCOcsvV4j8mPRctuVLVzCgp/MXFacuLlq06IyHx17U1HIuRO5ga0VqchJiFVXs7GrQ2k6CiqgIJpkNUhk8fCPkzjMRMrkiNy0rwl89YfPCMTwJvoVQKMKp8xD8PA+weet6LMxLT5RQacHCojw3b94pknNVrGjBoUMnMhhsR45kNNhCw15w/NQFEhMT+XfXXkzKV6Jui87UrOeEda1G/yn15v/OlWaDTCbj5ctX9O//+bpbuaHmkVNMUVXhXMf+vKppQ48Lx0iOjuHckHEkPH2BtmV5nP9ehVoZvQKY+Zehra1N795u9O7tpmx79uwlhw4dx9v7EocOHeevv7Yjl8sxMjKgenVrHB2b0LVr+3wX984vp0b9i6meCeEJkbj99T3rF2wFS/D1dc9QQLsouHcvGBBgU4rFOIqbT3OPzpzxYd26rRw8+DempiYkJ6ewZ89hZf/ZsyfRubML5875Mn78dC5ePJah3df3Cj///D+uX8/oBUtMTCwQ74KGhsLrfPjwKYYOzVt9mG98OWlpkgwL0s8Vus+OmjVtqFnThl69OuPg0Cpbgy0w8B61a9vmeY4ymYx3796RmJj00WMSSUmKx+TkFJKSkklKSiY5OVn5PCUlheTkFFJTU0lJSSElJRWpVIpUqigdkv6zTKZ4/PS5TKZoUzwqnqf/i4+P5/jxM8yY8Wuer6ek8SgkhLZ1O+TcMY/YNfqOYzuXsfuAF/16tMr5gBJGYOA9EhISc2WwhYYo6klWrGxDGwchxRUFKpfD4wghN5+IkEizN9QA/L0Os3vNbyQnJWBgXJ6BE5ZwYNMcfho9mjZORawy8h+henVrLl68WiTncnRszLFjHhnawsKeUrVqJaRSGUNH/M6R/fswMa/EzI3emJTPPnXhv8B/3mA7fdoLgUBYYLuQY+/6YmbdCO4+oEtaGreWb6C8YxPsxw/j1vIN3Fq+gQazSmYypIWFGWPH/sjYsT8CikXIjRu3OXLkFJcuXWX16o3MnbsMFRUxpqYm2NvXpHVrRzp1cqFMmYJTx/wUUz1FormxtiHiFyLuRgVham+CkaUip+113Nts62gVNN7eF9HW1iqSc32NZJV7tHz5eubMmYKpqeLvrK6uxqBBvTId26RJA8LCnmRqr1+/Nq9evcnUnpSUTIUKBSf1vG/f0W8GWxEyZMg4zpzxITHxHWFhT/Hw8EYoFJCY+A4HByfkcjkLFqxk9epNaGtrER+f8N6Y241QKFRGBqSmpqKlpYVUKiU+PoGUlFTs7VsSHR0LwJo1m5HJZCQnJ5OYmMSxY2eYM2c5crnC8JHLFV5fmUyu/Dk9MT4rJUaBQKFmBwKEQgFCoRCBQIhIpJiTSCREJBIp/4nFYsTi9Eexss+HR5HyGBUVMWpq6ccKEYvFWY4nEgm5f/8hQUHBRfXnKjRkMrlCIbJCwQtnpXvZli5ZQ59uTqXSy5YbY03xWVkFwMC+rsVmrKWkgeddMYkpgs8aaslJiexdN4PLZ/cBUKdZe/qO/oMDm+dgVakyv03sX1RT/s/RsGEdDh06USTn6tevG1u27MqUx2ZV2RoLy7pIpVL6j1tIk1Je8Lqg+M8bbHv2HKZiRYsCG08gEPD8+S3Mze0pW7YGf1WxwtV9BwDWfdw43rF/iTXYPkUoFGZSpUxNTeXMmfOcPHmWa9ducfbsecaN+x8aGhpUqGBOgwa1cXFxpnVrxwJxVSemvkMmk6Gjrs3qdRu5FX6XIW590bTWYPe1Q4xvNYzd1w7hUsP5i8+VG65fv4Wp6deZ0FrYZJd7dP9+CPb2OXs1Tp06l6Xaqafn+Sxr5qWlSQrMG2xsbIi/f0CBjPWN3HHt2k1q1aqOQCDg0qWrxMTE0r9/D/bsOczAgb2QSiVER8dy8OBxatSoSnh4JCKRiGrVqiCVSpFIpCQnp+DvH0BERJTSIHJ2bo6pqQm3bt3lwYOH7+X+pZQvb0rr1i2wsDBDVVUVVVUVVFVVUVNTQ1VVBTU11ff/1FBTU0NLSwNNTU3lY3GHjn9KVFQMNjaNWLhwNZMn578Qd3Hz9EU4CATolCmc8Df7xm05vnM5ew+fp3fXFoVyjsJEXV2NlJQU9uw5wooVG6hWzZpdu9Zn6HPp0lXu3w9BU1ODIUP6FMs806QKYy0+SYCc7I21Z6F32LRgDG9fPEJFTZ2ew2bStG1vLpzaxdOQQC767CuVhnV+SUhIQFtbO+eOBYSTU3OSkpIzGVGFQe3atQC4e/cB9vY1CQ1TKPiePuVB/RadGPjzEsRfgcptQfGfN9j8/AJwcSmgxb5AwMmug0Eg4PDUcXT5YyURj5+i+T5sT7NcWZLCiybXqrBQVVXF1bU1rq4fFsiRkdEcPXoKT8/znDt3gV27DiKRSChTRhdr60o0adIAN7f2GZQV9fUVCeR37/p+ViI/PD6C/ttGER+fwNNnz6lb1p6l42cRlRjN4B3j2HF1H+ZlzNg6YFXhXfRHPHgQmkno4Bu543O5R5/j998XsWTJnxgZGbBq1R8Z2mfMWERERBQeHvsyHJMeFla5csUCmXuPHp3488+SX8rga0IqlWJvb8sff/zG06fPsbd3YscOxd+5SxcXbG2rAbBixdzinGaJxcCgDNOnT2T27CX079+91IqP3Ln3GJPyFQtMIfJThEIhLn3GsWTxanp2cSw1xoBEoiiMbmxcPUN7r15dMvWdN285ACNGDEZLS7PwJ/cJEil43RWTkJy9sSaXyzl3ZAuHtyxAIknFrIINQ6euwdSyKo+Db+G+fSlHj+1GT7fo518USCQSLl70x8PDm6tXb/Lo0ROio2OQyWQ0alSXPXs2oqtb+PVf0wX4AgJu06BB4YedyuVyTEzK8sPw3zm0918AZqw7SznLb2knnyLIS3FNgUAgj44OKcTpFC0SiYSyZWtw7txBHBzynrfwKYmv3qBlakJSeCQn3b5H0uE73ixcjXj+NEaMGAzA9op1Gfj4+hefq6QTEvKIQ4cUpQXu3w8hKioagUBA2bJG1Kxpg6mpCTt27AfA1NSES5eOUyab3L7bt+/j6NiJ+vVr4+GxtygvIxMVK9Zl7NihTJhQvEqgpRFzc3uCg6/Qpcsg2rZ1UuYeubj0YerUsTg6Ns50zMiRk2jb1onOnV2ybO/YsS0bNmxjz54jeHt/yHt78uQZDg6tKKjvq5s37+Dk5EZUVHChLRy/kZFq1ZrQu3cXZs78EJFw9+4DmjX7kMt08+Y5KlQouAiJr5H69dsgEom4ciWz+lppIOzpG5o1dWXx7hsIRYWjkiGTyZg7sg2zZk+lR+eiq+n1JSQkJGJh4cCgQb0YPfoHqlTJOr/n9u17ODp2RkVFTFDQJWWJiy9BLoc3MXJ8At6QhAEpKe8w1tfGsIwa2uqgpSZHQxU0VOSoq8q59khMRLwgSwVIgPjYSLYv+4U7V88B4Og6gG5D/4eqmjoJsVEsGNeB32ZMY3Df0ldeJisSEhI4dcoLL68L3Lp1l6dPXxAfn4BIJMLIyABr60rUr1+bdu1aoaIipk+fYURHxzB//v+KRKHayqoeI0cO5tdfRxXqeaKjY6lUqR4amtpIJBLKV7ThcfAt1p3InPrwNTOifQXk8mw+HB/xn/awHT16CrFYXCDGGoDW+xwcDWNDKnT4DhUtTcJ1dfhj2nzq1LGnVgVzNIz/Gypz1taVmDRpNJMmjQYUN8RLl/xxd/fA09MXT09fQBFC+urVG6ys6mFgUIbffhuPq+t3mJgYAwoJfUfHTojF4mI31gDi4+MzqRF+I/doamqwZ89ftG/fh7JljRgwoAfjxw9jxoxF/PvvX5iYGJOSksLWrf8ybNigHMcTCoUMH/49u3cfwtPTVylFfP9+CAKBgJ9//h+mpiZYWJTHysqSKlUqYmRkmGejK907HBh476utwVeQJKel4LquLymSVKQyCZ1qtWNq23H8uGsCN5/fQSwUU9fSjuXd5qAiylpXXCqVZir6XLOmDdHRIVy+fI327fvg4NAKLS1NAgI8KVv2m2JcVhgZGRAa+ri4p5FvrCxNKGNgzLPQu1Soalco5xAKhXzXfTh/bdxZagy21NRUIGcP8/z5KwEYMKDnFxlrUqmUQ0fOcuX+O6rVa4NYrIKqennUhSLUNbVJBV7FKPoKBHJEAhAIFMadnKzl+gGCbl5k65KfiY16i6a2HgN+XoRDk3YAyKRS/l48Fud2rqXWWHvx4hXHjnlw8aI/d+8G8fLlG5KTU1BVVaVcOWNq1KhK795uuLi0onLlrI3ue/cuMGPGIiZNmsWWLTs5eHCrco1UGJQvX65AlSJTUlIYMGAU167dIjo6JtPrSe8SAHgcfAtN7eIX5Sup/KcNtv37j1GpUsHkuKQlvkMuk6Gqo01a4jtenLtA7UmjqTewJ45bdtGuXS+O/zISy4IKvyxlCIVCmjVrRLNmjZgzZynbtu0hOPgKN27c5ty5Cxw4cIwHDx4yceIMJk6cgVgsQl+/DOHvQ0i3bFlR5LHcnxIW9gSZTK6Mu/5G/tDXL8O+fVtwde2LoaE+7du3Jjw8gi5dBqG4tQvo3797rscTCAT88stIVq3aqDTYHj16gkCgEImJj08kKSmJ1NQ0pFIpACKRCFVVFTQ0NNDR0UJPTxcDA31MTIwwNTWhfHkzKlY0p3LlisTHJ9KiRWcAFi5cnSk/5BuZUROrcmTYdrTVtEiTpuGytjetqznSo3Yn/uqzFIChu8az3W8vPzTJWshFLpcTH5+Y5WuNG9cjOjqEkyc96dt3ODY2jbGyssTb+3CRhA2VFrZu3YO//w18fd2LeypfRL1GTQi6daHQDDYAE/NKXDgeXmjjFzTJySk59gkLe8Lp014IhUImTBie53PExMTStm1PgoMfIVZRY9KyQzg0t0as8vm8IrlcgCSH4C2pJA33Hcvx2PcncrmcKjUbMHjSSgyMzZR9ju9aAbI0Vi8Zn+e5FzUymYxbt+7i4eHN5cvXCAkJ5e3bSCQSCVpampibm1Gnjj0TJjTBxaU1BgZlcj22UChkzpwpDB3aDze377G1bc6cOVMYPvz7QrkWG5sqygLWBUFi4jvOnPEBQCQWI5VIEIrEWFa2pZXbD1SuUQ99I9Nv0Ss58J822K5du0n37h0LZKyk8AjO9le4j2VSCZW7dcSitSPGdWrRJ/AuNc9f4ciSP5kRcqVAzlea8fMLoFKlihlETdJd77NnL2X58vVIJFKlsVauXFl++GE8aWlpqKmpYmxsRJUqVtSpY0erVk1p2LBukdTiOHfuIpqaGiVOXKC4SEtL48wZnywFP7IivQYbgLm5KbdueSmf9+vXnX79Mhtp2cmvf9reqVM7OnVqp3z++vVbjI2NuHnT69NDCQ+P4OHDx4SFPeX585e8fPmaN2/eEh4exfPnL4mLiycxMYnk5GSlgZfOqVPnqFmzObq6OhgYlMHY2JBy5cpibm6GubkZlSpVwNLSvFBVU0sDAoEAbTWFmmqaVEKaTIJAIKBN9ZbKPnUt7HkZm1ndM52+fbuxfv1WfvllBIaGBln2cXFxJjo6hN27DzJy5GQqVKhDw4Z1OXx4G+rqOavnfe2EhIRiYmKcpVhPacK5VWPWb9hJ2x4jC+0cGpravHu/018aSPewfY7Fi9cil8txc2ufrxzGDRu2Exz8CGdnRwZMXEWKoEy2nrK88Pp5KNuXTSQs6AYCoRDXvj/j0ns0ItGH+/htf08un9mHj9fBElcc+82bcDw8vLl40Y87d4J49uwl8fGK946eni5WVpa4uLTG2bk5Tk5NUVdXL5DzVqhgQUCAJ3PnLmfq1HkMHNgTTc2Cz+mrX98BDw/vAhkrMiqOuQs2oqtvSFx0FCbmlXHpPZZ6jgVfpuNr5z+bw5acnIypaS2uXDmBjY11oZ8vNjaeihXrABRYXk1pxcamMT16dGTu3GlZvi6TyRg7dho7dx7g4UM/5WItOjoWT8/zXLzox82bd3n27KUyKVdTUwMzs3LY2FSmQYM6tG7dgurVrQt0x2bEiF/x8wsgIMCzwMYszbRp04OrV2+WyPfz0KHjuX37Pn5+p/J1fEjIIxo0aItYLObs2X0IBEKGDBlHaOhjhg0byOvXbwkPjyQ6OobY2HgSExNJSkohLS1NKfUuFAoRi0WoqKiirq6GpqY6Wlpa6OrqoKenMPgMDQ0oW9YIExNjTE1NMDMrh4WFWYHd4IsTqUxKyxVdCIt8yg9N+jHL9UMuWpo0jdaru/NHp//RpFL9bMewt2+Jrq5Orj1Eq1dv4vffFwLQocN3bN26GlEh5T2VBhYvXsv69VsJDS2aukqFRXhkHLVqObJ4dwAqqoXz2YiJeM2CnzvwOPRSoYxf0AQFhdC4cftsv3/fvAmnZs3mSKVSrlw5ma/aofPnr2Dx4rV4XH/EozcC5OR/szIhLprr593x9zrEo/sKxV19I1MG/7oS61oNM/QNf/WUxRPd2LTlz2Ktt5aamoqvrx9eXr7cuHGH0NDxpSwxAAAgAElEQVTHREZGI5FIUFdXx9S07Ps1R12++64FNWpULbINXX19a4KDL2NsXPCh4EFBITRp4kpERFC+ruddUjJLlm/j3937efX8CZraOtg3bofb4CnolPlvpAXlhW85bDlw4MAx1NRUi8RYA9DT0+H8+aM4OnZi4MBRbN++tkjOWxKJjIyiTRunbF8XCoWsWbOANWsWZGjX19eje/eObN++l5s37yhvVE+fvsDDw5srV65x714wvr5+zJy5GABdXR3MzU2xta1Go0b1adOmxWdVKT/H/fshBaY6WJKRyqQ4rXTDVM+EPUM2MvLfSVx8dBVddUU46p+9FmIkNOTq1ZssXz6nmGebNW/ehH9Rvoa1dSXl+yss7AktWnRR7qDmpHApk8mIiYnj2bMXvHz5mtev3/L2bQRv30YQFRVNdHQs4eGRhIU9JTHxHUlJSaSkpJKWloZUKstg8KmoiFFVVUVdXR1NTfX3jxpoaWmiqamBjo620gAsU0YPPT09DAzKYGSkj6GhAcbGRpQpo1ssXmGRUITvBHdik+Lov20k914HU6OcwtPzy8GZNLGq/1ljDeDo0X9wcGhFUFAI1arl/F09ZsxQRo/+gRkzFrF69SaMjKoxZEhfliyZ+Z8MtzEw0Cc1Na24p/HFGBvqYl7Rmkf3A7CxL5wcYnUtHZISi8fDlhIbh+/YaUTfDwEBOK5ewLMz3jw54YlAKEDD2BDHtQuVefKgKJPyOVau/AupVIqTU7N8GWug2CT9rtsw7j1JQU09756c1JRkbvt74u91iDtXvZBJFcqWauqa1HXsiNuQqWjrZvyefvrwNn+M7UAHt+5Faqw9ePCQ06e98PcP4P79EF6/fsu7d0mIRCIMDfWxsrLEzc2VFi0a07Jlk2LfVBMIBISEPMpgsMWEPOLckHHK5/FPnlF36jiSo2I++176lHQl7KCgh7n2zkulMtZv3MfmzTt4HPoAFVV1qtVuxqBf11DB+lsaSUFQKg22J0+eoa2tlW2YTG44ePAE1taVCnBWOVOrVnXWrPmD0aOnsm/fUXr06JRtX3Nze2UImYeHN1OnzuXw4e20aNGZ0FB/BAIB/v43aNu2J3funKd8eVNiY+NxcHAiNNSf0aOncPjwSR48uIyOjmKhPWXKHDZs2K70Wr15E87UqfO4cSMQNTVVLCzM+eOP37JVmyoIHj4MQyqV0aTJ5xdq2REYeBdf3yusW7dY2WZpWZ6hQ/tlKGosk8m4c+c+Z8+e5+rVm1y9egN3dw/Gj/8fIpEIfX09Kla0xM6uBs2bN6JVq2Y55r48e/aS1q1LX52evLLedxtVy1YmPuXD4mV2h0l0tvug1JheluH773sX+fxyQ2RkFFWrfpks8LlzvnTrNkT5fN26xfTunVky+1OEQiEGBmUwMCiTL4ESiUTCmzfhvHjxmhcvXvHmzVvevo0kMjKK+PgE4uMTePcuiTdvwnn8+ClJSSmkpKSQmppGWloaaWkSpFKpsujzx/P6UIBZRVlbTF1dDXV1dTQ0NNDW1kRbWwttbS10dHTQ01OU5ujVq3OeryMdPQ1dmlVqiGfQeWqUq8pCj9VEJEbxT7ecN600NTUA8lQrUyAQMHv2ZGbO/JVRo6awZcsutmzZxbFjO2natEG+r6M0YmioT1pa6TfYABo1aULQzQuFZrCpqWuSlpZCSkoaampZC+EUFlemzMXc2ZHW29YgTU1FkpSMfrUq1PtNkbt1Z8M2bixaQ7OPNsg+l8MWGxvPli27AJg2bVy2/XLCwNyOWu07oaquketjZDIZIbev4O91iIALJ0l+Fw+AUCiiZr2WNHByw75xm0wGoEwmw+vwZk7t+xNVVVVkKZnFKQqCN2/C8fK6wOXL15QKjbGxschkcnR0tDE3N6VOHTuaNKlPmzYtS2w5jDp1ajFmzFSuX/8Q8VPGuhJd30cjyKRSdtdoRgXXNqiV0f3se+lThEIh2tpa+PhczNFge/U6gl59x3I3MACBQEiVGvUYM3cH1Ws3U/aRSCSc3ruWGxdO4NRpME3blcx1Q0mnVBpsDg6t6NWrC+vXL865czbcvHmbQYN6FeCscke/ft15+fI1Kiq5uyH4+Fxi8uTZHDz4NxYWZpiYGPHgwUOqVbPG3z8AO7sa+PvfwM3NlGvXblK3rr1yN93KqgInTnjSq1dnZDIZvr5+mJkpdlXkcjkDBoykd283tmxZASjkf9++jShUg+3YMQ90dXXynXPWooViwZzTwlkoFGJnVxM7u4wL5tTUVC5fvoaX10Vu3Ajk9GkvduzYR2pqGqqqqhgbG1K5cgXq1LGjZcumNG3aQDnX2Ng4HB0b5WvepYUXMa/wCPJmovMI1p7fkmWfCxf8ADh37mBRTi1PxMTEKd/reUEul7Nq1UalhxbAy+tQgSnJ5gaxWEz58qbvFwpfvsOcnJxMeHgUERGRREXFEBUVTVRUNDExccTFxRMbG/feEEzk3bt3REXFkJSUTFJSMikpKURHx7BkyVpOnNiV6/CbiIRIVEQq6GnokpSWjPfDS4xr+SPb/fbiGezLkWHbc+X1O3XKC3V19XztZguFQtatW8SqVfMoW7YGV65c/88ZbPXrO5CSkkpoaFi2CnSlhe+cGzNr9tJCG18gEKChqU1UTAKmJl8ufZ9bUuPieXXpKo5/KkJ5RaqqiD5RR5UkJikkFz8iJSV7g23jxu2kpKRSu3Yt6tVzyNe83sYKqFC3K8JsVFw/5UVYEP5eh7jqfYToiFfK9gpV7Wng5EY9xw7o6metbBgb9ZZ/lk8kJSmeU6f3sfiPxdy//2Wh9mFhT/D09OXatZsEBT3k2bOXxMbGIZVKUVdXw9jYEGvryrRt68R337WgTh27UpWfvm3bGuzsWrJr10H69u2a6fWXPpfQqWiJjmX5DO1ZvZeywtS0LGfOnFeWpMqKA0c8Gf7jWHT1jRn8ywrqNO+Q4Xf48kkwBzbNI+imL2KxCjY1bNm1ZhpHti2i24/TadjKLQ9X/I1SZ7D99dc/ACxdOivfYyQkJBAVFVMsBhvAr7+OzlW/S5euMm7cb+zduwkrK4WaZcOGdfH3v6E02EaMGIy/fwBubu3x9w+gYcMPC7xu3Tpw6NBxevXqzIULfjRsWIezZ88D4Ot7BbFYzJAhH2p61KpVowCvMmsuXvTP0275x/z44wQAHj8OyPf5VVVVadGiSSZp/ri4eM6d88XX14/AwHvs2LGf1as3I5VK0dTUwNjYEKlUSqNGdfN97tLAtKPzmOU6iYSUjOp8c08tZ9GZtbSwbsy6wVsRi8UlWi0zISGRChXM83TMkCE/c+jQcQBsbCrj7r4T46+gDIe6ujoWFmZYWJjl3DkLXr16g6trX2rWdGT16j9y5W17HRfOyD2TkMpkyOQy3OxdaFejFUaTq2FRxow2q3sA0LFWGyZ9NybbcdzdT1OpkmW+5p1OZGQ0AEOH9v+icUoj5cubYmFRnjlzlrF16+rins4X0bpFbYY9CeFdQmyhSX9raOoQHVu0Blv8k2doGBlwftRkou4EYehgS+M//oeKliZX5yzj4b+HUNXVob37PxmOyy4kUiKRsHr1ZgCmT5+Qrzm9ihZwMViMUPT5hX10xCuueh/B3+swL8LuK9sNy1nQ0MmN+k5dKGde+bNj3Ll6jn9WTKJz914snjMSNTUVateuhZfXxRznKZPJuH37Pj4+lwgICOTBg1BevXpNXFwCcrkcTU0NypUzplKlirRp05JmzRrSqFHdTOVCSiPly5syeHAfRo2azO+/L6BFiyaMHfujMqrj0cHjVO72Qdjjc++lrPjttwkMHjyWMWOmsnr1H5leHzpiBgf27KaRczcG/LxYaajJZDJ8jv/D2QMbiHr7AjOLivyxaD4/DVEYldEx8Qwd/hvblk7g0Jb59Bg+k7rNXAviV/LVU+oMtsmTZ1OpUgW0tPKvjPPvv4fR0FAv0QVXU1JS6ddvBO7uO5TxxAANGtTm0qWrDBzYk8ePn9Gliwtbtyqqw/v7BzB+/Afp3sqVK3Dy5FliYmI5cOAYPXt2Uhps9+8HF6nXIJ2goIdK6fW88PjxU/bvd2fmzF/R0yt42W5dXR26dGlPly7tM7S/ePGKM2fOs2vXAV6+fP1VfNFnx6l75zDSNsTB3JYLoX7K9t/b/4KJjjGp0lTazukF9hC0L+ebaXGSnJyi3OTIDc+fv+LQoeP07u3GqlXzcu0B/y9gampCQIAnkyfPZsSIX9m27V8mTx7z2XqEtmbVOD/+aKb2iIVBeTp3QMBt+vT5sl3YtWsVnuLC+N4oDfTv351VqzYV9zS+GC1NNSrb1CIs6AY167UslHOoa+kQHVO0eWwyiZSIW3dpvHA6Zes5cHnKHG6t2EC938ZTf/oE6k+fwM1l67m3cQd1p34Ib8xOJfLy5WvExcVjYmJMy5ZN8zYXOdx5JuTBKxFSWfbGWtK7eHatnsb18+7KsGtNbT3qOnakYSs3KlWvm2POaFpqMof/XsDNS6dZu24FHdp+8H43bdqA2R95UyUSCf7+Afj6+hEQEEho6GNev35LYuI7BAIBOjralCunEADp2bMzLVs2wd6+ZqnymOWHJUtmMn78MP7882+OHfPAyckNbW0tGtS1o8ONO9T7/Rdl38+9l7KiU6e2NGxYh927D7Fy5Tzl7zI8PAan73rx+sUzhk5dqzS2ot6+4MCmuQT6nUUul9OshROLF/6DdeWM62z9Mjoc+HcV4eExNGragU3zR5I2YRmNWncr4N/O10epMtiOHlUovn1pAeWjR0/lKoG9OFFREdOgQW127NiXQeSgYcO6rFjxF0+ePMPS0hx19f+zd5ZhUa1dGL5n6G4QEURBUVQUGwO7QOzWY3d78NitfMaxuz2KHRioYGNhB7YiitggIdJT34/R8SBISXq4r4tL2bP3u989M8zs9a61nkcNmUxGTEwsd+8+pHLl5D41LVs25cCBo9y8GZAvBCI+fgyjYcPMB2yOjnL/ulGjBmb3lNLEwsKc3r07c+fOPT58CM3Vc+c214Jv4/voDKeenCdRlMiXxBgG7nRnfTf5F6eyQJmAfQ8xamD4S/2juYFIJKJ06Yz3qBYrZp4v1S7zE/PnT6NNGxfGjJlKu3a9UVVVpUaNKgwd2oemTeszdeo8Tp70U4iifFtUk0gkiMUSpFL5v3Xr1mRiOjcLAHFxcYSHR9CzZ6dfmvfKlZt+6fiCzvDhfZk3bzlXr94q8BUCmtraiEXpy9lneXxNHSIjv+TY+KmhVbQIWkWLYPq1dLFEq+YELF2XbB+bDm6c7Dwg2U32z3rY9uw5BECnTq0zJbSTIIJLT5WJjBWkGayFvX/Fmpn9eB8SiLKKGg41GlG9QVvKVa2frj/bN96HBLJ5wQiKWRXn8qXDFDFN7klWqVJ5pFIpDg71CAuLICEhAaFQiL6+LhYW8h6zqlUr0aBB7VzXIshvWFiY4+ExCQ+PSYSFfaJGjRZ88PPnEVCneWfc3YfSrVs7xXshtfdSanTo0JcbN+5w4MBmRbDmffwi/foMQUfPmDlbLqNvZMb1cwc5vms5H9+8wMjUnLETxjJ2VC+UlH4eLO/Y48vE8dOJjYmmQeu+VGuQfm94IQUsYOvVawTq6mq/fLN4794jhg7tm/6OeYhQKGTLluW0adOLRYvW4O4+BAAbG2uioj7j63uWatXkH/CVKpVj584DFC9eDG1trWTjtGvXkvr129C1a9tkq01lypTi8OGsSZ5nlY8fwxCJRDRunLmAbfp0uefW48fyrI5MBo/eCrEzl6KcS4rdDx48yTaT9fzKdJexTHeRr8hdCrrGivMbWd9tER+iQymia0qnzv2hOHRvkb9XwqKj5TdcVlaZK4ksJH2cnKpy9aoPSUlJbNmyC0/PfXTtOgiBQC4q0KJFQ+LjE4iNjePjR7kJsbKyEkKhEkpKQoRCIYsXr8HL6xhHj+7AzCz1nhaApUvXo6WlmS03ZMOH9/vlMQoqmpqa2NqWYNIkD44c2Ya2tnZeT4ndDvVR0dZCoCREqKxMm3MHFY/dW7GR69Pm0+P5NdR/+K6XSaUIcjBroqGlw+fo3M2waZqZoGVhTlTgC/RLleTthSvo29nyOSgYva+qxCG+Z9D7YQEqtR42iUSCt/dJADp0yLjPVVi0gItPlRGJQcbPg7XHty+ycd4w4mI+Y25VisHTNmJa1DrD55HJZFzy3cmRbQsZ+ac77sM7IhSmPJ+ysjJ9+nRFIpFQvboj9evXzrfiH/mJ/v3HIJFIGNvYGYOaVXh59RajR09mrvs06rVvyaxZ4/mQynvpR9q27Y2//w1OntynaH0YNsqDnZ5bqersRqdBMzi4ZR63Lh5FnJRI5eo12eG5jCqVyqQ57sXLdxk0aCwf3oVQqVZzeo5ZiLpm3n8eFRQKTMB2+bK8ROvqVR9FCj4rMs0REXLfpD/+6Jit88sJNDU12LNnPS4uXTE1NVbMuVo1R9au3cqqVfMVv3t4LKFJk/opxrC0LMqUKWOoXz95+ZKzsxOzZy9i69Y9il6+27fvER8fT+3aNVKMkx0cO3YKTU2NTBk9hoWFs3z5BgYN6kmRIqaK7Q/fKBERI6COnSQj/bO/TEjIG7p3z9+BSk4xcKc7Hz+H8UwvCIfy5firybC8nlKaPHsWhFAo/O3LYfISVVVVBg3qxaBBvRCLxRw54kv9+nUwNNRP99j37z/SsmV3ypd3ZvHiWT/9LPb03JdhU/af8fmzPHgfNix/L9DlNLNmjWfgQHesrCpja1uCPn26MGDAH1kWf8oOXL09UwRkMW/e89bvMtrFUu+3lEplOWrPoK6pTdTn3Jf2r7VgKn4D3ZEkidC1tsR51TwujpzE58CXIBSibVmUOotnJTsmtQzbtWu3iY7+gomJUYZ60mUyePJOyIM3aZdAymQyzh7axIFNHsikUhxqNqH32CVoaGa8zDg89C3bl4wlPjaKw0d2Utkh7d62xT9cbyFpI5VKuXLlFovnT+HL7CW4bFxKPfehiEQi1tdxI3rPYVbv9EKio43TQrkGhEwmY9Gi1SxatEbxfjI3N0MkElGvnhOOjhWIiIymYZOuvA5+QcNWfQm8f5Vx3augq2dAn/59mTFlCOpqaWdWn794wx+9RvPkwT1s7KvgMXcPBsaFAXhmKTABW8uW8obx4sUtsbSshKWlBf7+xzI9zs6dB9DS0sI8DQ+K/ISBgT779m3G1bUbRkYGuLg0pkaNypw6dV6x8lG9uiPBwa+pXj11Rbk+fbqm2CYQCPD0XM2kSR4sXboOdXU1LC0tmDt3So5dy4ULVyhWLHN/pA0ayPtX/l0WKhCAijK8ixLy+J0Mewtpts4zNaKiPlO3rlOOnyevSUxM5OXLEOqUqUEdG3ngfmSwJ0ZGdiCF85GH8niG6RMU9Oq37jXMbygrK9OuXcZX883Nzbh16zRTpvyPUaMms3r1FmbPHp/MMuPp0+d8+BDK1KnuvzS3jRu3AyRb7Pkv0rx5Q0JC7nD9+h3+/nsls2YtYsqUeXTu3IbVX9UJ8wNXJ3tQfcY4TnUfkurjMpk0hwM2HUWQn5sYVbBPlmUEaJyOV2tqGbZ9++R9o+3atUzxPP3o9VZr6Tzu3AoldMMypK+fo7HkCEqlHVKMKUpKYOfKyVw9vR8Al64jce0+JsMLYjHRkZzav4Zz3luRiJJ4/eYemhpqyfYJD48gIiLqP1/e+Ct4eR1DJpPSrVcXhH2+i8mpqKgw7Jq8murKlZtMmzaf5YPHojFmCnFx8Yr9lJWVMTDQ4/37jwCcOnWelas9mTVzPiJREmpqGpw7spmyFSpx4OBOGtarmu6cIiKj6dl3HP7nz2JqUZKJy49iZZv72gm/CwUiYHvwQN6ofuHCYd69+0BMTCweHhOzNNbRoycpV84uO6eXI3zzYAN5f01AwDnF7yNHDmDkyAGK362siqXov1m9ekGq496756f4v7m5GVu2LM+mGafPgwdPMi10sm/fJmrVcqFcuTo8fHhJsV1dWUaiSMjDN0oYaMowN5ClMcqvERb2CbFYQu3aWfOOK0gcOuTL4MHfG5VHjhxA/fq1kEqlHD26Iw9nlnGCg0PQ0sq4b1AhecOcOZPo1q0D7u7T6NRpAIaGBgwZ0psxYwZx69Y9BAIBz5+/yLK6JcCiRauzccYFn+rVHdm3T97Tt2/fEQYNGsvQoX0oXz7tUqbsJCEhAbFEwv5mnRGJxYiqVCTctgSiuw9QehnCpv8twSk0jNatexKRmER8fAIJCXKvwZiYWKztnShfrWGOzE1dS4foL3ljnp1ZtLSStz9IpVIOHfIBoGNHtxT7/9vrLTxSxPkAEYmmhqhPWUfCikmpniMq/CPr5gwi+OkdVNU06PnnIqrUzZiiX3zcF84e3Mg5763Ua9ycA/u30cqtE+o/eNwdPXqSP/4Yho2NNTdvnsrQ2IWkZO3arTg6pm1N4ORUlVOn9rF8+XqmT/+u7Fi7dnXmzJmIg4M8K/vu3QfKlavL1MnyLKeGlg5t2rVl7pwx6OmmX8IoEokZOnI2Xnv3oK1nyOCpG3Co2SQbrvK/TYEI2OrWlX/4VKhgj62tXEmoQYM6aR3yUx4+fMpff+Xvkq7flbdvP2RaNKRs2VL4+OymRYsuNGvWmRMn9gCgoSrjczxIpAIuByrT3EGEduatmjLE2bOXvxoM59AJ8oDhwyewY8cBANzcmjJ9+l/Y2FjTuXNr2rZtwebNO5k8eS7Ll29g+fINAAXGw+rNm3cKs/hC8jf29qXx8dlNREQUU6fOZcGClRw/foozZ7y4dOkaHTr0Y9u2Vbi6Zq00Mj4+4T9bypweHTu2YtWqzQwaNJbLl4+mua9UKiU8PIKPHz8RHh5BWJjc0y8yUv4TFfWZyMjPfPkSQ0xMLLGxscTFyQOtpKSkZGbuALpArJISekpC+hzy4Yy2Jo3iEzlerCgq70ORAWZmxhQ3MkJPT1dhRL9spSd6P/Hy+lVkMhnPAq7QzHlA+jvnA7p3b59McfnmzQCioj6jb6CPXTkHEkSgJIQSxSsS9PAS7/1vkNCmBZ0qNqaSc1vu+Mt73d4GP2GkqjoX/x6Jef02BFw5Id/+8gkCoRCpRIymth6V67qyb/1MfPesBMC+Sj3a9pmQYl5JiQmcP7qVU/vXUcWpLj4n9lGhjLz/WyAQcP/+Y4X0fL9+o/HyOkaNGlXw9d2dI89TVOALzvb9LrDx5dVrqkwcRey7j4ScOIdQRQXdElY4r5qHmp5ujswhp5FKpdy9+4CNG5eku++TJ4FMn/43/fv34O+/p3PokA/z5i2nXr3WjBjRn1mzxuN7+lqyY96E3MTKypHVy+WVTidP+jFx4hwOHdrGjh37Wb58AwEBfpiYGDFr7jqWLFiIqpoGhqYWdB4yi/LVGgBw68JR/E/tZcTsbXyOCGXf+lm8ehaAsooqRmbF6DhwOmbFCrOsP6NABGzq6mokJCSye/dBwsMjWbduYZbG+fgxjJiYWHr0yJn+NYlUQoNlbTHXM2NP3w3IZDLm+C7h8D0flIRC+jp1Y1CdXjly7vxOTEwMCQkJuLg0yvSxNWtWYdeudXTtOoi+fUezefNStP5VUSGWwNmHKjR1EKGeA2rsV6/ezLBhcEFhxYq5tG7dgilT/oe390lFozrAzJnjGDiwJ4MH92bz5p24u0/nwYMLeTjbzPH+/UcMDNLvpSok/2BoqM+qVfPp3r09LVv2ICoqmtWr56OlpUnPnkMJCrqJvn7Wbqb+bXVSSHLWrVtIzZotcHRsiFgsITExkcTEJEQiEWKxJFmQBfIbbiUlIcrKyigrK6OmpoqamiqamnJVUB0dbSwtLdDX18XAQA8jIyOMjQ0xMTHC3NyMIkVMMTExSpYFuDVvOa5KQh6u92SEWAwRUcSKJbR4+oLWZ/5G81/CNDfuv+PL5/AceS4eXD+LRJRIr64FIxOgpKSUTIjjuI8fAPbVmuAToIpMBjLk34/7vd/zWarKlT5jGG5ijmroe1osPIBAXZPR7cpiVcqBvv0mo1TagZbdR3Pl9H62LXZHJpFSqkJNBkxazXnvbTRq048m7Qf9dE7Xzhzg0D/zKVPekQMHPanmmFyNW0tLkytXbmBnZ4u5ubzaZunSOTnqiatfqiTtLnoDIJVI2GVfh+KuTfn8/AXVpo9FqKzM9ekLCFi8luozx+XYPHKSQYPGoqysTKtWzdLd18lJbl3099/TAWjTpsXXn15cvXoLgF7d3ejWuQWqKsoYGdkxZMj35+X8eX/Gj5+Fl9cWRfWDoaEBQ4ZN4tq128THxqCkpMySA494HxLIxrlDsKvohFQq5fC2vxkxexsymYx1cwZSs1EH+k+QLwC8DnpIdNSnwoAtDQpEwPb+/QOaNeuseNN06tQ6VZWpM31H8TnwBQBJn7+gqqej+EMF2LZtL7q6OhlqjM8Kay9upbSpDV8S5SUVO28e4G3Ue67/dQKhUEhYTM580RQEfH3PoaqqmmWFz+bNG7JiwTSuj5vFmnOX0DUwhuELkH36SNKOJcS8fo7PqsO4dCiLkhBCPgl5/lFIDVsxelm37AO+KUT+mnlvfqJjx/5YWBRh4sRRXLsmX0398iWG5cs3sHDhaqZPX6BQ5gS5qE1BUuj69CkiTfXBQvIvtWpVx8qqGBUqOOPhMZH+/buzceN24uPjsxSwFVo1pI2dnS2VKzsQEPCQ3r27oK+vh6Gh/tdgSx5oGRsbYWZmnG19oaLYOMRSKao62ohi43h79hKO44bTI/D7qv5uh/q0OeeVQpSkiJkJT4PDsmUe/0Ymk3F0x2LGjB2Rphx5fub4iYsA6BqYpRAQef3sPoZvXmAzYSW6zm4krp1B0t7VqPUcm2w/iUTMwU3/48whedmss+sfdBo0HSXltFdCJRIxXhvn8OjWeTb/s4YGdSqkup+JiRHnz19h4kQPAG7cOImtbYksXW9WeH+vFfoAACAASURBVHfeHx1rK3SsLNCxslBsN61WiZe5rJqdXUydOg8vr2N4eW1Jt69QIpEAqVtjGRkZKPrXlJSEKCnJ/97btGnB3r2H0dLSxN//BqNGTWbv3o0Kn9OXr94R9TmGM6fOUtGpKX3/Wsa4blUQCoVYWNtRoXpjTuxbS1JCHDUbtsPEvDhP7l5GSUkFZ9ceivNb2pTLlufjd6ZABGwAJ07sYdiw8ezc6UXZsrWZrqKSQmWq0eZliv9fnTIX1R9qbX19zyhqdLObt1HvOfnED/dGQ1h1QW7UuvnKLjZ0W6z4IzLRNsqRcxcEzp27hLn5rzX+W96+T5RbUyZ5n2T+zL/Rt7BFrKWnqMGPF4HvPRVEYvn+UhlExgrR0/w1UZJXr97QuXPrXxojP5GUlMTWrXvYulVeXqqnp4uHx0QmTBjJ5MljALh//xHOzvJrPnasYPSufSMyMkohyFNIwePmzZN06jSACRPmKJTLYmPj8nhWvy+HD2+lVCknDh/2YcGC6bRt65Kj54sP+8TpHvK2BKlEjE17NywbO2foWLMiJty4kznz9Yxw7+opBEjp2fnXVEnziseBbwgOki9OvHh8E6lEglBJ7nkjEiWxZZMH7oammDrL20uU67iQtC95f2d83Bc2T+vN4zsXESopIxQK6TpsTrJ9zhzaxPVzcuGptn0mYF+lHvGx0WyaNwyhQML5c3sxNdb76TyFQiG+vmcBCA19hIpKDpTEpMELr2PYtE8pkPR0+35Kts1Yb15+4s6d+6xcuYkNGxZTr16tdPf/lkGrVi2lQJ2xsWGqn7MDBvzBoUM+JCYm0b37ELy9t1O6tA1Pnr2iZ+8xBD6+j3ERS5yadkVVXQNV9eQr5K7dR/O/Ea4oK6swYbk8gfLu1TOsShV+R2eWArWUtGrVfHx8dvPhQyghr98S/RO/FJlMxsuDx7Fpn7zx9smT57i5pZ8yzgqTjngw03UcQsH3p/RleAheAcdosKwtHTb2IygsOEfOXRC4e/ch9vZZF3tJiv7Ce/8bDNu6ksGDe/HPP55I1TQRWpVCWEwuDyyTCYhPEiCWyn9kMrkZ6K8SGRlF3bo1f32gfMLhw9uIjAzk2bOr9OvXnc+foxk+fCLGxmUwMChFp079iYtLAGDcuOG5/qX6q3z5EkOxn8iCF5L/UVZWxstrC+/e3Sci4hlGRgasW7c1r6f126Ktrc3jx5dxcqpKv36j8fe/nqPn07W2ot0lb9pd8qbDFR8cxw5NsU+Xe34psmsARYsYExH2PlvnI5VKObpjMWP/Gllgs2sz5qyhbotu6Ogb8+zeVY7v+i4mpqSsjGm5akQhQPomCADx3csIrb6XKyYlxLFt0Z88vnMRbT0jRs/dhZJSyvX8Rm36MXmlD5NX+mBfpR6h74JZ8GcbbGysOX18Y5rBWu3aLQkKCkZDQ53IyMBc/16RJCXxyucsJdq0SLb9zsLVCJWVse3UKlfnkx3Y2FijrKyk8LxMj5s37/70MXUNTSIjP6fYXqWKXDlURUWZ6tUdWbfeE5dWA6hVswkxMfHUadENZ9c/aNFlOFdPHyA+LrnKqpq6JlWdW1KjYTtUVNRSjF9Ixilwn041a1YhMPAqAKsrN2JnjWY8+Sd5s+oH/xtomBorTCcBQkLeEhcXT5cu2e+o7vvoLMbaRlQqllwBMUmchLqyGudGHaRXjU4M35c1ZcvfgZCQN78kWvHl1Ws0jA25MGw81S9fp3XMR+KiItM8RoY8y/YrhIdHIBaLqVOnYAhuZAYTEyMWLpxBZGQgkZGBHD68jQoVynLq1HmaN5f3FEycOCqdUfIfcXEJlChhmdfTKCSbaNasAcePn8nrafzW6Ovrsm3bKsqWLc3//rcs/QPyiFrV7XkX/JSo8I/ZNuZdf19UlJXp1iFnlCdzmvtPXnHZ7xQu3UbTd9wyBAIBx3ctw2fPSuJjoxEKhAyYuJrTegZ8nNiVuKHNkL54hGqn4Yj9ffkrIQ4C79E2/APDNbSYuMybUuXT/757GuDPwrHt6dmnF1vXTUVV5ecFW1++xPDo0VM6dHBL1hOZm7w5fQHjivZomn7vR3+2y4vXJ8/RYP2iHLWLyCl0dXXo27cbHh5LMvS8pnUPtmffMRKTkpJtk0ikLF/lCch9/875XWG7515u37zJ0JlbmLbuDHoG8sopTW09qtVvzYWjninGFgiECP5lkF60eClCAu9n6BoL+U6BC9gAjI2NGPrgAmvVVBn37AWXFqzk/eXvq4JBB45S8oe099atezAw0EdXN+NGjxnlWvBtfB+dweF/9em3fTQXn19l4E53iuoVoVUFeUavZfmmPHyf/aUcBQGRSERMTCwtW2a9mVsqlvAp4CFl+3aj7YUj1K5fE6F3zq+6nzt3WdFU/7vj7OzEhQtHiIwM5N27+7x9ey+vp5QlRKIkbGxyry+ikJylf/8evH//kaQfbiYKyX7c3Qfj73+D//1vaV5PJVXMzQxo2rItZw9tTPHY6HZlFf9/cOMs0/rXIyL0LQAXfXYyY2BDZgxsyLzRrXj+8AYgz65tXfQnsZ9DcXZuRcOG7bh//5FiHAeH+tSq5UqtWq7UrNmcOXMWp+p/lpfMmrOG+i17oqWjR5lKdWjZ409kMhlHtv7NpF61EIuSiIuNpvO8PWzQ0uVO6z5oTNsA2rqcfPWMOcBE4JizG6V23MLQ1CK9U3LRZweb5o9g+aolTByT0uf1R76p9u7f701iYhJisfgXrzrzBO0/mqwc8vXpC9xbtp4mO9eirFlwbWBcXZt8tb5ISHffypXl2bIzZy4m2+576gof371BgIB5CzfT1KUP1iWdMDEpw/9my30aBQIhHQZOY/bmixiamPM5lUWTxm37c9Fnh6JX7mfYVayNWJTEJd9dim3BzwJ4dv9qutfwX6ZABmwA2hbmfPjwELcubTn5/iNL3eWKN1KxmOCjJ7H5oQ7/1Cm/THuAZZTpLmN5OOUS9yb5sanHUura1mR9t0W4lG/MhedXALj84jq2xv/Nm8jz5/1RVlaiePGsZz20ihZBq2gRTKtWAsC2TXOUQx4hEWdDzWMaXLlyE2Pj/17voYaGOpoF8EtMLBYjlcooVeq/+bf2O+LoWAEVFRX2709ber6QX6ddu5bMmPEXS5euo2zZ2jx5kv9EWyaO7cPlE3uI/ZKyfAvgyd1L7FkznRGzt2FoasH9a2e46LODsX/vZ8b6s3Qb7sHmBSP5HBHKnUvHEQqF7NyxmkuXvOnXrxvTpiU3Evf29sTf/xinTx8gOPg1o0dPzY3LzBD3HgZz5eJZGrbpp9jWossIhs/aSmkHJxLiviCRiJnSpzZemzxo2LofBzfPZc3sASyZ0AVvz0UAtOk9nn7jV6CqnvZnvlQqZe/a6Zw9tJGjR3fRxiXjrQKennIjcKFQwN27D7JwtVlHHBfPW7/LWLf83hJzZdxMRF9i8WnbG6+6blwaI39d79y5j4FBqRQ/o0dPQSbLOb/XrDJxogdVq1bK0KLyNz2FDh36Jts+cuREiha3QywWsXTxcj6GRlGlXhv+XCAXJ2nUtj8qqmo4u/TAuIgVw2dvw2f3CgKunEw2jraeIZWcmiEWpb2oIRAIGDR1PY9vX2Rq37rMGtyYYzuWoG9olplL/88hyMwbUCAQyPKD6pYoNg7Zv1Smtju3Yt2LVzwF7uxez4PlG2h5bGeyY4oUKc/ff0/njz9yRtL/G5eCrrHi/Eb29N3A5/hoBuz8kzdR79FW1WRR+1lUKFo2/UF+M8aPn8WRIyd4/PjyL43j3aIrdZd7oF+qJLfmLSfhSxyf2k0lJl5C4qTuqH2VJf6GABkOVhLKWmS9BKNp006oqani7b39l+ZeSO7w7FkQNWu2ICLiWV5PpZBsxNm5FUZGhhw8+E9eT+U/QVRUNG3b9uLRo2dcuHAYOzvbvJ5SMjr0mICWUQladBmh2Da6XVmGzdrK1sV/MnzmPxSxlM954V8daNl9DGUq1Vbse2TbQmQyGQFXfNHRUGLtmrk4Olbg2bMgevYcxtWrcsVAB4f6nDvnpVA3jo7+QvnyzgQEnMsX1iHtuo1D26gELt1SL10PfhbAqf1ruXPZJ9VgQ11Th77jllGhetp2O1KJhEe3L3Bq/xo01FXZt2spJkbfVVuLFavImzcBQHKPLkvLouzefZBlyzYAMp48eY5AIGDWrPE8evSUZs0a0Lr1956ykJA31KjRPJly5LBhfenSpW1mnpYsIZPJMDW1V2T/hg/vh7OzE2/fvmf37kNcuyYX7Dh8eBvOzk45Pp+M8OrVaxwdG+HndyjDgnohIW+pWLE+TZrUY+/ejXjuOsaoYX8y1/MaOvrGiqBOJpMx1NUagNXHggtkyWhBYYhLcWQyWbpPcIFRifw3P6pMVerajq1uTalZswXzugyk1zT3ZPs/ffqcxMREOnZ0S224bKWOTQ3q2NQAQE9Dl739UpZu/Ne4dSsAOzubXx6n1oKp+A10R5IkQtfaEudV8wg+d4zL42YjjYogYUYfhCXt0Zgjr6FWEoKh9q+tiIWEvKFDh5SqUoXkTwIDX6KSRi9FIQWTkiWL8+xZUK6dLzXbmFvzlvN0217UjQwAqDbVHcum9XNtTrmJvr4u584dxMWlKw0atOXNm4B0JcNzkwlj+9GubU8atemvyAqJREmsndWfMfP3KII1gPevnlH8B0W64qUcOL57BTq6epjoKSm2nzlzAReXn5fu6+rqULx4MYKCgqn6tdojt4iKiubKlRtcv36bhw+f8uhxIO/ffaTr8P8RF/MZTe2Ugh/WpSsyYNIaQt8Fc/bQJsLev8LQ1AIj02IYmRWjVIWa6Bv9PKvx6UMI/if3cvX0fgyMTOjcrROjh7T/ab/ajx5dp06dZ82af/Dy2oK5uRnTps1nxYqNBAQ8+KnoiLW1FRf/ZceUG8hkMgwNSwNw7tzBFNVYvXt3QSwW4+jYiNate3LkiGe+ECILCwtHICBT6udWVhZs2bKcPn1GYmXlCEIVKtVqhp7hdxXv10EP+N8IuWrmnC2XC4O1fEKBvLP5pjL1I2/eBFCsWEX2zFrEgYrlaNiwLgCennsxNjZEXV09t6daCPDixSsGDPjjl8cxqmBPm3MHk22za9sUixZNOXlfhYQkWbKbCqkMjHV+LWCLiIikdu0avzRGIbnHy5evCv/Of0PEYrFC4j+3+NE2BqD8kN44jOifq/PIS9auXUjFivXzVbAGULVSKcpWcMT/1F7qu/UC5GqIJctWwf/EHjoNnpHm8THRkbwPeca6zevZtHolAwe6ExcXh0Qixc/vUJrHplWUlJSUxJMnz3n8OJBnz4IIDg7h3bsPhIZ+IjY2jlOn9ivMhv9NYlIidRa6oSZRpUFSHW6+u0OA+iN5iXeiFNl5kEZJUVFRQV9fl6JFi1C1akXEMnWe3DzBgQ2zKVnWkQo1mlDRqSkGxsl9M02LWtNl6Ow0r+sboqQE7vqf4MrJPYS8eEQTl9bs2LkBp2ppqzyn5tG1ZMlaZs+egLm5PCicOXMcK1Zs5Px5fxo3rpeh+eQGw4dPAOD27dOKuf+IsrIy9++fx96+Dq1a/UFExDMsLSulmlmcO3dpiuzhtyxkSMgbKlZswPz5Uxk4sCcAf/01E0dHeZB45sxFNm363kMaHh5BjRrNefjwImpqyVUWK1d2QCqV8eRJIGXKlCIw9AV9t3/Ptr6KeM3EZqPoUqUtfbePIiTyLVYGFmzpsZz9+zcrSiPvXPbBvXMl4mOjkUm/9595/OOfoZ7GQnKHAhmw/QwtLU0iIwOpXbsl7dv3xd19CFOm/MmZM5eoWrViXk/vP4lUKiUqKhpX15zzt9FWhyblRZy8r0yiSKq4udDXlPErKs1RUdGIRGLq1i0M2AoKr1+/VTS4F/L7MGHCKOrVa82WLbvo0yd9kYNCsoeHD5+gqpo/bT3Gug9kyMDR1G3RDSVlFYUa4rLJ3fDZs5IWnYcDYG5VileB9xUlkbFfojj0zzwqVHSkrYsTm1avZP36RZQvX4aZMxfy118z8PRM7lGWkJDA8+fBPHz4lOfPX7Bp007mzl3Ohw+hRERE8uVLDPHxCUilUgQCAWpqqmhra2FgoI+ZmQnVqzuyf/9RPDwWo6WlRVBQMO/efeDTpwhiYmIQ2YnBBITqQj7djiCycRSVwx2wL2rHp5LhxDjGsmPQmp8uRkV+juXQsct4Hz2Nx/bFGJtb4VCjCRWdmlG0eOkMZUjevHiE/8k9XPc7TMnS9vTq1ZEenRqjpZm+FPuPHl3fePw4kIoVv2erBAIBFhbmvH37c2uG4OAQ6tb9Xg01f/40atWqlu4csopEImHnTi969er802Dt39y9exYzs3JMmTJXse3HzGJ6mJgYsXbtVnr37pLMkL5ly6ZMnTqfuLh4RQ/54cO+tGjRKEWwBvKeNB0dbVau3MT06WMpZVqSi3/KkxkSqQT72XVwLd+UJWfX4WxbizENB7Hk7DqWnFvHTNdx2NjZE/RULrIT9+W76vaEZUdTZKULyXt+q4DtG5cvH2Xu3GUsWLCSCxeu8uJFMO7uQ9I97md12Dt27Gfbtr0YGRkgEokYO3YYHTrIP1CGDh2Hn58/d+6cQU1NjfDwCBo0aMe9e36A/ANr/PhZvHv3AZlMRpcubRg7dth/JsV8+/Y9BAKoUCFnDMu/oaMBjcuLOXVfGbFUXipbLBNaIam99kOG9EZFRYUuXQbx+XM0SUlJODlVY+nSOVy6dI0VKzayZ8+GZOOIRCI8PJbi7X0CVVVVNDU1mDBhJE2a5J/VxN+Zd+8+oK+vm/6OhRQoypcvw6hRAxk3bibNmzdUrNjnGAIBPu36gEBA2d5dKNO7CwCPNmwncPchTBzLU2PORNT0f+479TsQGPgCDY38KT7UpF4lzIpacvOCNzUatgNAVV2DoTO2sOivDujqG1O7WReadBjMoS3zGD57G8oqqiwZ3wlxUgJjR/dh374jvH79jiVL1iKRSPn4MYy7dx9ga1udxMQkYmJisbX9vmAnFApRUhJy+fJ1TEwMKVnSivr1a2FrW4KyZUtTvrwd2tqpLxh5e5/Ey+sYpqYmFCliioODPXZ2thSzM8czZB8Tmo9k1YXN7Nm5gWoLmjJ73ASqWlVi8dm1xCTGplk5YKCnRZ9uTenTrSmJiSJ8z97i0JEzrJ7RByUlZWzsq6CsrIJAKEQgECJUUkIoFCIQKCEQCgm8f43oyDBateuAx2kvypYqlqnX4ptH1/bt+5g3L21RlqlT/2Tw4L8IDn6d6uO5XRJ5/PhpABYvnpWh/VVVVbGzs2H16i1oaWmmmllMDyMjQ2rUqMyuXQfp1auzYruurg4di5iwp1pTdHV1MLAvzaH3H+lbvgx7Kzci+mUIPZ5fS5b579DBjV27vNix4wCenqto2bIpAOcD/bE2ssLKwAKfR2fwHizvw+9atS1ua3sw03UcN68eTjav8IhobG2qFAZr+ZTfMmADuX9UrVrVWLRoFSKRmDY/mCWmRWqrJUOG9GbEiP4EBQXToEEbWrdurqjBFgqFbN++n379uicbJz4+gW7dBrFo0UwaNqxLXFw8PXsOZ+PGHQwY0CP7LjYf4+NzFgMD/VwJUPU0oVF5CWceCJAKlCiil3np4H+/9lu27EYkEhES8obq1StTs2YVrK3TVrr08FjKx49h+PsfQ01NjdDQT1y+nLNGtIV8JzT0E8bGKQ13Cyn4TJvmjrf3CVq27M6tW6dz9FxuvrvRMjcjPiwcn7a90StVkrJ9u+H4l3yx7abHUq5NmYvzynk5Oo+85uXLEPT0st8KJ7sYPXogM6bPo1r97/6qWjr6DJ+9jcXjOqKta0hFp6ZEhX9g3qiWRIS9Q/bVr6pHj8GoqqogFotJTEzAxMQYQ0N97O1LIxZL6NWrEwsXrkFPTwdlZWVAhqtrU/76axjq6pk3ALa0tMDOzpZ//lmebHuvbcP5X5vJxCTGKrYt6+BBp00D0FBRQ0dNm5Mj9mX4PGpqKrRuUZPWLWoilU7iys0nXL/5CIlEgkQi/frv1/9L5f92dBtF25a1UVFWSv8EqSAUCtmyZTlt2vRi0aI1uLsPIfFzNL2EQg7VdkVTSwPnFfMwq+5I48bO1ANaXrmJtFu7LJ0vOzl69BRApsp+O3Rww8Nj6U8zixlhzJhBdOzYnx49Oii2xb77QOnQT5yrWoltu9ZxrMtAVB8+pZbHJDSG9+NYy5T3jYsXz2Lx4lk0btyB5cs3KgI2r4BjtHeU99+HfvlEEV15j1oRXVPCYsJTnVNcXHymrqGQ3OW3DdgA6tWrhbf3SQIDg79+4KZPeqslNjbWaGhoEBUVjYmJPIUzZEhv1qz5J9lKCcg9R2rUqKLopdPU1ODvv6fRsmWP/0zAdv36bUqWtM618xloyWhQTszdYCX0tTLXv/bjaz9u3DD27DmElVUxAgIe4ut7ltjYOIRCIZqaGggEAoYMGYeTUxUaNXLGwECfbdv2cvfuWUX5gqmpMW1/sJgoJOeIiIhSeM3kB8QJiRxz7YYkMQmpREyJVs2pMnEU3i26IoqJASDhUwQmlR1osmNNHs82/3PkiCcVKtRj06ad9OvXLcfOo/U1g6dhYkTxlk0Iu30P83+Zzpbp1YmTnQfm2PnzC69fv1UoJOZH2rvVYc5sJQKunmSp12PFdkOToszZIlcllkjEJMRGkxAfy6DhoxnctxWWluYZukEfNKhXts3VzMyY9++Te1f5PjqLsbYRlYqV51LQNcX2NRe3sLffBqpaVWK53wameM9lecf/ZfqcQqGA2tXLUrt6zqtTa2pqsGfPelxcumJqaoyV/w0cOrix4vptdm5bhb6uNomJiezfuJ3SQCQQ/+bnpZG5xevXbzN9jKWlPAP5s8xiagvUP24rXtySypUd2LcveTZRXUWF29duERURydvg11SoUx1Tx/QzXsOG9aVfv9GsXfsPfft3w+fhWaa1GJup60pILPS6zM/81gEbyDMm1as7ZmjfjKyWBAQ8pGRJa0WwBlCsmDk1a1Zhz55DNG/eULH9yZNAKlUql+z4EiWKExsbR3T0lxwx8c5vPHsWpCgfzS2MtGU0Kp+57Fpqr722tjbTprkzcaIH1atXpk+frnTt2panT4PYtm0vp075cfXqTQ4f9iE+PuFriYmANm16UaFCWZycqtKoUV1MTIxz4jILSYXPn6OxsDBPf8dcQklNFZfD21DR1kIqEuHdoguWjZ1x8/luGHq65zCKu+Rcj+fvhLm5GdWrO7J798EcC9h+tI15e/YSjuOGE/chFM0i8lXq4KOnMChbOkfOn58ICHhI48bOeT2NnyIUCihT2pr1cwYxZdUJLEqUQSqVEhMdQXREKOGhbzm+cyl6+nqcykKpX3ZStKi5Qhr+G9eCb+P76AynnpwnUZTIl8QYOm3qT2DoC6payVUo21Z0pePGvqkNme8wMNBn377NtGnRhWGJifR+eoX4nQdo16k/IAME9FYS4qetRYeYWObNX8FaT7nXl4WFORs3LknRw9ajR4dsDZx/pFmzBly5cjNTx5w4cQ5IPbMIYGhoQFRUtGL/yMgoDA0NUozz55+D6dVrhKJHT6toERxG9mfE1Hnsr9iA16oquC3PWKDetq0LgYEvmDx5LpvP7KJ8IztMdeT3HqY6xnyIDqWIrikfokMx0U69XyQuLgH+I+06BZH8Jf2UAwQHh9CpU5v0dyT5asmPrFnzD9WqNaVx4w5MmDAixeN//jmEFSs2IpV+z+rIZLKflgL+V3rYwsMjaNasQV5PI11+9tp3796Ba9d8adOmOZcuXaNZs844OpanW7d2VK7swJ07Z3n37j4fPz5kyZJZGBoaoKeny7lzlxkzZiqlSzthYlKG0qWdaNq0E+7u0/HyOprsw7yQ7CM2Ng5r67y7KfsRgUCAirYWAFKRGKlInOwLMelLDO8uXC0M2DJBmzYuPHz4JMfGjw/7xNEWXfGq48bhxu2xbFofy8bOXJ++gAO1XDlQuyXvL16l5v8m5dgcfiQyMor16z2RSCTp75xNrFu3lcjIz8ydm/1G0RKpBOclrei8eQAA6y97UnleIwz+KkV4bESmxmpYrwoASyZ0ZlLPmoxsU5pZgxqxdeFo/I//Q+8+f+B3YkueBmsA1taWKT73p7uM5eGUS9yb5MemHkupa1uTnb3XEp0Qw/OwlwD4BV6mtOmv2+LkJN/6v0G+gH1i5xoMLS24MGw8muu2Mb9aJS6cPsDuqe441KmBoKgZal/FNi5dOsrDh5c4eXIfVlbFeP/+ARcveit+cjJYA7lZPMjthzLKwYPH0NGRf65/yyzu338ET0/5/UPt2tU5ePA4SUnyjNXOnV6pipeVLm1DmTK2igAwMeozr46fwWrN32y1KoYkPgGDl68yPK9x44Zz8aI3r5TfcHXHLc6duwRAc/uG7LopV9jedfMgLexT991LTExCwH/j3rQg8ltn2K5evYVEIqVFi4bp78zPV0vgew+bt/cJhgwZx+3bZ5LVsZcsWZzy5cty8OBxxbYyZUrh738j2TmCg0PQ0tL8TyjZBQW9RCKR5qjCU3aR1mtvbm5Gjx4d6dGjI05OLjx+nNI8XlVVlQ4dWjFjxkK2bVupeH0TEhK4dOka589fISDgASdOnGX79v0kJSWhoqKCkZEBJUpY4eBgT506Nalf3+mnTeuFpE9iYhIlS2as8Tu3kEokHKrfhuiXIdj3647pv/ybXh07RdF6Tqj+B7Lt2UWPHu0ZP34WT58+zxFD55/ZxtRftzDbz/UzIiIiWblyM0uWrE223df3DF5e/+T4+cViMbNmLaJ37y45IuKz9uJWSpva8CVRXhZc07oyzcs2oOXazLcKFCtmgaqqCucveCMWS7C0MEZTI/M9ZjmNra01sbFx6e6nrKTMsg5z6LltOEKBEH0NXVZ2mpvucfkJqVjCp4CHOM2f2UhJwgAAIABJREFUimnVSlyZMJvb85bz4coNWhz4B+uXIcheykVH2rfvy9mzXnk21286BY0bdyAyMuV3+4/4+p4F5IFmrVpyr7JvmUVX124YGRng4tKYgICH1K/fFiUlISVKWP1U1OTPP4dQr15rAN76+aNTvBi12rRgxITZ6NetSej1O5TqnLGkA4C1rSVapTVxUq9C+/Z96dq1LTPnjaPfzjFsv7GPYvpF+eeP5akeGxdfmGHLz/zWAduOHfspWrRIpppJf6zD/uOPjsked3Nrxq5dB9m1yyuFvLS7+1A6dx6g+L1jx1YsXrwGP7/L1K9fm/j4BMaPn82oUQP4L3D06Cl0dXUy3D+Y16T22p8+fYF69ZxQUVHh48cwIiOjMDc3IzDwRarH9+jRgQkTZrNkyWxUVVWJioomPDyK2bMnJNs3JiYGPz9/Ll26xr17jzh82JfNm3chEolQVVVFQ0MdW9sSlCljS/nyZaha1ZFKlcoVmOcyL5BK5Q31OXET/ysIlZRod9GbxM/RnO4xlIhHzzC0l5fTBe0/il3PjumMUMi/0dTURF1dnbt3H+a71zqrhIdHsGLFJpYtW5/iseHD+zF8eD+2b9/PnDmL+fIlJscX/KZMmYtMJmPevCnZPvbbqPecfOKHe6MhrLqwGQAHi3LpHPVzihcvhkgkxsa6SHZNMUewt7dTZFxSo45NDerYyLMwLSs0pWWFptl6folUQoNlbTHXM2NP3w2cD/Rn2rH5SKVStNS0WN15PiWNs2exS6toEbSKFlEsTpVo1Zzb81fw5dUbvOq60eDzZ4QiEdN0tPG4cx+JRIKSUtYET7KDa9d8qVGjOTVrNufqVd+f7nfrVgBduw6ibNnSWFkVS5FZDAg4p/h9/PgRjB+fshrLyqoYV658X9ivUKEsERHPAAi9eZfQm3chSURg4DUuDB2Pvl3msquaqhq8mClPFBw9epJ+/cbw7NkLTp1KX7gmITHpP1P9VRD5rUsiL168hpNT1Uwf9221ZOHC1QrJ138zbtxwVq/egvSr2tQ3ypYtRcWK3+XrNTTU2bFjLQsXrqZatabUru1K5coO2WIiXRC4fPk6xYvnn/K0jPDja3/u3CVq1XKlTh032rfvy8yZ4zEzMwHgwoUrlCtXR/Fz/fodpkwZg5GRITVrtsDJyYUePYakqlqora1Ny5ZNmTdvKseP7+Lx48uEhj7i5ctbrFkzn8+fo5FKpVy+fB0Pj6U0a9YJE5OymJnZU6pUDerWdeOPP4bxv/8tw9f3bGGJJXKFSCDf9gyq6eliXqcGb85cACAhIpKw2/ewbJr/S4bzG0KhALFYlNfTyBTFin33At23zxtr6yoYGJTCwKAUtrY1FMFayZLFOX58F5GRgV99RavTsWM/RfVG5crycqZ585ZjYFCKFy++l0ytXr0FA4NS3LlzP8vzjI7+wqZNO5g8eUyOLBBNOuLBTNdxCAXZc/thbV0MmUyW4vs4v2FrWwKZTEbMV7Gh3OZbVvMb7l7TWd91ERf/9KaDoxsLT6/KtnNpmpmgZWFO1NeFzbcXrmDkYE+PwGt0uedH8bUL+Qz0vH2aL8CkSR7Zdu6sULq0Dd7e23n6NAgDg5SVUYmJibi59aBx4w4YGRng738sR+ZhWrUSJVo152D9NnjVckUmlVKmV2cerNvKznJ1iH33Aa86blwYmbFy7ObNG6KsrESZMhlb2EqITywM2PIxv+1yvVQq5fXrtyxZkjFvDUhZh/1ttcTlh/6SSpXKc+PGSQBWr16Q7LEfDTfLlbPj6NEdmZr778Ljx4E0bFgnr6eRIdJ67T08Un441qlTg/fvH6Q61qxZ45k1a3yW5qGvr0vNmvJFhtOn9yfLDoeFfeLq1dvcuXOfJ08CCQp6ib//DZYu/YJIJEYoFKKtrYWxsSGWlkWxsSmBvb0dlStXoEKFsr99du7p0+coZ1GWOqeI/xSOUEUFNT1dxPEJvPXzp+LXDPvLQz5YNWuAchYkwv/rCAQCRKLc6+f6VUJDP5GUlISBQakUj9WoUZn69WszYcJIALy8jtG79wguXz6Knp4uY8ZM5fTp/VhYmOPpuY+RIyfx4UMoIM/aeHkdZezYYYDcZDejN2c/o0ePIRgaGjBsWPYLXfxMFfFX+FZC/vbthwyZFucVysrKCIVCHj0KzLAQWnaRWlZTIBAoSlKjE75QRC97vQ1rLZiK30B3JEkidK0tcV713QLDyaka95GXsDdoUJv16z2ZP39atp7/G4GhL+i7fZTi91cRr5nYbBRdqrSl7/ZRhES+xcrAgi09lnP79mkqV26Mq2vqgkaTJ49W/K3lFFUmjqLKxFHJtpUf1IvyWejlGzVqMgKBgCVLZmdo/8QkUWHAlo/5be/gzp/3B+TS/oXkDR8/htGoUf5VGMuvXLlyEzU11RSlvCYmxri5NcXNLWWpTFJSErdu3ePGjTs8ePCEly9DOHnSjz17DhEfH49UKkNFRRltbW1MTAyxsCiKjY01FSqUoXLlitjbl85U6XB+5MWLEIWdQn4h7kMYF4aOQyqRglRKibYtsPqqJBvkdYyKowfl8QwLJgKBIM3ysvzC1au3aNGiS7Jturo67Nu3kerVKwPyTJmWlqbi8XbtXDl50o/9+73p3LkNYrFYoTD3xx8dGTlyEuXLOzN27FBcXRtz/PgZxo4dRnBwCLq6OqioZO1r/dix0/z990ru3XuEr++eLF5x2qSmijhwpzvruy36pXGVlJR49SokXwdsAOrqajx9+jzXA7ZvWc3s8nrLCEYV7Glz7mCqj+nr67JASYkaz1+ybdsqLC0rsWfPYTp3bp2tcwAoZVqSi3/Ke1IlUgn2s+vgWr4pS86uw9m2FmMaDmLJ2XUsObeOma7jiIwMJCIiEh+fM5w4cQ4bmxK4uTXNV3YxGcHL6yi7dh1kzZq/M7xYm5BQmGHLzxTYgO3Heuz1lz1Ze/EfXoaH8HzGNXbtOoilpUWBvwktqHz8GIZIJKJx47rZNqbD/+qjraaFkkCIspIy50YdJDIuKsUqmb6mXradMy+4ffse+vr6mTpGVVUVJ6eqPy0BDg+P4Nate9y9+4CnT5/z6tVrfHzOsHPnAeLjE5DJZKioqKCrq42RkSHm5mZYW1tia1uCsmVLU6lSuXztxwTw6tXrZDe++QGj8mVoe+FIqo+1/I0z77sd6qOirYVASYhQWTnZjdu9FRu5Pm0+PZ5fQz2L7yllZWW8vU/Qt2/XfJ05LlPGlunTx9KzZyfs7Gqhra2Ft/d2ypcvk+ZxFSva8+zZCwwM9GnRohEODvVwdnaiWbMGHDiwmfbt+/LpUwTFixfDwqIIjx494/jx07Rr58KOHQcyNLeEhAQOHfLh6NGT+Pn5Ex+fQNWqlThyZFuOBRTTXcYy3UXuDXUp6Borzm/85WANQFVVhZCQd788Tk6jo6NNUNDLXD1nTnu9ZRVdXW2uXbtNvXq10NfXY/DgsTkSsP2b84H+WBtZYWVggc+jM3gP3g5A16ptcVvbg5mu4wC5LH/37h3o3r1DWsPlWy5cuMKAAe4MHdo72XNarFhFRTXRyZN+TJw4h0OHtrFjx362bdsLAiFiURIBV09RsWYTjm5fgpqGJk3af19YnNy7NhOXeaOtZ8jodmWT+R8WkrPk32+6dEhPZcrf/wb16xdm1yD1m6czfUfx+Wt9edLnL6jq6dDuYkpltKxy/PhpNDU10NTM3hto78GeGGl9v8n72SpZQebJk+cULZq95SlGRoY0bVqfpk3rp/p4WNgnrl+/y717D3n2LIg3b97j53eZgwePExcXj1gsRiAQoKqqio6OFoaGBpibm2JpaYGtbQnKlbOjYsVyedo/9vbte/T0sl/RrpCs4ertmSIgi3nznrd+l9Eu9muZkJUr59G//2j69RvN1q0rf2msnERfX4/RX7OoPzPZTQ3Zd3cYli//Hw8fPuX8eX9WrtykCPY2bdrBrFnjadeuJV5eRzl79hKHDm1NM2Dbv9+bf/7ZzcOHT4mK+oyamirFi1sybFhfxowZhLq6+q9fdBZYd2kry/028PHLJ+osdqNJmXqZCh40NNR5+zbvTZjTQ19fj5CQzBs1/wr51evNzMyUBw/kN/vPn18jMjIqU8enF3wYGRkgFkuYOtUdF5dGzJu3nJMJfqjHqFG3rhsvqr7C0a4htrYlAHhX+0P2XmAece/eI9q370O7dq7MmZN6r9v58/6MHz8LL68tiqz0kCG9QVmb2TM98Fz6FxV23s7FWReSEQpkwJaeypRUKuXduw/06FGovvaNH2+eGm1epvj/1SlzUdXNXtWx8+ev5IqBcVqrZAWVkJA3VKpUPlfPaWJijKtrY1xdU/cDk0qlBAUFExDwkCdPnvPy5Stev37HxYvX8PY+SVxcHCKR3KxcTU0VbW1tDA31KVLE5GtQV/KrKE85zM2zNxj9xsePYRgaZi4z+TuQ1o2LlpYmI0b0T7a/kZEd9valkclASUnIggXTqVGjMiEhb6hRo7niBgbgzJkDqH71S8oOrk72oPqMcZzqPiT9ndPA1bUx06ePZfr0BUil0gJRSZGWdciP3Lv3CEfH758B5crZUa6cHZ07t6ZSpYZcuHAEZ+dWvHr1hv79ezBt2nwcHcujm4Y9RHT0FwYOdKdy5QoMHPgHXbq0oUSJvLPA+Lcq4qA6vRhUJ+t+W1pamoq+vvyMmZkx797lbmCQWlZzR6812M2qxfOwl9ialMgTrzcrKwuePg0C5CWtxsapmzmnx8+CjxEj+vP06XNcXLrRvPlVJDIJT+Ofc2f6WUx1jLGaXAkL66Jc/LpQbT2tSvZcWB4SFxdHs2adqF27Bhs2LE51H3//G4waNZm9ezem+PtPSkpCSUkZJSVlYqIz54dYSM5TIAO21Oqx/829e4+QyWQ4OJTN5ZkVPGQyGS8PHsfliGe2jvvgweNsDzoECGi3oQ8CBPSu2YXeNbsQ+uUTRXRNASiia0pYTHi2njMvCA39RIUK+eu9KxQKKVWqJKVKlfzpPlKplJcvX3Hv3mMeP37GixevePPmHVeu3OT48dPExsYjEsmV/VRVVdHW1sLQUB8zMxOsrIphY2ONnZ0NZcuWokSJ4pm+CQ8Pj0gWbPzXSO3GJTU0NNQVNylnzlxk1qyFHDu2EwBrayvFY7+EQIBPuz4gEFC2dxfK9O7Cq+Nn0DI3wyib3tsDB/Zk+vS/2bDBM8fNdbOL9GxjAI4c8eXcuUvMmTOBmJhY7t59QJ068sDm/v3HFCtWVPH5sGnTDhYunMGMGX+l+95ftmwD2tpanD6dsZLJgoSOjg5hYZ/yehrpUrRoEW7cuJvX08hzr7eVKzdx+vSFZF62WSGt4APAzs4WZWUlwsMjeSF6hbmqGaY68ioQQ01DxCryRcYP0aGYaGctYMxPDBjgjqamBl5eW1J9PDExie7dh+DtvZ3SpVMG6AmJSchkUgQCATp68ufjzKFNXD93SLHP54iPOTP5QtKlwAVsGVGZcnCwx9jYkM6dB+LtvT2XZ5gPSeXm6Rsf/G+gYWqMno11tp7y7dsPjBo1MFvH9B22G3M9M8Jiwmm7vjelTH8ePBRkYmJic70pPTsQCoXY2JTAxqYEbdu6pLrPN/XWO3fkvXRBQcG8efOOa9du4ut7htjYOJKS5EGdkpIQNTU1tLS0MDDQxdjYiCJFTLGysqBECStKlbLh/+yddViUaReH7xm6QVoUUcHAXhUTOxEMMDHXjlVX167PXnXVdXUVc+3uxMTAblExUBRQFAHpnhm+P0ZGkcYZSu7rmguYed/3Oa/CzHOe55zfr3LlCjJj3/DwSIXt3hV0spq4ZERUVDT6+vLv+XQ6vQctc1PigkNx7zIAPZtyPFy+hvYHt8htDKFQSN26Ndm//1ihSdggrckugJvbFvbtO0psbByVK1fg6NFtGBkZEhUVzT//bGDcuJmoq6uhqanJmjWLARgzZggBAdLyOhcXxyzH3bfvKK1bN1XcjeUjBgZ6hIaG5XcYWWJlZcm5c5fzbXxFe71lh127DjFz5iK6dHHg+PEzub5OVskHwN27DxEKhRgZlcA74SXVtL8uFjUr25BTplLbpt13D9PetmWuYykIjBw5mdOnL7B374YMFzszK8t2c9tCbFwCoqREBs1ZLRMfadl5UJoetmLyh0KXsGVHZUooFLJv30ZatnThwIHjdO3qlI8R5z/pTZ7MG9kB8PrgCcpl48M+J0RHRxMfH4+Dg3zfAM2/yA4baxviWLU19/29MNEx4mPkJ8x0TYrEKlloaBgSiaTQKVJlF6FQSJkypSlTpnSmx4WHR/L8uQ8vX77izRt/AgIC+fAhiCdPnnH16i2io2NISEhALJZ6L6mqqpCYmMSePYfx9LyJgYE+xsaGmJmZYmFhhqVlKcqVK0O5cpZy76vMb7IzcfmWuLh47O2dSEhI5OPHTxz7Znf97Vt/7O2l75f16tVm6dLZuYpJ60virGFsSBnH1ny8fltmmgsQE/iRw0070+nCQTS/+Brmho4d2zFnzl+5Pj8vycw6JEXS/3t0dLTZv39juq/NmZN+6Xd6NjISiYR37wKZMWN8TsMuFBgaGvDqVd6KeeSG8uWtiImJze8w8pW2bZshEAjo08eFw4dPERkZlWkpb0ZklXzs23cUbW1tNm1aQVxSPG+TAnDW7CA7ZmDtXuy/eIzai1tRSr8kW/qu/OF7ywskEgnu7h6YmRlTpUpFVFVV6dixL7du3WPv3g20apXxokxmZdnDhvXnz0X/0rLzYGyq2uXFrRSTQwpdwpZdlalatarRv38PfvttCm3aNMvVG0JR4fvJU/B9L8wb2SERiXh74ixdMpDezS1nzlxEVVVVrqqCMYmxSCQSdNS1iUmMxePlVSa1+o12ti3Yffcw41oMKxKrZDdu3EVFRUWufUOFEakfXW3q18+8ryClDPP589fcunWP2NhYgoNDCQ4O5dkzH27fvk90dCzx8QkkJSWR/EXNQUVFGTU1NTQ1NdDV1UFfXw8jIwNMTU0wNzeldGnpLp61tRWGhiUKdI9UTsQsIHVJ5O3bDxgxYiLXr0tNmeVREpkUE0uyRIKqjjZJMbG897hKrUm/0cfna0XEnurN6HzxUK5VIlNwde3C5Mlz8fMLyHIR4GdGKBTi4NCKESMm4u//jokTFeslldcYGxtx/37uzcLzClvbiiQkFHw7CkViaFiC6tVtWbhwJcrKyly/fod2X6xOckJmyUdKD9u3jC0xBHXh1xJMfQ09LJ+U4saGU7m/mTxGIpHQpk037t9/jEAgkJnFq6mpcvnyMWxtK2R5jYzKsj2v3UeUlIhTnz8Ueg/F5J5Cl7BlRHoqUyuWzcfd/QLduw9WmK9MQSejyRPA+0vX0bcph5acxUE8PK5iZmYi12sGR4XQZ6t0kiGWiHCp5USrSk34pXQ1ft0xlh139heqVbKMuH/fCz29n3dxIad8W4aZkWDKt4hEIvz8Anjzxp+3bwN49y6Qjx8/ERQUQmBgEM+e+RAVFUNcXByJiUmIxVJzZiUlIaqqqmhoqKOtrYW+vh4GBvqYmBhRsqQplStXVLgkdUbkRMzie+zsahEaGkZIiPwazOOCQzjfR/q3KhGLKO/iROlWivFjTBG32bp1H7NmyWeiEZ+UQAc3VxJEiYglIjpWa8fUtmNpv6YX0fFSVeKQmM/8Uro6Owe4yWXMvGDnTjfWr9/O5MlzGTasX5FaxDQ3Ny0UO1cVKpQjOTmZ2NjYIrfTnxNatWrK1q170NPT5c6dh7lK2CB7PaFFifHjZ/HkyXPu3DlDuXJW1K7dCj+/ADw9j2Fjk33RmPTKsq9dvc4v9h1QzsFicWJCHFP71pP93LLLYFo5D8n+DRWTIwp1wpYdlakDB/6jSZOO7Np1CFdX57wOMd/JbPLke+gE5eVcDgnw8OFTqlSpKNdrWhlacnV82pX/EloGHB22Ta5j5TWenjd5+vQ5w4cP4NmzFz9tH1ZeoKysLEvwsktwcAivX/vx9q0//v7v+fAhiKCgYIKDQ3nw4DFXrtwgKCiY9u1b5NskOLcTl5cvXyMWSyhRQp/37+PkEouulSXOVzPfpevpdUkuYwH88kt1zp69KLeETU1ZlaPDtqGtpkWSOIn2q3vSqlIT3Efulh3Tb+soHKpkvUBQ0Bg6tC+zZy9h376jDB7cJ7/DkRsWFmbEx8fn+biJiYkoKytnewc+5Vhv75fUqVNTwdEVXJKTkxEIhJiZGeHt/fyHrpVe8lEUefz4GTt3HmD27EmUL18WC4vqxMbGsXjxzGwnaxmVZcclCUiIj6P78LmpjnfsMy7NNRZsuSb7fs3Jt7m4k2JyS6FO2LJD1aqVGDKkD+PGzcTBoZVMoOBnIbPJU9M1SxQypr//u58yOc4Nz5/70LFjXzp0aM3w4QN48yaASpWs8zusYr7B2NgIY2OjDMszpeqU9dDW1srjyFKT3sRl6dI1rF27RXbM06dXZT1sIPX7WrNmMUpKSvkRslzo0qUD48dnXQqaXQQCAdpq0v/LJLGIJIlI1oAPEBUfzZXXN/m3xyK5jZmXVKxozYkTZ4tUwmZpaSETK8pLTE2rZPiakVEJKleuQOXKNrRs2UTmgamursaLF69+6oRNLBYhFAqwti6Lt/eLXF0js57Q9Pi+T9TSshQ3bhS8ckiJRMLt2w84c8aDW7fu4+Pjy+fP4bLyx+HD+9OxY19iY+PQ0dFm6NB+PzzmrFmLqVCtPtq6P58tTmGiyCdsAH/+OYPjx8/StetAzp8/kN/hFGlEIhHR0TE4OrbO71AKPOHhETRoIFVT3LFjDQCfPgVnS/GtmILDmzf+CIXCfOtzy6mYRWho+hOkgjqB+Zb0POfWrVtKQkIiq1ZtTNO3YmBgw6hRA5k/fyoAq1ZtJCYmlilTxrBo0UqZT118fAK9eg2lfv06TJ48GrFETLMVnXkT6s+ghr1lBsMAJ5+co6l1A3TVC2dJoZmZscz/qqhQpkxpWflyXnHixFkAfH3v8OrVG7y9X+Lt/YJnz3zw9n5BSMhnPD1v4ul5k/XrtxMW5gNIPeN8ff3zNNaChkgkXQSpVq0yFy9ey/qEIopIJOLy5RucPXuRe/ce4fPJl8g60rJrJWUlqJRMw5p2mFgZ8Sj8Ka9evKHK7/YE3QpmyZJZTJo0l8+fw3/If/TOfW8C/d8we/omed1WMQrip0jYhEIhhw5tplGjDmzbtpd+/Xrkd0hFhu8nUGPHTkcoFLJ792G2bduXqkThxImdPH78jFWrNrJ37wbZ87NmLUZFRYWZM6UKZn5+AXTu3J/Ll48WqT6LbxGJRJQtWwdIPYGOjIymbt2fd+W1MBIQEIiKimLeSp2c+tCgQR2mTftdIdcvrHzrOZciNhIbm7aHSU1NlePHzzJu3LAMRZASExPp128UNWpUZfLk0QAoCZXwHH+ciLhI+mwdiffHl9iaSRv6Dzw8QT+7wtkrEx4eydmzl1m5ckF+hyJXUsrIo6Oj0dbWzpMx+/aVthoYGOhTt24t6tbNnhWLvr4e/v7vFBlagSAiLpIx+6fx7KMPAgGs6raIc88vcerpBYISPhFdLwabGuWJiorO71DzhA8fgjh37hLXr9/hyZPn+Pu/JyoqGiUlJYyNDalY0ZqRrQfi4NCKatUqI5aIsZ3XmH/HLOLVJ1/WWv9FBZv6BFkH03hUPYYM6cv8+X+zZs1mZsxIW7qYXX4fN5uSVhUxLZ23xunF5JyfImEDqFTJhuHDBzBhwhwcHdv+0IpEMWlJmUA1a9aQS5euA+krNaXHlCljaNKkIz17dsbGphyTJ89j5sw/imyyBmBsLPWD8fO7L9uZiY6ORiwWFydshYz37z+gppa+AWxGAhbJycnMP/03R73cURIKGdjANd0eXF9fP65evVWcsH1Dep5zAgEEB6cVTlFWVqZ//x6sWbNFtiD0LSKRmEGDfqd8eStmz56Y5nU9DV0al6vHhedXsDWrwOeYMO4HeLGj/xr531geMGrUZIyNDendu2t+hyJXpDvcAnx9/ale3Vbh46WozS5aNCPH5xoZleDDh6JvPjzl6HxaVmzC1n7/kihKJC4pnkpm1kxvN44ePYbwWPKM86GXkUgkhIZ+lquqdH4SHR2Nh8c1rly5gZeXN2/f+vP5czhisRhNTQ3MzIypUKE8PXt2oUOHVhn6Zl72uY6VoSWWBhZYGlhw4YInYWERqEeqYWYtFXWrU6cWa9duY8LEUair5VxZOuBdEN6PH/L7n3t+6J6LyRt+moQNYMGCaRw9ehoXl1+5KGcp+5+ZbydQI0dOomLFnK3UaGpqMHfuFCZNmsOQIf1ISkrC2blD1icWUpo2laoJ3r17LlVSeuvWA5SVldDSyt9eqBRE8Qmc7OCKOCERiVhE2Y7tqD11LBeHjCfk4ROEysoY165O47/nIVRRye9w842PH4PQ1NRI97WMBCxefnrN+/AP3J54BqFQSHB0aLrnDxvWj//9TzG9poWRjDznBAJBhqITgwf3pnFjJ8aMSatetnLlBpo1a8iff36deIdEh6KipIKehi5xSfFcenWdsc2k5x7xcqdt5eaoq6SfoBdkgoKCOX36Aps3r8rvUBSCsrIK/v7v8iRh27lT2loxZEjfHJ9rbm7Kkyc/JrRR0ImMj+K67x3W9JCavKsqq6Kq/DWh8PX1o4SdPkpKSqiqquDpeYvOndvnV7i5QiKRcPPmXc6f9+T+fS9evXpDcHAoiYmJqKqqYGRkSPnyZXB1daZ588Y0aFAnR3Y9hx6dxKWWtD3C2/slXbsOpGxZS96U8adVRanX2qTJ42jXtgtlytRmtdvfdO2SMyGkUWPnYGBoRsXq9XN0XjH5Q8E1F1IQhw9vwcvLm02bduV3KEWClAnUjh1uVKhQHl9ff+rVk4ozuLltwd7eCXt7J5ycMm9wd3BoiYaGBmPHTuOvv2aSQgEjAAAgAElEQVTnQeT5w5Qp8/Dy8ubAgf8oV64M48fPkvVe3L37ME92FbPb66GkporD0W04Xz2O85VjvLtwhU93HmDdrSNdb5/B+fpJRHHxPN+2T8ERF2yCgkIyFBzJSMDivxu7mdT6N9nuakaG7ylqj+HhEQqIvPDxredcChKJBIkkmZIl07cn0dXVoWfPzqxfvzXNa/Xr1+b27QepTJc/RgbjtLYPjZY50uIfZ5rbNKSdrVR2/NDDk7jULJw9pitWrMfAQJ+OHdvmdygKQU1NlXfvAvNkrNGjpwHkqm/V0tKiyP89+4UGYKRdglF7J9Pk746M2T+NmERpyfI89+W8tntLsF4o09qOxcBAn7t3H+RzxJnz4UMQW7bsZciQ8TRo4EDp0jUxNKyIk1Nftm3bR3R0NG3aNMPNbTFv3twjKMibp089OXZsB7NnT6Jp04Y5StYSRYm4P/Wgc/X2BAUF06iRdAG71xJnkEA5iSUA9eyqUrlaTUQiEUMGjaRV+wFER2fP3iImJo5rlzxw6jch5/8gxeQLP13CZmNTjtGjBzFlyjyCg0PyO5xCz7cTKIlEQnh4hEylacSIAXh6HsfT8zjHj+/I8lqDB/emTp2alCuXfolAYWfPnsOsW7eNuXMn07KlPWXK1GLz5t2yD/2nT59jamqs0Bg+fw7DyKhSto4VCASofElEJEkiJEkiEAgo3aYZAoEAgUCAce0axAQW/fKezAgNDUNPL2P1WbFEjP1yJyrMqU8zm0bUsazJm1B/Dj06SfN/utB14yBeB79N91wDA2np9o4dxWJJ8NVz7v79xyxbJvVAS9mt0NHJeGd6xIgBbN9+gNjY1NYFDRvW5c8/p9Ot2yBZmVrVkpW4Mu4Y1/44wY0Jp5jUerTs+BMjdtKqkmI85RTNmTMeNGnSIL/DUBiamhoE5sF7UYpa39q1S3N1ftmylkRHx8gzpAKHSCLm0funDGzoypVxx9BU1WCFxzoAZrYfD7uhU5V2bLi2g5IlzfD29snniKUkJiZy+fJ1Zs9egpNTHypXboSxcWVsbRszbdp8Hjx4jLW1FdOmjeXu3bOEhr7g1atbnD9/kOXL5+Ls7CgXJfLzz69Qw8IWbSUtKlVqCMDqs4s49+wSpt7G7N17VHbsti1/kywR0+XXqbzw9qZc+Xps23UiyzHGT16CmoYmDVoVrfLooozcErZSpWrIvj979hK1a7ciICAQHx9fHB17Y2/vRL16bfn9d2npydWrt7C0rCXbgenc+Wv/xpYte7Cza4udXVtatnThxo278goTgNmzJ1GypCnOzr/K9bo/I99OoCZMmA1AtWqVc32t/FLaywtGjJgEwOjRg3F1HU5UVAweHodkkuFv3vhjZWWp0BhSEoCAgOytREvEYg7ZO7GjQn0smjXC5BspaklSEq/2HqF0S3uFxFpYCAsLx8BAL8PXUwQsns7w5H6AF94fX5IoSkRdWY2LYw/Tv153fts/NdMx1q0r3F6DueXw4VNs2rQz1XMpnnMHDhxj+/b93L//GGXlzKv7DQz06dy5Pdu370/zWseO7Rg9ejBduw4iIiJSrvEXFBITE3n7NiBXJXyFBR0dbT59Clb4OG5uWwDo3r1jrs6vUMGahIQEOUZU8CipZ0ZJPTOZumrHau149P4pAG/e+JGcnMyodgM59vgMFSqUw88vIE/jE4lE3LhxlyVL/sXVdTi1a7fEwqI6pqZVcHEZyOrVm/H19aN166bs3OnGhw+PCQx8zN2759i+fQ0jRvyaIy/PnHLg4Qm61OiAhUV1AHZeWcvKSxvY9eta6tSqgafnTdmx1uVKYdfQnovH/mPxrvvYNe/M77+Np8Yv7enS7TdGj/+T5at2EBH5VdxFLJZweP9+mncsngMXJuQ+O04RnzhwYBOlS5dkypR5jBz5K56ex7l160yqD4wGDerIdmCOHJGWq5w+7cGWLXtwd9/N7dtnWL58LkOGjCcoSL5vxEeObMXb+2Uqj6JickfKBOrYsdNoamoU6aTrR/jvv38AcHTsjbv7BdatW0qtWtVkr3/48AlbW/kajn9PSnJ48eLVbB0vVFLC2fM4vZ56Enzfi8/eL2WvXZswG7OGdTFrWFchsRYWIiOjMDY2yvK4bwUsSuqZ0bGatDTNsWobnn7IuKelSZMGeVbqVdDw8vJmwoTZGBjYsGHD1136FM+5pUvX8OFDECKRiKVL11ClSmPZ43t++20Qnz+HpTvOwIGuODm1oVevYcTHF63JdEBAIFWq2GNoaECDBnXyOxyFoaenk67wjLyZMeNPlJWVU3nz5YRKlWwQiyWynbqiiKmuMRb65vh88gXgyqsbVDS15nXwWy5c8ERTU4Mzzy5SwaQcNWpU4dMnxVQ7RUdHc/LkeWbMWEinTn2pXr0p5ubVMDaujKNjb9au3YK//zvq1q3FggXTuXr1BGXLWpKcLCEk5DPbt+/H1XUYtraNsbd3ynXvoZ9fAAYGNvTrNyrLloTYxDgu+VxjjJO07NbH5yYzTi4kKiGGLusH8Ki8N69M36Q6Z+t/fxER+onbHofpM3YxU1eeQkvfnJev3nLi2EkWzl1Ii9ausuP//GsTyZJk2vcam6v7KSZ/kKvoSHrqXR8/BlOypJnsmCpVMp+Q/vPPBubOnSxTDKpRowq9enVh48YdTJ+ee+nS7ylbtgx//DGCmTMX0aVLB4WXohV0tm7dy+HDp2SJc04xMNCnXLkyPHrkzalT5wHpSuS+fV+37nfulJYwXblyI9WEavPmVdjZZU8SuTDTpYsDU6bM49q12wwa1Jvu3Tulej0yMpI6darnSSweHp7069c928er6eli3rge7y5coYRtBe4vXkV8yGdabV+twCgLB9HRMZiYpN+DlpGAhUPVVlx5dYM+dt245nsba6OMV2uHDevHlSs3FBV+geZ//5vAuHHDaN++F5MmzQFg06adDBrUW+Y5J5FIWLZsNRs3Lqd162apzv/Wo87ExIjAwMeyn7/3qJsyZUy6vnUFjRRVvaCgEIKCggkJ+UydOtXTXfG/ePEqPXsOxdq6LOfOpd1dLEoYGOgTGpo2IQ/38cVj4NeJaZRfALWnjsW6Zxc8Bo4l2v892pYWtNy8EjX9jHfKQbpTCV99M3ODvr4uAoGAN2/8FLpLk98s6TSTobv/IFGUhJVhaVZ3X8SY/dO49PQ6oo5iPF5eZbnLXIJ8g4mJyV7fVUb4+7/j4sVrPHjwmKdPXxAQ8J7Pn8NJSkpCRUWFEiX0KV3aghYt7LGz+4XmzRvJrCBSOH3agxYtnDE1Nebx4yuYm5uSmJjI7dv3uX79LkePnqZVKxdu3DiVobJjRpQpU5rffx/GihXrMDKqxJAhfVm8eGa6Sb+mqgZG7iUISwrn1q3TGBkZcn/KBdnriYmJmJpW4flzHypVsgHA1KQEbRwcObBhLvVbuVC6vC1jFnxd4PLzecyisU68fBVABevSrHNbT93mnbKsTCimYCFIkafN1sECQXKK+eP3GBtXRltbi+PHd1C16tcemZ07DzB16gLs7H6hRYvG9O7tgp6eLlev3sLVdThlypQCoFOn9kyYMJKyZevw8OFF9PS+ii+cOnWe3bsPsX27/KWUa9duiZqaGtevF2zDWEUhFouxtW3Mp08h9O/fgxUr5uf6WpUqNcTFxZEFC6bJMcKihVgslvWQffu3FB8fj7l5Nd68uSeXGvjMMDCwQUdHC3//h5keFxcSilBFBTU9XURx8bg7/0qNsUOI/RTCyx0HcDi6DWUNdYXGWhiwtKzF9Om/M2xYWln+J4HPGbl3EmKJBEmyhC412jOp9Wgi4iIZsms878I/oK2qyTKXuVQrmX4pccrvzLVrJ7G1raDo2ymwREZG0bZtD54/l/7dLF06m0GDegNQp05rqlatxJYt+aeAKJFIiI2NJSYmTvY1OjqGuLg4YmPjiYuLIy4untjYWOLjE7484omKiiEiIpKIiEiioqKJiYklJiaW+Ph44uMTSEhIJClJhFgsQiz+uisjEAhQUlJCSUkJkUjE6dN7qPNNyfLff69j3rxluLg4smHD8vz4J8lTRo6czK1b97h373yGx0jEYnbbNqbjuQN4b9yBuoE+NcYN49Hf60gIj8BuzqRMx5g/fznLlrmR0Twou5ia2rJp0wocHdv80HUKI7Vrt+SXX2rIficlEgmGhhXx8rpM6dIlMzwvPj6eGzfucuPGXZ48ec7r12/4+DGY6OgYJBIJAoGAUqXMKVvWkmrVKtOggR329vWyJeT16NFTWrRwxsXFkbVr/0q3SkgikdC6dVeeP3/F3bvn0iR82UEikTBixCTZQvasWdIFqW8ZNOh3Dh06ybFj27G3T1+90dq6Hq6uzsydO1n2XHR0LFZWtenYfxJtug5Lc87MgfaUK2dFv35dGT3id5bu90JTs+haJxUmRjiUITk5Ocste7ml19+KTyxaNFP2fO/eXWnRwp4LF65w6tQFtmzZg6fnMUBaEvmtgXJGJCcn57r8ICsOH95GrVotWLlyQ7qyz0UZL6+nNG3aGYATJ3bQqFG9H7peSMhn2rRpJofIii5KSkpcvHiY5s274Oa2mREjpDXk9+97oaQkVHiyBlCrVjUePJDuNNSu3Yp69X5hzZq00vGxH4O5MnISErEEJBLKdmmPZbsWbDKqhHbpkhxrI1UwtHJqwy+TRqc5/2chISEBC4v0FQpTBCy+R09Dl32DNmbr+kpKSgCsX7/thxZU8oof9Z7LCF1dHW7cOPUlcevOhAmzmTBhNsuXz6VWrWocOHAcExNbpB8V0s+Lrx8bgnS/T/lcSU5ORrp2mfzd9+l9/erDJT027aKnVJQHBAIhAoFA5hOmpKSEUCiUJVrKykqoqKigqamOlpYW2tqaWFpaoKeni76+HiVKGFCihD7GxoYYGRlibm6CsbEhmpqaqcZzdR2Og0Mvzp8/KJO1nzt3KfPnT2XUqIHZ/jcuzJiaGmUp5hF4+To6VpboWFrg736BDl/EsGx6deGkU58sE7Zly9wwMvpxvzBNTQ18fN5kfWARJDAwiD/++FphIxQKUVdX49q1W3Tv3omXL1/j6XmLBw8e8+KFD+/efSAsLIKkpCSUlJTQ09OlZElTbG0r4erqQsOGdty9+5AFC1bg5XU5y/GHDv2DFy9effk7FCIQCHny5Bn29vVYv35ZhucJhULOnTtA/frtadq0E8+fX89x+4dQKGTduqWsWrWQbt0GM3fuUubOXcqaNYvp1cuZpUtXc+jQSf79988MkzWQVp5dunQt1XPa2pp0d3Xl4K6/aeU8JE1snQdMZtPi0fi+fkXlX+yLk7VCiNwSthTxic6d+7NsmRt//DFC9pq5uSl9+nSjT59uNGjgwLNnGa9OVaxozaNHT1KpWT169JSKFa3lFWoqLC0tmDJlDHPnSlciM5p4FVYymjy5ThiGe6gHOEO3Fh2pV7/2D43z+vUbxGIxjRrZySnyokvNmlXp1q0j06YtxNnZEVNTY27deoC2tnaejN+8eWNZwhYaGsbu3YfTTdgMq1aiy5W0ycagkKLtIZRTRCIRlpalFD7O1q17C0XC9qPec1khTdzciYiIom3bbowfPwuQJknbtq1CIkn+8pD2CUmTKqn0f3Jy8pevklRfVVSUvyRRQoRCaSKVklRJkyyBLMFKeV1FRQVtbU00NTXR0tJEU1Mj30qMdu1aS+fO/WjduhtXrhzFwkLahjBixIB8iSc/MDc3S6MC+j2+h05S3kVqyxD3KQRNM6kBsaaZCXHBmf8+ppTtbdv242Xguro6+Pu/++HrFDaio6OJj0+QKUmnUKKEAaNHT2XEiEkIBAI0NTUwMTHCysqShg3tqFfvFxo1qpehuJOamiqxsVmXVc6Z8xeHD5+kdetmiEQiWS+ho2Mb1q3LWvVTKBTi4XGQihUbMmjQ72zevDJ7N/4dqqqqHD26jaioaFq0cGbkyMmMHCndLRv12yB69nTO9HxHx9ZMm7YwzfP/LJvKgb37OLJlEc4DU1c61W7iyO7V0wkJCuT3RT+3FU9hRa6fLiniEw4OvTAxMaJv326cP3+Fpk0boKKiQlBQMGFh4Zibm+Lj45vuNcaMGcLs2X9x4MAmSpQw4PFjb3btOsT584qTtZ44cRT79h3F2XkAt26dUdg4+cH3k6fWK7uzZMy/0AJGVPqVhZOnsfDMCnbfO0xfu265HufECakJdHFNdMYkRETiOWYaYc98aC2A20jLSMPCfAg9dIIZEZHEh35G3fDHV3Azo0WLxixf7ib7/vDhn7McWB6keIBZWZVW6Di//tqLzZt3K3QMeZGZ99wG1+VZes9lFz09HW7ePE1ERCQtW7rw+vVbevUazooV8+nfv8cP30dh48iRbbRr1wN7+47MmTMRyJ1PWGGldOmSsh6z9BAnJuLn7kGdWbnznZo1S2oCLQ/hlhIlDH5KIaGIiCiANJUkGzYs49mzVzRpUp/y5a1y/HtbtWolkpOT8fd/j6WlRbrHPHr0lJUrN7Bs2TwGDMj4/aFLlwGYmRnz11//S3cRVVtbm23bVtO160CePm1L2bKWNGvWkGHD+uc4bh0dbe7cOcunTyHY2bWlbdvm7Nx9jIgYCauWZ9xa0q2bE+PHzyIgIDBVGamKijLDRg7H7d/VtOg0CH3D1GWbXYfM4oXXNQxNFft5VYxikPu7+bfqXadOnefixas0bNiBxo2dcHEZyJw5kzMV+HBwaEnv3i60bdsDO7u2jB07g3XrlmL2ZSVMURw5spXXr/1k3j6FkfSUNL+dPB055s4jryeQDKVLlmThZOkbQjObRhx7/GOJ6rVrt2X9iMWkz80p8ynVsgndbp/B2fM4x266AzC2/2+o+r0jTl0tT+JIEXgJD4+gefO0anp5QUY2IAkJCQwcOJZffmlJq1YuqVah7917hINDL+rWbYOdXVvGjJkmW1E/efIcjRo5YmfXloYNO3Dy5Lk8uY+UvzlFG54PHSpV1xWJRAodR178iPdcTtHT0+Xu3XPMnz8FgN9/n4GBgQ3bfkJD99On99KnT1emTVuosDaCgkqZMqVJSsr47+Pd+SsY1bBF00Sq6KphYkTsx08AxH78hIZx5gsI//23CxubcnKJ1czMmOAsdvSKIhklNA0b2jFokCs2NuVytciQUlZ5/frtNK89ePCYNm2607x5F5o3b5xpsgZSpfM9e45QpkxtevUayvv3H9Ic07SptALMwECPoKBgZs/+C0vLWixZ8m+OYwepINLbt/dYt24pkeGfOX0y8/mYtrY2enq67N59KM1rs2eMwMLSimn967PX7X+p1Ejrt3Kh//ii389aVJFbwvatGleKepeDQysWLJjGnTtnuXr1OFevHqdHD6kyXuPG9TLsXxs0qDd37pzl9u0zeHgcypMyOwsLc2bOHM/ChSvw93+v8PEUQaVKDTEwsEkzqROJRZiPrMrQy39gJjEh9PkLkoXwIEBaFnfs8Wneh6d9U8oJvt4v6BQRxX67tuyv15ag2w8AeLp+G/vrtuFAg/bc+rJC+TOSGBnFh+t3qNhXuouppKqKZUVr5s+fSvKxM7gLBKioqORJLCnj9Oo1XCZznl8S09/bgGzffgA9PV3u37/AiBG/Mnv2XwB8+hTCgAFjmD17EnfunOXWrdO0bGlPdHQMjx8/Y+bMReza5cbt22fYvXstM2cuyrUEc054+zZA1mOmSFLUwE6f9lD4WPJAHt5zOWXUqEG4uDiiqqpCmTKlGDt2OgYGNul6rxVlli+fy8CBrqiqquZ3KHmKlVWpLyWv6b+XvT5wQlYOCWDZrgU+uw8D4LP7MJbtW2Z47bCwcOCrNcuPUrKkebqKlkWdwYPHyaUHMD1KlNDn3j2vVM917TqQli1diI2N5eDB/zhw4L8sr6Oiosz27atZu/Yvnjx5QbVqTWnVqiuPHj2VHXP48ClUVFQ4c2Yfly4dISDgIc2bN+LPP3/s9yP0cyQSsZiQT4GpfNPSo2rVSpw7l7ZnT0lJyKN7p5gxexbXzuxmYs+aPLlTOD43ismcn6deIhuMHTsUG5tydOmS/Ub4gsSdO2cBqWJniq+Jr68fxkaVid+dwPrmy7BuUJbnn16xqfcKph1fSMuVLmiraaEs/LFJp11gEBYt7WW7R/oVyxPoeRO/UxdwvnqcrjfcqT568A/fY2Elyi8ADaMSXBk1mcNNOnJlzDSSYmJxLFuGCOB5ZFSeTrAqVCjHzZt3ZQmRoWFFDAxsUj3s7NoycuQkNm3ayaNHT0lKSpJrDCk2IHv3bpDJJLu7n6dXL2n9fqdO7bh8+QbJycls3LiDXr26yHYHBQIBnTq1x8TEiH//3cT48cMpU0Za5lGmTGnGjRvOqlXZE/X4Ed69C0RFJe/KgAubgXZuvedyy/r1yyhTpjSxsXE8f36N8uWtGDNmGuPGzcz65CLE69dvfjpF0RQhlnfv0i4+imLjeH/pGlaObWXP1Rg3jPeXrrGvdiveX7pGjXFplfVSmDhRainxrQL2j1C2rCWRkVFyuVZhYfv2/dy4cZeDBzcr5PoWFiV58eKrPsLEiXO4dOk6ly4d4erVE9muJhGJxJibm9KtW0ceP77MiRM7iI+Pp3nzLtSp05rTpz3Yu/dIqt1WVVVVlJWVf7jKyOPSbZSUVVDT0OSf1TszPbZduxYyxdz0GD+6N76+d6lVtx6rZw9k4+Lffii2YvKf4oTtOw4f3oKf37sfXinJD6ytyxIQIJVqr1ixAa6uw6ldW9rc6+d3n26dOsomT3ZWtXAfuZsLYw7SsGxdyhtZ5Xrcd6/fYpWcjNM8adOskqoqanq6PPtvFzV+H4qSmrTUL6uSk6KMRCQm5NFTKg90pcuVY6hoanB/0UoeLl/D8idXAAiPiMizeG7dOkNYmI/s8fz5dXbuXMu4ccNp0qQBWlqa+Pj4snv3YSZMmE2zZp0xMbFNk9RVrtyIadMW5HiHLiEhkd69R7BjhxsVKpSXPR8YGCQTTFBWVkZXV5vPn8N49uwlNWtWTfdaz5/7UKNG6tdq1qya6YeZvHj37gPq6nljbWBpWYqrV2/lyVg/Qkh0KBFxkQAy7zkbk3Iy7zkgS++53JIiCiCRJNO+fS9ufik7VrQhfUHjyZPnsrKtnwllZSXevvVP+7ymBn1976D6jV2QegkDHI5uo/u98zgc3Ya6gX6G1z148AR168rPK7R8eSvi4uLldr2CTnBwCH/8MYsRIwbIVEzlTYUK5fD3l/YFbtu2l02bdvLff//keDyJRJLKO7hhQzuuXj3BnTtnKFXKnN69h3Phgift2rVIdd7163fw83uHvb0TI0ZMzFU1xPWb99HS0adc5TocOXQ802N79epCdHQMoaEZm8Vra6lz4tBq5ixeysOr7jmOp5iCRXHC9h3m5qbMmTOJpUvX4OcXkN/h5BhtbS2ZOay7+wX6D+vJ28B76OrqpJo8pSi0JYgS+OfSBn5t0CvXY57dfYhYoYC7E+ek2j2KePWGjzfucrSVCyc6uBJ83yvrixVRtEqaoVXSDJMvPkllO7Yj1MubKL93nGzpwlRASyRml107YtPpRVQ0pqbGODi0ZNasPzh6dBvv3j1KldCFhfng7/+AY8e2M2vWBBwcWmFqaszHj59wc9tCfHxCjsb71gYkNelLpGdG+rYf8rECkYjFHG7SkTM9pJYf7y9f53DTThyyd+J4u558fvkKTU2NHx4nOwwb1i9PxvlRPkYG47S2D42WOdLiH2ea2zSknW0LxjUfxrHHZ2i4rANzTy3ln24LFDK+trY2t265ExwcSrNmUtsSV9fMVdeKEomJiYSGhtGjR+f8DiXPUVVVxc9PMeqL69b9Jbdr2dpWkHvFQkGmU6d+lCxpplCP1urVqxASEoq7+wXGjZvFhAkj6dixbdYnfkOK0mR6Ogvly5flyJFt+Pjc5rffBjF2bGobqLNn9zFz5nhKlTLn5s179O49Alvbxri7XyAyMoqGDR34999NmY7/7OkLDIzMadKhL36+r1L5Ln6PoWEJtLS02LPnSJb39WtvB8QSMW9fPsry2GIKLsWSfukwatRAdu06RKdO/Xn4sHDV/l6+fJ3OnaUlnZ6ex6EEOK3tk8q4t51tC2aeWMTZZxeRJCczsEEvmljnfjX2wd1HVJMkU3mgKyZ1anJjyjwerVhHskhMQngEHc8dIPi+Fxd+HUuPhx4/XTM8gKapMVoW5oT7+KJvU473V25gWN0Wh6PbcHPbzL9/rmR8QgJzP4fRXUsz6wvmAzo62tjb18/UHya7ZGQDUrKkGe/ff8TCwhyRSERkZDQGBvpUqmTDw4dP0shBA19ee5yqXEleViBP125Fv0J5EqOk/QTX/vgfrXe6YVDRGu+NO3m4Yh2BgR+xsamHhoYG2tqa6OjooKurjYGBPoaGJTA2LoGpqTFmZqZYWJhRsqRZrkRKevd2Yfr0hXz+HEaJEgY/fG+KQh7ecz+KoWEJrl49Tq1a0r4krQL6N6UITp26gIqKsqzv8WdCXV2dwMCPcr9uVkbZpUrVkPXxnz17ialT53PkyDZ27jyAlpYmo0cPZuTISVy6dJ0HDy5QurRUybBq1SY8eXIFf/931KvXDhubciQkJKCtrc3gwb1l5eGFmcWLV/Hy5Wvu31fsXKphw7rExMTSp89I+vfvwbRpv+f4Ghs37vxi3ZHxXkaJEvrMmzclzfNlypRm/PivdlahoZ8ZMWISvXtLn9PR0eZ//1vCsWNnOHJkSxovRQB/fz8sK9Smer1WIBCwa587fXt1yDCWSpWsOX3aI0uvRR1NZfRLGHPj7D6sKtTI9NhiCi7FCVsGHDmyBVtbe+bOXcasWX/kdzjZYvr0haxZs5nSpS148OCCTAwhvcnTPMcpzHNM+6aTGx6+9aeipkaq3aNHK9ahZWGGlVNbBAIBJrVrIBAKiA/9jIbRz1ka2XDJTC4N/QNxYrwcD2sAACAASURBVBK6VqVpsnoRAF5ezzAyKoGZSAwB7yldumaWE4SiQHo2IO3atWT37kPY2dXi6NHTNGlSH4FAwJAhfWnZ0oU2bZpR58vv2d69R2nWrCGjRw9iwIAxNGnSAEvLUvj7v2P58rVs3brqh+KLef+BgLOXqPnHCB6vljarCwQCkr4kb4mRUUQLhZiaGtOvX3dCQj7z+XMY4eERhIR85u3bAGJjY4mLiychIZHExCTEYrHMaFkoFMr8vNTV1dDQ0EBTUwMdHakCmIGBHoaGBhgZGWJqaoSJiXTV999//2PatLHFFhpZUKZMaQQCQbrG1kUZP78AVFXzRnG2oKGlpcnHL8qP+UGKiNKhQ5tTya2nIBQK2bHjAIMG9UYoFKbaZbOysuTKF9/Lt2/96dt3FBKJhN69u+ZZ/PJEIpHQv/9vnDx5nj//nJ6h3L68sLWtgFAopGfPzixfPjfH5wcEBDJ37jImTZJPr5ehYQn27dvI+/cfaNu2ByEhoWzevJJffx3DiBGT2Lo1raJkWGgI9jbVEQqFWFhVZPPmPZkmbC1b2rN+ffb6mqtUq8ULr+u5vp9i8p/iT/wMMDY2YsGCaUydOp/evZ0pX17+/RbyxsTECDe3JfTs2SVPx30VFIJGSdNUu0f6Fa3RLWvJhys3KNm4HhGv3iBJTFK4x1hBxrCaLZ0vHk7z/KtXb7C0LEXPI1up+dyHBg0cWLp0NRMmjMqHKPOWFBuQDh1cMTQ0oG/fbgwfPoFffmmJgYE+mzb9DUh/tzdtWsHMmYsJCQlFKBTQoEFdnJzaYGpqzOzZE+nZcxgikQhlZWXmzJlEtWo/1itxY9oC7OZMIjE6Rvac/T8LONN9CEoaaqjqaHNfX5fqZiY5Ws2VSCSEhYXz7t0HAgM/8vHjJz59CiE4OJSwsHDCwiKIiIjg3bv3xMTEERcXR2xsnKzs9O+/1/L332sBaQKppCRESUkZFRVlVFVVUFVV/ZIAqqOhoY6Wliba2tpoa2uhq6sjSwYNDPQoUcIAPT0dtLS00NbW/CIXrZNnfXmKJqW38sIFT1q2tM/naPIGV1dnZs/+i6Cg4EwtdIoKUVHR6OhI/bJ0dbUJDg7JlzhSRJT27dsoE1H6nhEjBuDmtoX+/Xugrq6WoQ2BlZUlCxZMY8aMPwtNwvb69Rv+/nsdZmamvH79hlOnzqOiosKxY9to3PjHqzKyQigUEhDwIN2dq6yQSCS0b98Ta+uyckvYUrCwMMfL6xKtW3elf//fUFVVZcmS/6V7bHx8LDbV6gFQv1VXjm7JXFm7d++uLFnyL9HR0el6xn1LZ+cOTB43PoMWgmIKA8UJWyYMHdqXXbsO0rnzAB4/TiufWtAYO3Zono8ZHR1NfHw8zVbMT7N7pKypwZXfpnKwgQNCVRWaui0pfqNIh8DADzh+US+rVMmGwYP7sGDBCkaOHJhn/VF5TXo2ICls2ZL+zpidXS3c3dM3j3ZyaouTU876FTLD/7QHGkaGGNWsSuA3Qh+P3TbTdt8GTOrUxGvlBqovW0NMDtX4hEIhhoYlMDQsQY0aVTI99urVWzg59fnm5xNUqVIRkUhEaGgYwcGhhIZ+JjT0M2FhkYSHRxAeHkFkZBSRkVFERUUTExPL+/cfZElfQkICiYmJJCWJEIlEiMUSkpOTZY+08QoQCIQIhUKEQgFKSkqyh7KyEsrK0mRRRUUZZWUVVFVVUFNTRVVV+lBT+5pAqqury77X1NREU1Pjy0MTbW1p0qimpibbeVRSUpIloilJqfQ1VVRVlVFWlj7SK2FKSdaqV7dl2rQF3Lp1Okf/T4UVY2Mj9PR0+O+/XUydOja/w1EoGzfuZOLE2bKKBAMD/XyRy08RUTp+fEcqEaXvKVXKnPr1a7N37xG0tDQz7f2tUaMKPj6+ighX7sTHx9OyZVeEQgFCoRIaGurMmTOJoUP75al5e26SNQBn518JCwvn8uWs+8Fyg1Ao5NdfXbl/fyp79qxLdyEl6NNnSE7GyMwSgMbtXdm/bi7Xbj6iUf30yxgtLS1QV1fjwIGTWfrLde/SgoljRPi9fIRVxZo/flPF5DnFCVsWHDz4H5UrN2bGjIXMn6+4htnCytmzl1BVVaW8fX3Kp7N71Hz9snyIqnDx+XM4tWp9VTn866//UaOGLUpKOfugy6iPonTpkuzde5SVKzcgkYhRUlLml1+qMW/eFPT0dHF07M28eVOYOHE2CQmJhIVFEB8fj7m5KQA7d7phaflzmaIH3bqP3+kLBJy7jDghgcSoaM50H0y4j6+s9Ldclw6YzF1GlAJ8hS5c8KRr1699CbdunU41EVRWVsbU1FhhOyjx8fFERUUTHR1DVFQM0dHRREfHEhMTS2xsLNHRMcTGxhMXF0dcXPyXZDBelhBKvyYSGxtHeHgESUlJJCYmkZSUJEsUpQ8xYrEYsViCRCJBIhGTnIwscfw2gcxtaaOXlzcAU6bMY9Gin0Pev1at6ri7XyjyCduyZWtS/WxoaMCLF6/zPI5vRZSy+h0bP34Erq7D0NPTJTo64367wlTK27GjNDF7/vxaofP/mz59IVev3uTChUMYKrACyNDQAFVVlQztBUxNSqCto8e+dXPoN+4vVFXVMTQtxYqVm2lUf0WG17W2LsuJE2fSJGzR0dGcPn2RCxeu8PDhU/z9pWI818/tK07YCinFCVsWGBqWYMmS//HHHzPp06fbT9nInRkeHlcxMyv6ZTeKQiKREB+fQIMGdVI936dPt1xf8/s+ivPnr+Dmtpn9+zdSsqQZYrGY3bsP8elTCHp6urLzzp8/CMCuXQd58OAJcXXjOON9kR77hnJjwikAHr/3ZvyhWcQnJaCspMzSLrOpbVn0mpjr/m8Cdf83AYDAq7d4vGojrXe6sbNiQyJevUHPuizvL13jk0BAGRP5/f6fOnWB3r2Hy36+f/98huVVikS6E6aOsbFRno+dUyQSCSKR6EsyKEYkkiaFffuO5N49L27edOfy5RtMn74QD4+ruLvvVujErCDQtasj48enX3ZVlPj48RMtWnydABsbG3H3bt4r4WUkopQe5cqVoWrVyjx8+BixWJzhcV5e3pnu1hUU5s//m/v3H3Ht2slCl6wdOnQCN7ctbNy4PMtqhx9BIpGwePEqWeluRowaM5Kli5fiOmoByqqq1GzYllseBzM9p1mzRuzadZA9ew7j4XGVR4+eEBAQSFxcPKqqqpibm1KtWiUGDuzFgj/XkJSYM0XnYgoO+Sbrv3TpGhYvXkW4jy+H7J1kj62WNXnitpnQx8841qYbBxt24EzPoSTmo8nkgAE9qFmzKs7Ov+bYb6qo8+DBE4V6HJUq9TUZOHv2ErVrtyIgIJBFi1ZiYGCDr6+f7PU1azZjYGDDgwdSW4Pq1Zul8SjZtesg1tZ22Ns7YW/vxPDhExUWe3Z4/vwVAoFAZvr8o6RnRr1smRvz5k2RecsoKSnRp0+3VMaf6dGrjjMHBv+X6rn/nVzCpNaj8Rx/nKltxvK/k0vkEndhQKisjP0/8znf7zcONXbCZ+8R3IVC2U7kj7J8+Vp69x6OmpoqXl6XCQvzyZdkrbAhFApRVVVFS0sLfX1djIwMMTc35d49L8qVK0PFitYMHdqXR48ukpCQgK2tPf/+u4lduw5x/frt/A5fIXTr1pGkpCQePXqa36EonP79e/Dx4ye8vV+SmJhI1BdRoLwmRUTpwIFjbN/+vV1Jav74YyQfPnzKcD7h7/+OmTMXMXRoX0WEKjfu3n3I8uVuLF06Vy6qvHlJbGwso0ZNoW/fbjg7OypsHIlEQps23Xnx4hXnzmX+ezFx3ACUVVQ4/KV3rZXzUKIiwvDzT2sGn0KfPl35/Dmc33+fwb17D6lcuQILFkzj5csbBAU95eFDD7ZvX0Nj+8ZEhIXQrkexgXZhJd922BYs+Bs7u1+YPHk0zp5Sg0CJWMxu28aU6dCGCwNGU2/eZMwb1ePFjv14rdpInenj8itcDh7cQsWK9Zk2bcFPU1aTHfz939Grl+JFTtJT37K1rcihQydk4hxHj56mUqWsPzS6dOnAX38VjNXnGzfuyq1PLaM+iufPfahePeerh43K2eH/ObWnkUAgICpeOiGKjI/CTNfkx4IuBJRsXI+SjaWN4FaObbBybCN7bYBRJZnR948yZsxghg7ti7a2llyu97PTsqU9kyePlv1csqQZDx54MG7cTBYsWEFycjJisZjg4Gf5GKViUFVVpWzZ0owbNxMPj0P5HY5CePxYWurav//oLI7MO74XUcqIypVtKFnSLNWC49u3/jRp0lEm6z90aN8CLziyZ88RzM1NsuyfKkhcvixVSvz3301oaGjw99/zFDreb79N5cmTZ1y7diLLBTglJSEDBg7gvw3/4TJ4OvqGpmjrGrB0xWZWLU+/JadiRWtCQ19k2Ss4ZfpfGJqWwtSi4AvoFZM++WqcPXLkgFQ/B16+jo6VJTqWFkS88sWsoR0AFs0a8/b4mXyI8Cv6+rosXz6X9eu38+TJ83yNpaAgEomIjo7ByalN1gf/AOntGgF06NCKU6cuANIPO11dnUJX6uTl9TTTD/ackLEZ9VeePn2Bvb0TtWq14NChkzkeY2HH6cw6uZgq8+2ZdWIxsxwm/EjIhR6xWIyFhblcrqWsrFycrMmRAwf+o27dWqmeEwqF/PPPAj58eIyv7+0vXn/5V72hSHbtWsejR0/ZvDl9oZ7CzqZNuwD4/PklYWE+hIX5cOrU7hz3/sqD9ESUHBxaMWXKGEaPHgzAmjVL6NSpvey48eOlu+kAlpal+PDhCVeuHOPWrTNcuHCwwCdrIO2Tyq3QR34xePA4Onfuz/nzV9ixY7XCRVEuXrxKnz7dsq00Pu9/oyE5Gfc9UvGtirUac+7MuUzPyeoexGIJ169comXnwdkLupgCSZ68sz1+7I2BgQ0HD54AwNv7JQAdOrROdZzvoZOUd5FuTRtUqoC/u3Qy/uaoOzHv5W+GmVN69+5KnTo1cXEpLo0EuHz5BkpKSnIr50uPlF2jHTvc0tTz6+hoY2Fhhrf3Sw4cOIGzs0O2rnn48ElZSeTOnQcUEXa28fHxpVSptH49uSGlj+L+/ccsW+Yme75SJRu8vKSlUVWqVMTT8zitWjUlPj4+x2P8d2MXC52m8XSGJws6TmPMvp9XiCcxMREgxwlbRmW+IPWWa9TIkQYN2tO4sRNjxkwjIiISAEfH3rJy3xSuXr2FpWUtmjTpSN26bXBw6MXp04o1qC0qaGpqoqKigqfnrawPLoRUrGjNyJG/MnnyvDSl4UWBrVv3AqRSHrayKo1YXDg+mytUKE9CQmJ+h5Eu2W1ViQuLQF298Hj+PXr0lJCQz7i772HDhuU0/LIpoEiCg0Po0KFVto9XUVHGuUd3zh9aD0CrLkMICnxPbGzOP69TWOm2m2SgqVP/XF+jmPwnTxI2a+tymJgYMXjwOAwMbGjfvidAKuNXcWIifu4elO0sXYFq8u+feG/cweFmnUmKjkGoopIXoWbJgQObiIiIYvToqfkdSr5z9uwljI0Va4Kd1a6Rs7Mjhw6d4NSp82kWADKiS5cOeHoex9PzeL6vYr57FyjXxvL0+ijGjRvGzJmLeP/+ax18bpI1gN33DuNUTSqf37l6e+4H5H2Df0Eh5d8ztwbWKWW+Bw5sSiMOc+OGO5cvH8HOrhafPmXuK9WgQR2uXDnGnTtnWbx4JpMmzZWV/RSTMQEBgYjFIlRUiq721rx5UzAzM8bFZWDWBxdC+vdPXYqXopoaHh6Z6vnqC5vRcFkH7Jc70fwfaQn/orMrsZ3XGPvlTtgvd+Lss0t5EnMKlSpZI5FIZAs/BQl9m3I4ex7H2fM4nS8dQVlDgzId2nB++AT0XV3o4HEQK8fWmD5/Vag8G2fM+JOKFa2pX782Xbs6KXw8b++XSCTJNG3aMEfnLV8yiaSEeC4e34pVhRqoqqnj1GUosXG5+9xe57YJ29pN89RioRj5kyf/exoa6rx4cYOXL29iYmIkK0E5cOC47Jh3569gVMMWTROpKpl+hfK0P7SFLpeOUN7FEd2ylnkRapbo6uqwfv0ydu8+XGQb1rPLvXsPFa5ildGuUQrt2rVg796jlCpljq6ujkJjUQShoWHUqFE16wNzQEofxdKlazh16jxt2jRj2LB+dOs2mPr129GmTXeUlJRo0UJqJCwSibOt7mWua8I1X+nv/ZVXNyhnZCXX2AsTAQGBKCsr5epceYrDfEu1arZMmjSKDRt25Cqun4m+fUdStmwZ2rRplt+hKJTDh7fw5Mkzxo+fld+hyI0UdcUhQ1KLcki9AoW8eeOX5pzjw7fjOf44F8d+tZ8ZYT8Az/HH8Rx/nDaVmyk05u/R0tJCIBCk6mMriHzbqhLs/ZLO42Zibl6Nf05dwOTjp0KjEh0bG8v163eYMmVMno155Mgp9PX1ZImSl5c3rVp15d69zBc6NTXUaePgyKmdfwMwcs4Wnnt7U7asHdt356yV4flLP4ICA3AZ+PNWwxQV8nRp0djYkBcvbvD+/Qfs7TsyZMh4hgwZz/r1yzB095CVQwLEBYeiYWxIskTCg6VrqPRrz7wMNVM6dmxL69ZN6dlzGK9e3Sp0UrbywtfXnyFD+mR94A+Ssmvk4NALExMj+vb9KnmvoaHO7NkTsbYunI20cXHxNGhQWy7XysyMulcvZ3r1ck5zTkJCAgEB71OVZbq6uuDq6sKgnb9z7fVtQmPCqDK/MVPajGVF1wVMPTofkUSMurIqK7rOl0vshZEPHz6hrJzznX95i8N8T40aVVi1auMPX6coc/q0B15e3ly/nvM+zsJG+fJl2b59DX36jEBfX49Zs/7I13jCfXzxGPjVHy7KL4DaU8di3bMLHgPHEu3/Hm1LC1puXomavl661zh79hIgLfH+HqFQSFBQsEJilzeqqio8e+ZToO2CUlpVzp69RBBwe8sqdj58zFO3rVRJTKR8eav8DjFbLFy4Ai0tTTp3bp/1wXLi/fsPhIdHUL9+e3R1dbh79yGamhoMHjyOBw8yL11fvXIW5cvX4fbFw9g178Jfex6y45/JjB01jjVrNnPk4HpMTbLu2Z86/S9KmFhgWrrgW0QUkzn5sj9qYWGOr+8d2Y7bqKF/8PjwSR6KvnqSvD54nH11WrPfri2aZiZUKGANuNu3r0YgENCnz8j8DiVfkEgkhIdH4OCQ/drsH+H7XaNvcXFxzNBDpXFjJ6pUaUyVKo2ZPn1hXoSabd688SM5OTlHOyjy5MGDxzRp0pFBg3qjp5d2d3JT7xU8n3Wd4MXPeDrjKn3tutGgbB0u/X6Eq+OPc37MQWqWku/uYGHi48cg1NVzvlijaHGYwmS4m1+MHj0VB4eWBXqiLE/at2/J6tWLWbFiHStXbsjXWDIqt3v09zosmjSk+73zWDRpyKO/12V4jQ0btqf7fEBAICKRiMb/Z++842p83zj+PqehpaFEJLNUVIRIRWRGvsjee3/tvffMyt4rZBQqyogUIVtGZO9EWU11+v1xfh36tnNa9H69zks9z33fz/XonPPc131f1+eyTpmbJEBA+y19sV3Vlp2XXX+OE+iC1fLWjDg4mc/RX6Rzg9lASUmpQO+w/ZqqsnLlRm5XrULoLlcMvH0hLo4koZDRo4dkPlABwMXlcJ6nQKxbt4RDh7ahp1eWqKgojh/fx5UrPrx48ZqjR70z7KuhXhzrho05sn0xIF6I6DVmGdPW+fAh7CPVjK1YsCTjhbmrV2/hd+Ykjf/5M0Oi/zbyNXg/ecft48dPWFs7EDZ6OoNHT2fz5uV0HNKH6kP65Kd5GSIvL4+r62ZaterG0aPeebpqUxBIFj8wMTHKdt/ExESuXbtN3brmmbZNb9coPUfRy2uv5Oc7d/zSbNOtm2M2rJUuiaJEGq1uh45aKf5RaIF8BTkaObdDJBKhXEyZ9Z2XUEkrb2pv1axpwpUr+au+Wpj58OEjiorZL8mQXpHdZHEYG5t6EnGYCRPmZDvfsLAU3M1PkpLIsGjxn0iXLu348uUrU6YsICwsnAUL8j9E6tdwu5fevrTyFIfy6ndtx3GHHljMmZhmv3PnLlK6dOqSIvv3u6OqWhwVlZQFin2Gu6KjVorw759ot7kP+tqV6GfZjQlNhiNAwIKTq5jutYi1nRZL/ybTITl/bf78FSxcKC4zkbzYIhQKcXRsjbPzgnzNEUtOVVHQKsG1a7dYu3YJLTv/A0CJvYeJ2bYPdXXVfLPvVxYuXMWNG3fYtMkplVr0s2cv+PLlG9OmjUqnd+5hZ2eDnZ1NimO2tlb07TuSfv2EFFNURE1dgxKaWpQpo0OFiuUxrFqZmjUMWec8GzNTG+5eO0f12o0AKFvBkAW7AvF0WcGKpU7sdXHF7dAWjAzFUUZeXqdYsWIj9+49lORHNipy2P4ICkQGopaWJiEhgYSGXqZ0aW0GDRqHhoY+Bw8ey2/TMsTSsjbdurVnyJAJf6w0dHqcOOGLhoZ6jpJYhw+fTIsWhaduizTZGLALA23xZPrmzWASLUVs7rqcgLGedKjpgNOZdflsYRFZJTz8E8rKOZO0zi1xmLt3Q1i2bD0DBuR+qHJhZtMmJ06e9Ms0l+RPY/Dg3qxZs5AtW1wwM7Pl5cs3+WrPr8rQMR8+ovR/J0yptDYx4Z8y7Pvf/DWAM2f8MTY2SHVcR01c3L6kiiatqzflxss7aBfXQkYog1AopHfdTlx/eed3bydbLF7sTFxcPMeO7ebcuSNcueLD7dt+hIQEsmbNIk6d8qN8eXOWLcu/Z8KTw15UdmyNi8shBAIhrW3F4hlJIhHFAq5g1K9rvtn2Xw4d8sDXNwADA0v69Pk3RVjssmXr0dBQS+XI5xfu7jtYv3EFlfX1iY2JJuztax49uMfNG7c5dOAwUyfPoGnjNpiaWJOUlITnnuWpxnDoMZYFuy4hI6+EVf0WDB05jz17DtGr1wiKFZPHyWk2RiY1qGBQo0hs5A+hQP0VtbQ0efDgosRxGzx4/G87bulJaC9e7IyxsbVE3n327GWSdh8/fqJkSaMU9WuaNHHExsaB6tUbUKWKhaTf+PHDUFdXpX37Pjm2sTASFHQjVex6oiiRBivb0Hn7QEAcmjXPewW1lzSl7rLmbLqwC5FIxIEDR+nVq1M+WJ2/vPn8jlMhfvSqK773R4+eICcjy7e4XwpR/39iUUTBJyIiElXVnE8AsisOA9C580BJiG+fPuKCwZcuXZPI+k+YMIfFi6dnW5Xsb8POzgYzs2p/lBBHVunevQMPHlxARUUZc/PGrF69OV/s+K8ydFZJXhzt1atjqnMhIaE0bdowxbGo+Gi+xX6X/Hz20QWMShvw/usHSRuvu6cxKp3a0ctNGjSoR2JiItWqVcXU1Bh9/Uro6ZWlVKmSdOvWnqdPrzJ69GCWLHGmQ4d+eV5KKCE6hjd+F6nQujkPHz5BU1ODZ0eOp5mqcufOPTQ09FO9nJzyztkMD//EkiUzWbduMZcvX8fIyAorq1bo69fl4MFjjB07VGrXCl6/g8OWLXGztOds/9EkxMZJzgVOnMvOX+ad6dG1swNXr3gR9v4uk6dNRLu0DhHhb0kSJWHdvCtL999i+eG7jF1ygEFTUwuuAahrlmLaWh+6jVzEof37GTlyKhMmDMfb25Vu3Rx5dP8uDVqnXtgoonAiyE6+g0AgSAq+F4humbxRBfr48RM2Nm14/178xerp6YK1dd1sjaGra8br17c5fz6Q0aOn4+6+g4oVy7N4sTPKykqSopa/snXrXtzcvJCREaYIsQPYt8+NmzfvsmzZLMmxkJBQrKxas2jRdAYN+js+HIaG9XF0bJ0irGbd+e3cfB3Mt7jvHOi3hb1XDxPw+ArrOy9BKBQS/v0Tc6c44eJymE+fHv51qz69d49gTOMhfI+LYs35rTxa84Qq1hW5XuIOinLFKF5MhVP/HkJVofCpXf6NNG3aERUVZY4c2Znm+bi4OIoVKzw1iv42rl27RbNmnbh50zdXa0nmN2Fh4cTExCAQCBAIhP//V4BQKGDLFhecnbdQqpQW+/ZtokaNvMtJfXHiDPe3utDSfScAh+o0o5WnC0qltYl+/4HjDj3oePVUqn6bN+9m0qR5REaGpjj+9es3ypc35/79C+jo/Fz4ev7pJT12DQcgUZSAY00HxtsNY/D+8QS/fYAAAXolyrLScR6lVVOHWeYmVata0qiRFRs3OqXb5ubNYFq27EqFCuXw8zuSLyGSzs5bWLFiA8+f30hxPCkpCW1tYxISEgBxmQULi5q8fRvG3r2Hef78FQABAZ5Ur26Ya/bFx8dTqlQ17tw5T7lyYgGta9duMXv2MrS0SuDsvFBqKtJRb9/j2bIrHS57I6uogG/fkZRr2hCDbo6E3wzm3sZdPD9+mj6vs797/z7sIzPnOuPt5c33r18oVbYiDVv3wqZVz0zLxxzdsYQL3i68fnUdgP2HTjFiyEjWeDz+6+ZahY2h9uVJSkoSZNYu239Fz+N+OTIoJyTvuD1+fIWyZXV4+PBxjsZJS0I7I9zcvJg/fzJv377n7dvMC3YbGuozevRgpk1bwLt3YTmysbDx8WNECjns/+4eAWy/tJ+JTUdIviw0lTRwcTlMly7t/rovEJ/7Z9FS0Uwh0vHxYwTvNMM42H8L96ZfoFsdR6Z7LspHK4vIDl+/fqNECfU0z4lEIkqXrv7XfB8URmrXroGeni5jx87KvHEhJSDgMoaG9alZ044aNRpjZmaLqWlDTEwaUK2aDatWbUIkEvHu3QcaNWqXp7Ylh9slo9eiMaH7xZL7ofuPoNfSLs1+mzenLTiS7BxcuJCyEHoFTT0ujPXkwlhPLo33ZrydWChsU1cnAscd5+I4L/b33ZTnzhrAsGF9OXrUO8Pds5o1Tbh+/TTh4R8xMWmYLwqYuro6xMamrBeXlJREiRIGJCQk4OvrRmRkKKtWFyK0UAAAIABJREFUzadbN0fGjx/GzZtnefNGHGZqY+PA3bshuWbfxYtByMjISJw1EH++vbz2snPnGqmX/ElKSCAhNhZRQgIJ0TEoldZGlJhI0Mwl6eZdZoXSpbTYvG4ur15c5eQpNypX1sN9+0JGtTVgr/PkDPu+fv4AHd2fC0+bNu5Et5LRXzfX+pPJ9l/ywoW8rz2mqVmCu3f96d+/e7b7Jktou7hsSJWIv2HDTkloo69vAACvX7/jw4dwatUyo21be44cOZGl68yYMZYKFfRo0+bP32F78uQZiYmJWFn9VOKa6rGAOa0mIhT8fEs9+/QS99vHabS6HR229mfgeLGc9Nq1f59TcuX5DXzu+2K60Jb+LqMJeHyZ71ZRRAo+U1uvBgDtzFoR9J8VzCLyh9gfcdg5O2K9wgFLp5YsOrk6xfmJR+cSWv8pWlppyyonPyQHDBiT67YWkXNmz56An9/FQiMDn13mzRPnvkRGhmb48vM7CpBn/w+/htslYzZmMG/8LnKwVhPe+F3EbMzgNPs+efKcOnVqpjpuamrMqFEDGTx4PJcvX88126XJv/8OICEhETc3rwzblS2rQ3DweVRVi1OzZmOCgm5K5fpv3rwjOjo603a6umX58eNHimO9eol3LW/dOou5uWma/ZSUFCU7oTY2DummqAC4uh7B0tIeS8uW1KvXQlKaZNiwiZiZNcLGxgFrawfOnw8E4MSJM3TvLg5z3LPnEEpKipib/3Tyvb196do17ffQ76BcpjQm//bH1aQh+wzrI69aHN3GNtzfsge9lnaSPMzfxaKOCcePbSHsfTCjxo8h8PTBDNuHv31OFf0qkt/vBd/GumX258xFFFyy7bA9uJ97qyS5QUYS2kOH9iEgwJOAAE+Jio+7uxdt29oD0L59q0y/SH/Fw2MPz5+/ZN68FdIxvoDi5XUaVVUVyRZ9WrtHAPEJ8SjIFuPcqCP0suiIe7gX7du3QkYmZ8WGCzOz7Mdzb/oF7kz1Y1uPVVjo1oRTECuK43H4MwD8Qi9KBEmKyF+KycpzbPBuLoz1xH+MB74P/bn6QjxJuvkqmC8xX0kiCW3t9MPDO3X6h8DAq3llchE5oG3bllStWhkjIyscHHoQGvo0v02SKlev3qJ27czzaczMqqGtrSVx8HIbWSVFej69ivwv5UQUSmhgf2w3na6fwf7YbhQ00t69BtJNPZg9eyJVq1Zh6dK1UrdZ2rx69RZ39+MkJiZSt27mtTiVlJS4evUUFhbmNG/eibJlTWnbtjdeXqnDRjNix479NGjQBh0dE6pXF++0ZpYf9/nzlxTlQuLj4/HyOs2IEf2zFE6cHEqZ7PSdPx/IpElzOXx4G+XKleH06fNs2LATd/cdXLrkjZ/fsRS7YnPnTiQgwJNFi6ZJ8k4tLGpy9epNwsM/cuyYDxUqlKN4cRXC/y9WExR0M0tK1Nkl7vMXXpzwpfOts3R7cJGE6BhCXY/w7KgP1XIhJUYoFDJlfH9EiSJePbmXbruvER+oXUvsOLsd9SUxMQHLpn+fVsCfTLYdtrB3+asqlV2SJbRv3Ahm+fK0Ezd/xc3Ni/373TE1taVbtyHcvRvCkyfPs3QtHZ1SLFgwjVWrNuU4fLMwcPFiUIov6bR2jwbtG0cZtdK0MRGvoF5wuQIlxOpsRUBk5BeKycuzusMCeu0egfUKBw5cP8rc1pPy27QiAIFAgEoxZQB+JCbwQ5SAQCAgUZTIzONLmNNqIiRB6dLpO2xOTrOB1CFaRRQsAgNP4Oq6mffvP1C3bgusrFrlu3qiNEieYE+enDUp8x49OnLsmE9umvTbJKcotGnTPN02Xbu248qV/N9h+xz6FHcbB8lrl14N7m7Ywa4eQ1muoc8O04Y8GDSWdkb66OmVzdKYQqGQo0d38erVTSZOHMGnTxH07v0vVapY4Op6BJFIxLlzF+jXbxRGRlaYm9sxefI8nj17wcKFq9DTq8nEiXPQ1CzB/PlTePz4CrGxcUyZMj/D644ZM4MGDepJft+71w2AuXOz9rxSUyuOsrIS8fE/0kxRWblyI/PmTZbkHiooFKN379RK0nXq1JSEmWtpaaKqWpwePYaio1MKoVCIg0NzgoLEzmFQ0A0sLKTvsL3xC6R4eV0UtTQRyslRwaEZ1xc58/XZCw6aN8HV1JaE6BgOmqcd0psT5ORkUVXX4Kpf2gJ8IpGI2JhomjS2BGD9hl2UrVA107y3IgoX2XbYoqO+k5iYt2pFv0taEtppERr6lOjoGO7fv8CdO37cuePHmDGDcXfP+i7boEE9qVmzOv/80yvPVZ3yipCQUGrWNJH8/t/dI5sq9djcbTn21Zvg//gSSUlJbPFyQU2gWqi+QOK+fOVM7xEcsmjOobrNCQu6ybUFK3Gzao27jQPe7fsQlYMcJevKdbGJqYu6uhqtTZoROO44F8Z64jV0LxU09XLhTorICYmiRGxWOGAwpx62+lbU1qvBlot7aGlsJ8l3KV06fVXP4sXFCpKOjn3zxN4ick6zZrZcvXoKP7+jvHz5hiVLnPPbpN/m1Ck/ABo3ts5S+1GjBvL9e5SkdlNBpFSpkhw5shN5+bQL1uvqmjFoUE9iYmJZu3ZbipC7nTtdsbBojoVFc+zsHLl06ZqkX+vW3SW1RUEcGmpm1kiyWwMwevR0SZheVlDXr0Ts0L7IThiB8SYnZBQU8Xn9jhPHz4BNXaZ/esiMiFC2B2Yt7eJXVFRUGDVqEAEBnrx4cZ0GDSwZPnwyJUsa0aFDf27dukvLlnbUqFEdNzcvzM2bsGbNVrp2bcerV7c4cmQn/ft3Q1OzBAsXTmPr1r2StJD/snPnAd6//8C2baskx44fPw2IF7aySqdO4vptaaWoPHgQiplZ5oI3vr7+KWqwVq1ahaCgW0ydOppKlSpQp04Nrly5QUJCAvfuPUw3VPN3UNHV4cO1WyREx5CUlMTb85cwGd6X7g8v0eWOH13u+CGrpEinG75Sva6BkTEP7wSmeS7sjTgyoLqx+P80+NYN6jcvOCUXipAO2Z49CwRw+WowVvUyD7MoSCRLaLdq1Q1NTY0027i5edGqVdMUxxwcmjNgwGgmTBiR5Wu5u+/EwMCSUaOmsWbNn5evFRYWTqNGmU8CxjQazMB9Y5l1eBnUhiNjd+a+cVLk8uT56No1oMmutSTGx5MQE4uGYRVqTxPnJd3dtIubS9divXJetsd+8OAxZcqUlrbJRUgRGaEMAWM9+RLzlR67hnHxaRBH7/jgNcRF0kZXVyfDMZYuncXEiXMQiURFyd+FAFNTY7S1NcmGeHKBZdEicd5lVifVqqrFEQqFBAc/oFatgvl8l5GRwdbWKsM2CgoKqKmpsmzZOvz8jlCuXBl8fM6yc6cr3t770dQswe3b9+jefSi+vm6UKpV6l7xUqZIMH96PWbOWsH79Um7cuMP167clu+ZZISLiM8OHT0JeXp4K8fE0BdZv2IlTi0bUrm8hte8DFRUVtm9fTUTEZ27fvkvDhvVTjR0bG4u8vHya1+zbtyt+fhfp2LE/urplWLJkBmXL6rBr1wHOnw/k6dMX9OnTJUUx6qdPX2TbzuQyQMkpKosXz8hy35kzlzJr1lI+fozg1Kmfi+5PnjxHTa04SUkiLCxqYG5uytKla7lz5z76+hVRUJC+Sq927RpUbNOCI7ZtEcrIoGlqjGEau4HSpkmTBqx0Wp3muZBbF1FQVEJGRojniQASfvzApkW3XLepiLwl298YqholWb9xb+YNCwivf5FW1dXV4fbtc9jbN2Hy5JGpJP0nTx7J7NkTUhyrXt2Qy5d/hol06+aYQtI/LVRVi7Nx4zL27nVLsYr3JxAWFk58/A+aNWuY5nnrynU50G8LAGqKqhzot4WILZG0+NGYmnomafYpiMR//ca7wKtU7Smu9SMjL08xNVXkf4mrT4iKEa9g5ICXL1+nqmNXRMFETVEV60p1ufD4Cs8+vsB8SRNMF9qCLHRxH5Rh3wEDxEnf69ZtzwNLi5AGSUk5/lgXKG7fvoelZe1s9VFUVODOnfuAOMxq0aLVGBtb4+p6JDdMzBUCA6/y7dt3mjZtKAm5W716C3PnTpI4HWZm1ejatR1bt7qkO86AAd15+PAJFy9eYeLEOSxbNjtHESJhYfdY1t2RdnMm8vTpNczMqnN/iwtuVq3xHzGZuM9fcnaj/6FECXUaNbJO0ylTUFDI0EHctWstwcHn0devRLduQ2jY8B9OnDhD9eqG7Nu3kRUr5qZo/99ad1khecc3rRQVQ0N9bt++m27fuXMncuOGL9OmjWbYsJ8qjDExsSQlifPV6tSpSfHiKsTFxXHhwpUs5QXmlFpTRtEx6CSOl05gu8kJmf+Ub8mJpH9m9OrmQFxMFNHfU79fnofcpISWeOFh7dod6JTXR1ZOTuo2FJG/ZNths3Xow2nvE4UuLDKvadu2JXZ2NnTpMqhAh5hklxMnzqCoqIiSklKW2s+dK05i37VrTW6aJXW+vXiFolYJ/IdP4kiDNviPnMqPKLGa1tV5K9hfzYYnhzyoNTVr+SH/5cOHj5iYGEnT5CKkyMfvn/gS8xWAmB+x+D0OxEy3Gg9nXeLOVD+8e++HBLg55WyG4wgEAooXV2HmzCV5YXYRUiApKSlboV4FkeT8tSlTsvf9pK9fiYkT52Bv3xVdXTNWr95MlSoVGDZsEnv3Hs4NU6VKsiq0llYJihX7GTYZEpI65K5mTRNCQkL/O4QEoVDI8uVz6N59GMbGValXL3sOgKysWFwruUC4UZd2qKurYtSvG51u+tI+wAPFUtpcmV4wonDKltXBzW07Xbq0pWzZ0jx4cJGdO9fQokXjVG27d3cE4NmzrO+0+ftfQiAQpJmiMmbMYGbNWipRKY2Li2PTpl0p+guFQoYM6YNIJJKEb0ZFRREf/4NLl65hamoMQPXqRuzYsR8Li9RKooUZndJayBdT5JqfR6pz714+onyFCgDcunGV+kViI38k2XbYmnUcikgkYuWa9FemsovpQlvqL2+FzQoHGq1OWQtmjd9WNCbo8ykqQmrXyyv27t1AUlISPXsOz29TpIa//6VMw8CSSUpKYtWqTdjZ2aSbc1BQESUk8vH2PYz6daOdvwdySorcXrUJgDozxtL1XgCVO7bh/pacfQ6+f4/64x4ofxLvv4bjsLEHVstb03h1exrp16eF8c+Jy5s3mddnTMbNTby79uXLV6nbWYT0Ee+wFW6HLTnHyMamXiYtU+Lr68aqVfP5+vUbgwb15PXr23h4uDB+/DD+/XcqO3ceyA1zpYacnCzq6qqEhYXTo0fHDNtmxTGvUaM6BgaVc1RSSCgUj/36jD9aZsYoaWsBoKSthVBGBoFQiGHvToRfv5PtsXOT/v278/ZtxrnZpqbVADA3b5Jhu2Tc3Y8D4h1c+Jmi4uS0nhMnztCsmS0DBnSnbdveWFq2xNa2HQkJianGEQgEjB8/DGfnLYSGPiUy8gtVq1ahRAkN5P6/o2RhUZPnz1/liuBIXpFe+QMlZSUObZnLghEtmTPYTiJCEvnxHZ8+vGPuAmd+xMdh1bwLR3YsZuaAhswd2pTFo9tw9+q5/LqdIqREtvf3hUIhNeo3Z8O6zYwf3UtqhngO2YOmcsqaRq8/v8Mv9CK66mXS6VWwkZeXx9V1E61b98DD42SGylaFhbt3Q3j8+BkaGvoAWFlZMHRoH1q0aJxKrn/xYnHi/t69matzFjSUy5RGuUxptGuLa6RVbNNC4rAlU7mDA6c6D6RWNlexIyI+IxKJciUhugjpUL2MIf5jUq9kJvPmzTuKucrDqnSbSEiuGTVy5FR27Sr4cuNFJOVrvqGrqS1yKsoIZIQIZWVpe+4Ivv1G8eX/JQfiv3xDXq047QM80x1j4cK0c10yQygU0r17B7p375Di+NSpo5GTk2Ps2BmUL182SznM+YFAIOT581dUrKhHYOBVSUho1apVuH37Lg0aWEra3r59j6pVq6Q3lAShUChxvrLKmzfvsLNzRF1dNVWB8Oj3HyS1up57nUbDyCBbY+c2pqbGJCUlERsbi4KCQrrtTpzYj719V7p2Hcz+/ZvSbRcUdJP+/UdTq5YpZ864SY4np6gkk9b7DmD9+qUpfm/TpgUNGtTHxKQB5uamnD6dUkiuWzdHunVzzPQ+CwPJ5Q/c3XdQrlwZdHXL8jj0KdPWevPhzTMWjWyNubU90d+/oF3KiONevpTSrYz3gbV8ifjAjA2nkJMrxtfIcEKDi9SKCzs5eip1HDSLiI8f8L8oneKN6THNYwGzW00s1Kud9etb0LVrOwYPHsfXr9/y25zf5s2bdyxePJ3Fi6dToUI5Ll4MokePYWhpGaKhoY+Ghj4TJ87l8eNnLF26lgYNLClWTPqJv7mNUqmSKJfV4fP/J0lv/C+hXrUKX34p8fDSxxc1g0rZHvvSpWvIyckVul3HIn7y/n1Ytt7XjRtb4+FxMhctKnxUqWKBhoY+JiYNsbfvypAhE1iwYCW7dx/Ez+8iT548JzY2Ls/tKgghka0899A+wJO258S5Y3bbV9M+wJP2AZ5UaNOcCg7NMuz/4MEjGjasL1WbJkwYjry8HB8+fMq8cT6RmJiAnJwsvr5uKULuRo4cyOzZy4iIiAQgOPg++/a552jnLDNevXqLuXkT1NRUuRnkk6pAeNCspbjVb4WbVWveBVym3sKpknNnzwYwYMAYNDT0sbNzZPPmPSQkJEjdxoyQl5dHIBDw+PHzDNtZWtZm27ZV+PicRUNDnwcPUoaXxsfH4+jYl+bNO6GjUyqFs/Y7JCQkYG3dGnV1Nby990tlzIJIWuUPqlczIDbmOyKRCO2yFZFXUCT83UtEiYnolNbk6ZPH1Lb9h4s+++k8dA5ycuJnlKpGSWo1aJ3R5YooBORIY12thDblKhszecpCAv3Tl8nPKgIEtN/SFwEC+tTrQp96XThxzxcdtVKYlCn8eT5r1izizBl/HB37pVoNKkx8//6dmJhYRCIRffp0ZfDg3pJzd++GsHnzbvbsOcSWLXvYsmUPAAcObMkvc3+b+ktn4DdoHInxP1CtUI4G6xYTMHIqX0KfgVCISrkyWP8nGTsrXL9+G7VfCsYWUfgICwuXhPdkhY0bnTAwqEdw8IOi3EXAx+csnz6JJ8+vX7/l9eu3GQo0RUamn2skbQpySGRSUhLPjpzA3mNPum2Sy8lMmvSvVK/9+fNX4uLiad68kVTHlSYJCYlUqVIxlSq0vX0T3r17T/PmncU1FlWU2bTJidL/3+kC6Nx5IHJy4ilRnTo12bkzZ3nX//47mdKlS3LlilisrOfTqynO26ZRi/ToUW/69h2Z4tiNG3e4ceMOkybNpWPHNmzenDdFzQFkNWXpfngIqqfEz6kXEa+Y0nwUb7+EcfL+OeRk5Kioqce6zos5d+4IjRq1o359+zTHmjTpXyZPHpnmuZzQs+cwvnz5SnCwf6EqE5QdknMxPT1dUpQ/0CtXGgQCQoMvo6hcnJJlKvDmRQiycvJ8/PiZhB/xGNe04dZFbxSViuYYfxo5fre36zcV5+k9CA//TMmS6r9lhM9wV3TUShH+/RPtNvdBX7sSK3zX4zZw52+NW1AQCoUcO7YbK6vWbNu2j/79C6fcqre3WGBh6tSFTJ26UHK8QwcHhgzpjbPzQpydxcc1NPQxNTXOFVndvELTxFiywp1Mk93rfnvcBw8eSgqEFlE4CQ//hLKyYpbblyypCUCXLgO5d+9CbplVaBg2TFxwNzNHTCQS5fkOA+TzDptAgHf7viAQYNSnC4Z9ukhOvQ+8iqK2FmoZKMwePeoNkG2FyMzw8fGlWDF51NVVpTqutBCJRCgrK9GkiQ2QOuSuf//u6e6oeXmlr3zt4+OaZRvCwsLx97+Mq+vmLPdxclrHggWrKFOmFBcueKGh8XM+lZSUxMSJc9m61YVDhzzybOFCJVEJu68NWDF7LomiRIznWdOqejMef3jKrJbjkZWRZdbxpaw4u5E5rSYSGRnK8+cvOXLEmzNnzmNkZEDr1k1p2LC+VD9L0dHRnDp1nm3bVhXY96E0kJOTTbP8gUAgQCAQsGneIOLiYvh33i6Cr/hSXE2De/dDUSuhjVyxrC8kFlG4yHGgvlFNa4qrlmDMxN9XONJRE09eS6po0rp6UwKfBPEi4jU2Kx0wXWjL2y/vabiqLWFfw3/7WvmFoaE+o0YNYvLkubzLQbHlgsD584Ho6ZUlMjKUO3fOM2rUIBQUinH4sCdNmnSQhEQm57d5e2f9Qfc38ezZKypVKp/fZhTxG0RGfkFFRSVbfSZOHJFpMv/fQmTkZ0aOHJhpO6FQmOehw/m9w+bg40q788docWgb97fu5d3FIMm5J25eVHLMOLQpuf6atPH29i3QtSOnTl1AbGycVHdzssvo0dPQ0SlFs2a2WWp/9Kg3CxasYuzYody7dyGFswbi9+GyZbO4eFEs2lG79s86sekJUyxe7JxmgW9NzarY2DhIXitXbiIxMRFb27Zc/OU91r59H1q1asrOna74+1/ifGggFTT10NMoS+OqNsjK/H8XUq8Gb7/8FF+qUEGPMWMGc/z4PpycZmNrayX1z9GcOU4UL65M27YtpTpuQUMoFKZZ/gCgYqUqqGuWYsDktexcPhbZYgpEfgzjw/t3VK5WB22dCkSGvyU2+ns+WV9EbvFbmdWN2/bn1InjvyXxHxUfzbfY75Kfzz66QM1ypoTOvsKdqX7cmepHGbXSnB99lFKqqQtcFiZmzhyHnp4u//wjPbGWvOTWrbsYG4sTpMuVK8Ps2RN49+4ukZGhREQ84siRnZIHVf/+3VFSyvoOxN/Ew4ePqVbNEEj9oDU2tsbGxgELi+aMHTtTEt40bNhEzMwaYW3tQO3aTRkyZAJv3/58WH7/HsXYsTOpWbMxDRq0wda2Lbt2FWxFt8JMZOTnbIe1Tpw4AoD9+91zw6RCw40bYlU8aYfsSYv8zmFT/v/uu2JJTcq3bkr4//+/RAkJPPc6ReV2aYeeJfP48TOaNMl+nayMEIlE+Pico88vu32/w5eYr/TePQKLpc2pu6w5Qc9vssBnJVbLW2OzwoH2m/vw7kvWFzeePHnGli0uLFs2M9sLKdLg8GFPrKxa4eNzjvnzp2S5X9++IylTphQzZozNsJ2xsQF7927kyZPnvH79LsW5ZGGKw4e3Ua5c+gJtiooKBAR4Sl5jxgxGRkYGJ6fZTJgwhx8/fnD4sCcCgYA1axbRpk1zOnUayP4r7jjWTL1I4HL1ME2qSvd9lhl797pJ7T1Y0Emr/AGAoWEVwt+/oqZVS8rrm6Klrcsy19uUNzCjRv2WyCsoUr9ZZw5unE3CD3FJqS8RYVw5+3c/d/4EfsthS5b4X/UbEv/h3z7Scn1XrFc40MTZkWZGtjQxbPA7ZhVoPDz28PTpCxYuzIK8XAHjxYvXWFnVTfOcQCDA1taKAwe2EBkZipPT7Lw1rpBRp06NNB+0Q4f2ISDAk8uXvbl//1GKlc+5cydy4YInV6+ewtTUmDZtekpq/I0cOQ11dTWuXz+Dv78Hhw9vIzLyc77c29/A589fJUV4s8r9+w+Bn+GAfysjRogntAV5QSe/HLYfUdHEf/su+fnN2QsSFcE3foGo61dCuWz6ZVWSw0cnT5auM7xy5SYEAgEjRvSXyniTj83HrmoDgiaeJGCMJ1VLVeZf2wFcHOdFwFhPmhs3YumZrCuqduw4gGrVqtKrV2ep2JcdXF2PMGjQODQ1NfD2dqVdJg51MmfPimuJXbjglaX29vZ2ALRs+dNhSUuYIrvUrl0DC4uaLF68hnnzVrBs2WwAtm9fTSkdLY7c8KatacodLSff9cgKZelk3iZH18wJoaFPiYqKztcd1OzSp8+/tGvXO/OG6fDf8gcANc0MSfgRR8SHN9h3HcWZI1tRUlFFR08fGRnxlL5Nr/GoqJVg7pAmzB3alI1zB1FcTVMq91RE/vFbGZtCoZAals1Zv24z43Io8V9BU48LY9OXJwa4M9UvR2MXRMqW1WHBgilMnboQR8fWWZIVDl6/g4d7DiJAgIaxAQ3WLeHh7oPc27iTr89e0uPxFRSyOXnMLgkJCXz/HkXr1k0zb1xEunz/Lp6MiUQixo6dycGDW9N80MbH/yAuLi7NOH2BQMCwYX3x8jrFmTP+GBnpc+PGbbZuXSGRI9fS0mT06MG5ezN/Md++fUdLK+sPwD59/uXYMR/J7zExsdkSLfmTePDgER06OOS3GemSlJSUbRl3aRET/pEzPcR1O0WJCVR2dKBcE/EC5lP3lPLwaXH4sHjyX6uWWYbtssumTbvp0KG1VModfI39RuDTq6zvLC4mLy8rj7xsyrDXqPgYBGTtb7BixQZevnzDvXsBv21bTpg3bzn29na4uGSvfM3evWLVxP+GQWaEhYU5QUE3gPSFKdIjJiYWG5ufn7sxY4bQvn0rAGbNGk/16g0YMqSPJFxfKBTSZ0ZX5h52QvbHz6ni/mvunLp/jqODd+fpwkblyhWQkZHB3/9ylkNO85OhQydy7JgPW7euzHbf169vS37+NRfT3l5c927Fqi0EnTtKi87DmbNFfK732J+iNLJy8rTvP5X2/adSxJ/Db3/7dhicNxL/fxKDB/emRo1qtG3bWxLylh5Rb99zb9Nu2p49guOlEySJRDx196JUPXNaHt2FSrmyeWKzn99FZGRk0NPTzZPr/alcuSL+nPTvPwYXlw2pHrQbNuzExsYBQ8P6VK5cARMT43THMjOrxqNHT3jw4DHVqxvla+2ov43o6Bh0dLQzbffixSs0NPQ5dsyHJUtmSkQDpk///dzfwsiLF68AWLhwWj5bkhH5FxKpWkGP9hc8aX/Bkw6XvKk5fpjkXMP1SzHql7Fg1eLF0s9fi42NJTz8I2PGSGcB6MWnV2iplGD4gUk0WNmGkYemEhUfDcA87xVUm2/DoRseTG2etfqWy5Z8t+KlAAAgAElEQVStZ9SoQZQqlXspE2PGzOD8+cBUx319A3j37gPLl2dfLdjXN/sOZrKgCqQUpsgK/w2JTHbWQLxTp6panAcPHqXoExz9AOX3SixYIHY6zoT4s/rcZvb13YiSfN7ukAuFQsqXL8uBA0fz9Lo5YfLkebi6HsHZWbwwL20qVKrC/evnpT5uEQWb357hqUsk/v/OCUhOOXJkF5GRnxkzZkambZMSEkiIjUWUkEBCdAxKpbXRMq1G8Tx0ng4d8iAxMREtLUPKlzfHyqoVAweOZdu2fbx8+SbP7CjsXLt2CyDdB21ySGRo6GWio2Nwc0s/XCYpKSnN405O67GxccDIyEo6RheRitjY2CwJMDg7i5P/nzwJYuDAHnTtKp70/gk1GXPCuHGzgZ+qmQURsehI4Vz8ePHiNS1b2kl1zGPHTiIvL0/lyhWlMl6CKJHbb+7Rr343/Md4oCSvyKqz4sLLM1qO5d70ADqat2HLxcxTLc6fDyQ+Po5Jk0ZIxba08PUNYOdOVwYPHp/q3OTJ86hfv06OnMVq1apmu8+9ew8lP2ckTJEdoqKimTVrKceO7ebjxwhOnfIDIDo+Br/Qi/S06ciePYe4du0WE4/O4VtcFO0298FmhQNj3DKfv0iT4sWLEx0dnafXTIu0cjCD39yn6ZoOGEyqx6b3uxk6sw89e3bMles3aGDJ2xcPM29YxB+FVJ5K7fpNJeTuLcLDi3JmsoqqanE2bFjGnj2HuHz5errtlMuUxuTf/riaNGSfYX3kVYuj29gm3fa5xbNnL7GyssDf34OxY4dQoYIeN28GM2vWEszMbNHUrEqVKhY0btz+/zH1x/j0KSLP7Szo3LsXgkAgyPRBKycnh52dDYGBV9M8D3Dnzn0MDKpgaFiFu3cfSHZrx48fRkCAJ9++FalE5Rbx8T/Q1U0/lyiZ5cvnEBkZysePEZQoYYCPz1lWrpzHli0r8sBK6eFqaotb/Va42zhwtFE7AHz7jcLdxgF3GwdcTW1xt8k8zNHX1x9r67TzYAsK+RkS+bts2LAs03pdaakLuroeoVmzlJPLhIQEDAzqcfDgMRQUinHsmLhcQOvW3bl5M1jS7uXL11haZi1vC6CMWmnKqJWmtl4NANqYtOD2m3sp2nSo6YBHcOaF5lev3oKBQZVcVRIdOnQiNjZ1CQ//xN69hyXHb94M5smT56xcOS9H4/7zTwsg/YW3tPg1rBrSF6bIDkuXrqVt25YYGFRm+fLZTJu2kNjYOJTkFXk65yoLZk3Fzs6a5s07M7XKaO5NDyBgrCcBYz1Z6Zize88JERGfefr0BRoaGnl2zfRIKwdz1vGlVI2qQvjmT3Sq0oY7Cvdz7fo9u/9D1LfPzBlsx4pJndnpNAZPlxU8vpd+LcsiCj9ScdiMalqjolqCsZMWS2O4v4Z27exp3NiaLl0GpltrKO7zF16c8KXzrbN0e3CRhOgYQg8cy2NL4enTl1hYmFO9uiGjRg1i794NXLt2mtevbxMe/gBPTxf69OmKuroa585dZNSoaVSpUhdtbSOMjKywt+/KlCkL8Pb2LRArZNJCJBKxd+/hLD90nz59gVAozPRBm5SURFDQTSpW1Evz3KZNuwgLC6dJExsqVSpPzZomzJ+/ksTERABiY+OyNREoInskJiaip1cuS21Hj55O3briydnz59cLrcpZK889tA/wlNQmtNu+mvYBnrQP8KRCm+ZUcGiWYf9kEZycTnDzkgJaNztTunRpi4qKcpba/ip61KnTP7x5856XL19Lzvv5BWJkZEBSUhJxcXFSq4dXSrUkZdV1CP3wFAD/x5eoWqoKT8KfS9r43PPFQLtSpmNdunSNHj06SMWutFi5chORkZG4uGygb9+ujBgxBTMzW/bsOcS4cbOoXt0Qff3M7UyLvn27AuJduqzw5o1YHXLv3pSLfGkJUzg5radaNWvJC37msCW/Zs9eRkhIKMePn2bcOHHorYmJMY0bW7N69c86ckKhkP37NzN0aG8GDRrHunXbc3S/v8Pt2/cwMWmAmppqtlQ4c4PkHMyeFuIFDnlZedQUVXnz5j17D7kxYkR/mraypbRq5iHzOaWaUSXmLJiDmakRinKJvH58kwvH97B8QgfC373KtesWkb9IrUx847b9ObF/NYmJCyVKNUVkzr59G6lSpS69eo1g376Nqc6/8QukeHldFP8vcFDBoRkfgm6g3/mfPLUzMvJzuom+srKy1K9fh/r166Q4Hh0djb//ZQICLnPzZjBHj55g2zYXfvxIoFgxebS1tahcuSK1apnRuLEVFhbmyMpK7S2Z68ydu5yVK8V/szZtWlC8eOZy0u/fh0tW75MftK1adUNTU7xquGHDTg4ePEZCQgLGxlVTFHqdOXMpy5atJyYmhtq1a+DhsUeysrx69QJmzlyCuXkTNDTUUFBQYNasCdK+5SJAsuBQpkzGxc9fv36HiYlYMGLatDGM/yUf6U8iKSmJZ0dOYO+xJ8N2M2eKRSaqVJFOaF1uId5hk8lvM3KVZHXBX0WP2rZtibv7cYlYkbu7F46OrenQoTUVKtRi4UJnHB2lIxaz9J8ZDNo/jviEH1TQLMe6TosZeWgqoeHPEAqElNMowwrHjPPC/P0vERcXx8CBPaRi03+JjY1lyRJnhg7ti6pqcZycZvPvv/2ZPHkeY8fOICEhkZMnD+Z4fDk5OTp2bMPmzXvo3buLpGROWiQmJlK9uvi7JFl4IiNhirSUFD99SjuE7tq10yl+X7JkZprt5s+fio5OaWbMWEylSuWlHnr7XxYtWs2KFRsRiUSIRCIaNrTE3X1nvudq/5qDefddCDV0q1Mr3oxHu5+g7KiEe7HjuHl54TMid8vqjBzWjZHDUua0GlZrjOu6afw7f3euXruI/EGQnVV4gUCQtOHEizTPJSYmMqpdVaZMn8y4UYWzzlh+ceHCZdq06cWePetp1apJinMfrt3C/98ptPV1R0ZRAf9hk9CqWZ1qg8T/x66mtrQ9556rKpEPHz6mXr2WfPr0UCpflhERn/H19efixSCCg+/z4sUbPn/+TGKiCCUlRUqX1sbAoBLm5mY0amSFubnpb1339u172Nq25dWrW1lefc6IjRt3MmXKAgBat27Kjh3OWXY0tbWN2bVrTa4/7IrIPR4+fIylpT0REY/SbTN//gpJuOuDBxcpXTr3VlvzAlezRhRTVwWBAKM+XTD8ZZfw3cUgrkxfJNl5Sw8NDX0qVSrP9etnctvc38LQsD5durRl9uyJ+W1KrlCypBEqKsp4erpQvbqh5PiNG3cYPXo6/v4exMXFUb16A65ePYW6uho9egzD29uXPn268PDhY8LCwlFQKAbAjx8/EAiEXLp0Ik/vo2PH/rx69ZbLl71/axx//0v07TuSb9+iGDasDzNnjkcoFNKp0wCuXr3FkydBqZ4/8fHxXLt2i/r1LX7r2klJSZQoIXbU9u7dKJHu/5VfF34KwnfJ6NHTcXE5TLt29ohEIr58+caoUQOwsbH87bEHDBiDoqICQqGQPXsOMW3aGBo2tERTUyPHZQukzc1XwTRd2xGf4a7U1qtBp5UDOH38PJUMyzNr0HjamLbgyO0T7Lp8gKODd+WpbfsO+DBi6CicDt1BSSl7dUKLyD+G2pcnKSkp07gOqW1nyMjI/JT4L3LYsoW1dT26dGnHgAGjCQ29nKLwp3btGlRs04Ijtm0RysigaWqMYe/O3N20izvOW4gJ+4i7tQO6TRvSwHlhrtjn7e2Lqmpxqa1slSihTseObejYMWUNl1ev3nDmjD+XLl3jwYNHXL58g8WLnRGJRCgrK6GjUwp9/UrUqmWGrW19atY0yZJNRkb6AJQrV4OPH0OQkcnZ6vnhw54MHCgucFq7thkeHi7ZkmaPjY3lx48fWFrWybxxEQWWly9fZ+igd+w4gDNnzjN4cC8WL87bpPzcwsHHFWWdUsSEf8K7XR/U9CuhYyWerD5x86JSJkposbFxAKxbtyTXbf1d8rtwdm7zq7rgr+9Pc3NToqKiCQ19yqNHT6hduwbq6moAqKqqMGxYX9av34G6uhoHD26RlA54+fI1nTsPyvP7CA19SsOG9TNs8+LFK3budGXcuKGpCmpHR0fTs+cIzp27gJ2dDfXq1Wbp0rXs3HmAXr06ceaMP15eLmk+Y+Tl5TN11kI/PKWfy0+lyxcRr5jSfBRvv4Rx8v455GTkqKipx7M317CzcaR79yGAWLq/SRMb7t4NwcPjZx5fQXDWAFatmk9cXBzXr98hKiqKt2/D/p/PF5R550xwc/NCTU2VuLh41q9fQpcu7aRg8e9jZ+f4/zzO3SlyMM+c8ef0pvNo2mkQrvEJB5PmALQ1bcmoQ3kvqd+tcwsmT1Lj8KY59BrjlOfXLyJ3kdoOG8DniA9M6WHBMa8DNLCqKQ37/hpEIhFGRlaUK1eWM2cOZ94hD+nceSDv3oXh7++RL9d/9uwFp0/7ExR0gwcPQnnz5h3fvn1DJEpCWVkZHR1tqlatTK1aNWjc2BoTk9QS9xERkVSuLH7AJkurZ4VEUSK15zfj+b2XcAqUWipRwlgddSVxfbT1nZdgUjZ96f1fCQwMok2bnnz8WKTuVJjZsWM/M2YsThGS9CsvXrxCVlaWshkUOC7MXF/sjJyyEqb/DkCUkMA+Y2vanTuSYUHnRYtWs3Tp2mx99vILAwNLevTowMyZ4/LblFxBV9eMR48u07Ztb5o3b8S4cUMl5xYsWImsrCwPHz7B3t5OUi9v2LCJNG/eCG3tkrRq1Y0yZUoRGHgCVdXiEoctr3fYqla1pFu39jg6OqCmpkq5cmVSnN+3z52RI6ciJydLQkICPXp0ZMmSGcjLyxMdHY2+fj0UFBTYs2etxPmKjY1l2LBJHD3qTdu2Ldm+XTplEhJFiRjPs+b0yMM8/vCUBlUskZWRZdbxpQDMaTWR16/f0bJlF16/fpui7969GyRhkAWJiIjPmJg0oHp1Q4KCbnLnzvlUf4OsEh8fz6JFq1m1ajOPH19BM5frymaXgwePSVRCZ80az0l5P/pU6syQrhMo3UqbDl0cOPXgHMvbz8W6cl3OhwYy6/hS/EbnfQmC+Uu3sNppFSvdHhSqFJO/mTzfYYP/S/xXEkv8B/rnPLb7b0QoFOLhsYf69Vuxbt12hg/vl98mSQgJeYyNTf4pu1WsWJ5Bg3oyaFDPFMdDQ59y9mwAQUE3CQkJ5cKFK8ybt5ykpCRUVJTR0SlF1aqVqV27Bo0aWXPlig9167agTp1mXL16KtPrXr9+myajO4AWCBQE3H9wgbl+TjQ3bsQ/pi2zfR9XrtxMtcpbROHj3buwDHdWy5fPmhhJYeFHVDRJIhHyxVX4ERXNm7MXqDlRLKP+xi8Qdf1KGTprIFaiU1LK27pNOefP3mGDn+qC9vZd0dbWksiPOzq2pnv3oXz9+o01a1JHbFha1qZ27Ro8ffoCIyMr9PUrIS8vl2k90dwgNjYOLS1N2rfvS3j4R9TVValf34JBg3qyY8d+PDxOMnx4P+bNm8ymTbtYsGAV+/a5M3hwLz58CEdeXo7Q0MspFvcUFBTYvn0169cvQUFBeoXtz4cGUkFTDz2Nsuhp/KydWkevBseCxcqPuro6BAcXjtpa4pyyf9DULIG3tyvGxtYsXbqGNWvSL+8kEolwcTlEy5Z2lCypBYiFVCZNmsvJk+eQl5dn1KiBBc5ZA+jU6R86dHCge/ehzJnjBCXgss015LvIYV7XlHGNh2JfrQlTjs0nQZSIgqw8qzrMzxdbp4zrj/NyZ7z3O+PQc2y+2FBE7iB197td/6msmd6D8PDPlCypLu3h/2iqVq3C5MkjmTVrCfb2dnkWs62raybZLTh1yo8pU+Zz9Ohu9u49jLKyEmFhH7C1/VnTy8lpPW5ungiFMgiFAlaunMeZM/7ExcUza9bPWjXBwfcZMGAMV65kLs+cE/T1K6GvX4nBg3unOP7w4eNfHLnH+PtfFn/JAoqKijx+/Ixq1WwYOrQPtrZWGBsbpHhoP3r0RKzqpwQ0hA1DlnLk8YnfDke5e/cB2tpavzVGEfnPhw8fUVZWym8z8oyY8I+c6TEcAFFiApUdHSjXRJxT89Tdi8qZhEMmT+Y3bFiau4ZKkT/dYYPUokf29k0wNNRHUVERM7Pq6b7H5eXlcHXdxL597rx//4GgoBtERn4hPPyjZCKeF0RFRRMc/ID4+HiGDeuLgoICHh4+tG/fl2LF5Dl6dBcNGojzqgYP7s3AgT1xclrPypWbiI2NZeXK+emG1EvTWQNwv30cx5qpPycuVw/TzqxVGj0KNu3b9yEiIpLgYH+EQiG9enVi+fIN1KlTg169Oqdqf/v2PTp1GsCHDx8ZM2YmDg7NePbsJcHBDyhTpjTLl89Js19BQqyWuYkLF67g4NADjkFY5E/pfsuKtfNlR+1XXr58g6fnSRQVi3Hy4Loih+0PQ6ohkclM7GpOw8a27NleJPOfExo0aMOnTxGSL8PcJtlhO38+kNGjp+PuvoOKFcuzeLEzQqGQRYtW8+LFDVRVixMUdJPp0xfi6elCsWLF+PQpgvj4H3z/HkXHjv25deucZNzZs5ehrKzIhAm5V9Q0q4hEIh49eoKvbwCHD3ty69ZdihWTJz7+BwAqKspoa2vx5MlzSR+bOfWY234S3+OiWHN+Kwf6bWGY60SuvryFvIw8DfUtmWU/nmKyxbJkg61tW0qW1OTQoW25cYtF5BHduw/l1as3+RYiXNjYsWM/Y8fOJCLiUaFwhAwM6tGrV2emTx+T36YUCuLj47G0bMmHD58IDDyR47C47FKqVDUSExNJTEzEyWkO/fuLFfOSFwjSe3YmJCTg43OW1q0zLkMhLeIT4jGaZ82l8SfQLv7ToXXyXc+tV3fZ03tdofhcJDNz5hLWrdvOuXNHMDX9mQ4wb94KVq7cSOPG1mza5ISmZglEIhEjR05l3z536tWrhavrZjw9TzJv3gp0dXVYuHA6FhaFJ33myZPn1K7dFMheakVuEBISiqfnKQIDr/Lo0WM+fPhIQkIiKirK6OqWISQklCnOx9GrUj1f7Swic7IaEpkr3kCjtv04edyLxMS8D5P4E/DwcOHTp0hGjZqWZ9dMlnk+cGBLip290NAnFCsmj6qqWHEoLOwDJUpoUKyY2EnR1CwhEQNRU1Pl2rVbkr5Hj56gffuMV9/zCqFQiKGhPsOH9+PcuSOMHDmQuLh4tm1byfHjLohEIomzpqyshKC8gICTl2lZpyv9+o3i2tVbTJmyAAuhOT79D3B2lBuR0V9YfW5zxhf+hXfvwjA01M+lOywir4iM/Iy6ump+m1FoGDtWLBNeWCalRfULs4e8vDxXrpxET0+XunWbExr6NE+uq6KizODBvfj06aHEWQPxd31GC52ysrJ55qwBnAnxx6yscQpnbf81d07dP8fmbssLzecCxKUe1q7dxvr1S1M4awAzZozFw2M3d++GYGBQj/bt+6KvXxc3t+Ns27aKEyf2o6panO7dOxASEsiZM26Fyll7/fqdxFnLSCFY2ohEIoKCbjJ37nJateqGgUE9NDWrYmlpz/r12/ny5SstWzZh796NhIXd49WrW1y6dAJtHV1OuaUuFVVE4SVXMhKbdRjK8b2rWLVuL+NG9sy8QxEpUFdXZevWlfTqNYIOHRwyVcL6XeLi4unefSieni4YGFROce7Jk+cpQgEbNbJm6dK11K7dlIYN69O+vT1WVuL8NkfH1ri7H6d27RpcvXqTEiU0qFy5Qq7anlPmzJnI3bsP6NdvtOTY9u2radfOXnz+hBP7gtxJMPvBt/go4pPi2Pl8P6LtSYyJn4GMjAzKVRRJMoHQg8+oVcuUBg3qY2hYJd3JwufPXzE3N82T+ysi9/j8+Uuqz0kR6TNoUE/++SfjnM/MwrL//XcAAGvWbGXPnkPIyMggIyPDiBH98PI6zYsXr4iKiubjxwjKl9cFwMlpDnXrmufI5uRaifmB6UJbVIopIyMQIisjy7lRR1h8ypndVw6iqSyu1zij5TiaGdnmm43/RVZWloAAD5o374y1tQPbtq3E3r5JrkWIeHicJDLyM4MH9873ulyZcfiWV4pwyDMh/qw+txmvoXtRki8seZ3g5XWKQYPGM3hwbzqnUwfW2roeISGBeHicZPbspdSoYcKePWtRUir8IeSPHj1GW1uLkJDAXHOyExISOH/+EqdP+3Ht2i2ePn3J589fEAiQzKe6dGlHy5Z21K1rnuF7v4V9c9wOuuWKnUXkD7kSEgkwf3hzKlcsxzG39Tm17a+nd+8RnDnjT2jo5Vz9witTxgQbm3pUrKiXQuZ58WJndu1ypUaN6uzf/3MnKTExkUuXrhEQcJmdO12ZNWs83bo58vr1O5o370Rw8HmmTVuIrm6ZAiWekhb9+o3C0rJOhsVXLzy5IgmJfP/1A+ryqgQGXmWB7yoiwiORvSnL+/cfiIqKJikpCWVlJbS1tahYsTympkZYWtahXr1alC9vTkhIIKVKlczDOyxC2piYNKR580Y4Oc3Ob1P+GDIKy0522LZv38fx46fZscMZVdXifPnyjRMnTtO1a3sALly4wpo1WzlwYMtv2aKvX5e+fbsyderozBvnAqYLbTk3yh1N5Z/iC4tPOaMsr8S/tgPyxabs0KPHUHx8ziIjI8uNG2dyRS21ShUL6tevw+7d66Q+tjSJjo+h+oIG3Jx8FjVFcZSK+WI74hLiKaEkzvGvXb4GKx3n5aeZGRIR8ZmuXQdz9epNund3zFBYpIis8+lTBD4+Zzl//hLBwQ949eotUVFRyMrKoKWlSdWqlbG0rEPLlnapdjOzwtt3H6lmbMn8HRfQLPVnCWH9aeSLSuSvxEVHoZWHCch/Ijt2OGNgUI//sXeeYVFcbRi+d1kWWHoHaaKCFRVRbNiNDWOPGvkssRtbjLH3lqixJNHYYou9964o9q7YURBFRKT3tizL92N1lYgFZVnAva+LC5g5c+YdXGfmPec9z9OxY28OH96isvMIhULWrPmLdu16Mn/+0hwyz3FxidSqVT1Hey0tLby8auLlVZMKFVzZvHk33bp1xN7eFkdHe86fv8K+fUc5dqzwK4XmVba5/6aRRKfEkp2djVvF8uztuA4DnTdm3IGBwZw+fYEbN+4QEBDIxo07Wbx4NTKZDIA6dbyxtrbAycmesmXLUKVKJWrV8sDW1jpfr0uD6khNTdUk3SrgdVn2tm0rcxVcWrBgGfv3r1eWZxsbGyqTtfymKJWpFTY2bFiKXC7HxaUWixev5rff8re0/9y5S8TExPHbbxPztV9VIBHrETztao5tN8b6qimavPPXX/8wY8YCrK0t8fPb81mJgwbFerNDh05w8eI1pfG8VJqJrq4uJUpYU7FiWXr16kLLlk1xdLT7eIefQAlbC4xNLTi2YxnfD56VL31qUC8qS9jS05KxtVW/yWNRRigUsmfPOho0aMuKFevfkbXPT3KTec7OziYjI4MWLRor2wUGBiMUCpWljnfuPMDB4c0NpmPH1owfPwtnZ8di40PlVbomXqUVZZ/7Bq7/YNvXypX/Zf78pcydu5i+fX0ICAjkyZNnXL9+h6VL/0UqlSIQCJBI9DAzM6FECRvKlHGmUqVyVK9elapVK2n8VAoRaWkZxeazXVj4UFk2QFJSMsnJKQWmnKtOBAjo8M8PCBDQq1ZXetXqCsA/Fzaw5foe3B0qMbP1OEwkxmqO9P0IhUIaNarLoUPH8z1hq1PHE3v7ErRs2RV//1OFviSyqOLl1ZqAgCBGjhzEuHHDP36ABqRSKWfPXubEiTNcv36L4OAQ4uLikcvlGBsb4uTkQOPG9WjYsC5Nm9ZTuc1Pg0YNOXP6uCZhKyao7C1QmpGOg73mpeZLqVSpHCNHDmL8+Fm0aNH4i0dfIiKi8PEZiJ2dLQ0b1qV162+U+/4r8/z8eTigkPB9zcaNyxg9ejqJiYloaYkoVcqRP/544zfSrl0Lxo2byZw5b0orNUBQUDD29ja5Pvjkcjn37j3kypWb3L37gKCgJ8pZypSUVORyOdra2hgZGb6anXOgbNnSVKlSidq1q2tmewqYzEwp9pp7W76irS3C09OdDRu25yjLfk12dsF5o6lbc+TI4C3YGlsTlRxD+xW9cLEqRe/a3RjVdDACBMw6+gcTD/zG4s6FW4V50KBe7Np1kNTU1Hwt6ZfL5VStWpEDB45z+vQFGjXyyre+NSiQyWTcu/eQa9eOUbq0s7rDeS93lqzh4fptCBBgWsGV+n/P4eG6bdxbtpbEJ8/4X9BldFXg6xYbG8/p0xe4dOka9+495OnTUKKjY8nIyEBLSwsLCzNcXErRo0dnmjVriKenu1oGFkb/0o99u3aQnBiPgZHGZquoo7KETSaTUrJkwcj7FnfGj/+JAweO0bq1D7dv++X5+MePn/LyZQR169bE27sbCQmJJCWlcPz4aX7+eTKurqWUHjr29rbcunWKmJhYhg2bgINDCW7fzmnm+aFSRwsLc6KiHuQ5xuJOYGAwDg72ue4TCoW4uZXHza18rvtjYmK5cuUmN28qyiyfPg3l2jV/lixZ+5/ZOVPs7GxwdnbCxaUUlStXwN3dDTMzzY06P5HJspTCFhryhw+VZQMYGRkikejx9OkzSpZ0LJB41IWtsaI82tLAnNaVvuHGs9vULeWp3N+zZme6rO6vrvA+GQ+PKujq6vDvv1sZNOiHfOlz69a9jBw5GRCwevWfmmRNRRw4cPxVJU3hTdZSXrzk3vJ1dLp0GJGeLr4/DCN41wGsa1XDsUUjDrZ+/7r0T+Xx4yf4+V3k2rWbPHgQSFhYOPHxCchkWYjFYszMTHBysqdZs4bUrOlBw4Z1CtUAasXypZAYGOG7+x/a9hyl7nA0fCEqS9jkWVm4lin+5SsFxYEDmyhfvg4//zyZBQum5+nYDRt28Mcfyxk6tC8hIc+5e15rPa8AACAASURBVPeM8qYSFhaOt7cPFSvWZ8mSOXTq9C0APXoMQSTS4sKFg/l+LV8jYWEvadfuw0p578Pc3IyWLZvQsmWTd/bJ5XLu3g3g6lV/7ty5T1DQEy5fvsahQydISUlFJpMhEAjQ09PF2NgIKysLHB3tKF26JBUrlsPdvRLOzk6asqJPJD09HUBTEqkCcivLfpsRIwbyyy/TWL36D4yMDElMTGLXroP06tU1nyNR3xRbilQxo26oa0CKNJWTj84xuukQXiZGYmOkWGJw4O5xytu4qi3GvFChQlkOHfL94oTtwoUrDBw4mrCwcDp3bsOiRb9pysRVhEwmY9iw8Xz7bcFZH3wu2TIZsvR0hNoiZKlpSGyssKhcMU99yGQyrl27xdmzl7h16y6BgcG8fBlFUlIy2dnZSCR6WFtb4uzsROPG9ahTpzp16tQoMsqXNWrW4vrZA5qErRigkjteemoyAI72Nqro/qvE2MQQ64FWrAnYTKcLralduwYzjyxk7+3DaAmF9K7djQFePXM9dvz44fzxx3J27z5E9epVcowA2dnZ4u9/kl9+mUr//iP5558NDBvWj4sXr3Hs2DaV11h/LcTFJahE0l8oFFK5coX3LgZ/Xdpy69Zd7t9/xOPHT3n8+CmXLl0nMTGJjAwpoPBSMjTUx9zcjBIlbChVyony5V2oXLkilSuXR1dXN99jL4o8exaGQCDQvCyqiP+WZb9Nnz7dSElJoUmTjohEIrS1RQwe3EclcahLdCQqKZr//TsYgCy5jI7u39K0XH0GbP6FOy8eIECAo5ldoVYVfJukpKQvLuNv1ep7Ll26Tt26nhw/vr1QzWAUN+RyOd26DSQrK4sVK+arO5wPol/CBrehfdji1gCRrg52jbywb1zvve0TE5M4e/YyFy9e4c6dBzx5EkpUVAzp6ekIhUKMjAwoUcKGChXK4uPTiQYN6uDmVr7ID2b+NLw37dt+j1SajliseY4XZVQi6x/6+B6/DfMuUHPB4s7fp1dz8/kdzly6SNqedGZsHcOlkBss6TIHoVBIVHIMlgbm7z2+TBlPYmLikEj0CAu7nWubmzfv0LPnEEJDX9CgQW327Fmnqsv5qpDL5Zibl+X27dM4OBS+MuHQ0BfcvHmHu3cfEBgYTGhoGC9fRhEfn0BaWjpyuRwtLS2lKIq1tRWOjnY4Ozvi4lKK8uVdcXUthVgsVvelqJwTJ87QrdsAIiM1Zb/FlTJlPOnfvwejRw9RdyhFHmdnD4YO7cvPPw/6eONceH3vXL/+7wI1u/4aefIkBG9vH2Jj49i8eXmhLzfNiE/gRI8hNF79BzrGRvj2GkbJNi3QrVODU6fOkjz+Vw6UKcnj8Eji4uLJzJShra2NmZkJ9vYlqFixLJ6e7tSvX6dQPpfzE2sbN9r0GEWT9oXfFuRrRK2y/tHhz9ASaaui66+SsPhwjgX4MbLJIBLTkrh20J9Jm+Zweupe5ejPh5I1gMOHt+Dp2ZzU1DRu376f64yMu7sbt2+fZt++ozRt+v6RKg154+7dAAQCQaF9KDg4lMDBoQRt2jTPdX9iYhL+/ne5c+cBAQGBhISE4u9/Fz+/8yQnp5CRISU7OxuhUIiurg6GhgaYmppgbW2BnZ0tJUsqEruKFctSunTJIj1iGRYW/lUkpl8z6hYdKU6kpKRRosTnV9oIhUJMTIy5d++hJmFTIYsXr2LKlLlUqlSOCxcOYWJipO6QciU+PpHbt+9x//5Dwo/6QdATfm3bg5iYOJxj47E9dILdgJ6eLr9IM9HX16dz57bUqVODevVqfrUVQ5WqVuOS7w5NwlbEUUnCFhMVhliso4quv0rG75vFNO/RJGekIBAK2L37XxqubMekNbN5IX6Jub4Zc9pOorRlyff28bbUfFBQ8Af9VN734q7h87h06XqRqXfPDSMjQ+rXr039+rXf2yY5OZn79wMJCHhEUNBTnj17zosXEVy8eI3Dh0+SkpJKZmYm2dnZaGlpoauri5GRgXLGzsGhBKVKOeHqWpqKFcthZ2dTKBO7Fy9efpXloZV/bYiBjj5aAiEiLRGnhu9W7lvkt5LJB+cQNPVyDrPnoozGhy1/cHd3Y+HC5XTt2v6z+yhTxplz5y4zZszQfIxMw2s6derNqVPnGT/+p3fEfgqS2Nh4Zel+UNATnj4N5eXLSGJi4khKSiYjI0P5/JBI9Cirp0uLxCRcqlaiSeN6OF+9iV3NaqyYNBKRSMSWyg1Zv25xriqRBak6WxgY2L87A/sNQS6XF8rnqoZPQyUJW3x0ODp6RfcFtTBx5P5JLAzMqWpfiXOPLwNQpUpFtHVFHDnoy+2Np7kRe5sh28dx+MfNH+xrypRfmDZtHg0b1i2I0DW84tatu1haFo8X2fdhYGCAp6c7np7uH2wXGxvP/fsBBAQE8fhxCKGhzwkPjyAoKJg9ew6TmppGZmYmACKRCIlEDyMjQ0xNjbGwMMfGxgp7e1ucnOwpVaokZcuWKVAVzIiIKPT19QrsfIWJ/QPXv5OQPY8Pxy/wPPYmhXP2+PPQTLHlF3/9NYvatVtx8+Yd3N3dcuwbPnwCZ85cpGLFsnh51aRVq29yXe9Wu3Z1Nm/eVVAhf1UcOXKSkyfPcerUbqpUyZtYR16Iiorm1q17ynXUISGK+35sbFyOKg2RSAuJRIKJiRGWlhaULVsaZ2dHypVzxc2tPK6upXKsH77+25847j6E8MkzzCtXoN74n3iwaiO3//qHtIhodnl9i/03Daj/16+cOHGG7757d81ruXIuHDu2DUPD4jv71qFtYwb1F3DVby81G3/+4IkG9aKShE1LpE1yYjxx8UmYmhiq4hRfDZef3uDIfV+OB5wmIzODpIxk+m8aSUlLRzKzMmnd2ocbN3wZvG3sR/syMNAHYPr0+Tm80zSolsDAJ1+88L64YGZmgpdXLby8an2wXXh4BPfvP+LRoyCCgp4SHh5BZGQ0ISHPOH48mdTUNDIyMsjKkgMgEmmho6OLgYEEY2NDzMxMsbKyoEQJWxwdS1CypCOurqVwcnL4IsGQ6OjYYv1gzysT9s1iqvdofNaqb2ReFWhGofOHsmXLULlyBX76aSKnT+9Vbo+IiGL9+u00b96Q4OAQ/PwuMm7cLMRibRo0qMOMGWMpW7YMALdv3yMtLV1dl1BsefIkhIEDR9GyZZN8S9Zu3brH/PlLOHPmIgkJSTn2iUQi9PUlmJgYY2VlQcWKZXF2VohbubmVx8WlVJ7/33mMG47Hf7xNKw3oSaUBbwTY5HI5pqYugOL/9cKFM2jevBFhYeFs376PZcv+xdHRnTlzJtG/f4/PvPLCjZaWkDLlKnLm0AZNwlaEUUnC1rbnaC777qRRk674X9fIwn8JU1r9wpRWvwBw7vFlFp1eyYpu85l66HesPSyY8v3v9BgzmDJ2H/dL8fM7j0Six7//btUkbAVIWFg4rVo1VXcYRQpbW2tsba1p0uTDaynlcjnh4RE8evSY4OBnhISE8uLFSyIjowgMDObaNX+Sk1NJS0tHJpPxWmRJR0eMrq4iwVPM4JlgaWmOtbUldna2ODjYUbKkA6VLl8TI6M2gU2xsPKamX5+vnQABHf75AQECetXqSq9aXTl0zxdbY2vcSuTuH1hU0axhy1/+/HMWjRq159df/+DkybOMG/cT69dvw9bWis2bVyjbSaVSNm7cyaJFK6lVqyX29iWQSHR5+vQ5Bw9uVOMVFC9u3LjF2LEzuXbtFmXKOLN8+e+ffKxUKuXRo2AePQriyZNQnj17TmBgMPfvPyIhITFHW4lED1NTE2Jj43j+/JZaBkGys7MxNy8LwLVrxylduqRyn7W1JdWqVea33yYyZMhYxoyZAQjo3797gcdZEHT/33dMnZw3SygNhQuVJGxCoZDRC/YwuW8Deg+YyOrlmuQgvxnRaAD9Nv2M5UBzDoQcZ0nTuR895sGDQJo1a8iePYc5evQUzZs3KoBINcTGxr9TDqQhfxAKhdjZ2WJnZ0ujT/g4T548h7Vrt/Dnn7MIDQ0jLOwlERGRREfH8ujRY65du0Vycgrp6elkZsqQy9/M4InFYjIypGRlZeHl1RojIyNMTY0xNTXG0tIcKysLbGwUiaaDQwlsba2LzUzNkcFbsDW2Jio5hvYreuFiVYoFvkvY2W+tukNTCV/R8haVU6VKRSpXrsCff/5DyZIOdO7cl+rVqyAUauVoJxaL+eGH7/nhh+8JCQll4sTfCAgI4sqVIzg5Oagp+uJBVlYWI0ZMZv36bYBClGP37rU0aFAHuVzOkychr8rUFeWKL14o7osxMXEkJiaRmpqGVCpFLles/RKLtZFIFINdtrZWdOr0LWZmJgwb1jeHsMfcuYtZvnyd2u6DI0dOAfioQvPixbPJyJAyZsx0evToTJkynjx/fguAY8f8GDduJnv2rGPjxh2sW7cNc3NTMjKkeHnVZN68qQiFQlq39mHGjLHKZ/2zZ8/p0qU/+/atp2nTThw7tk1pSTFy5BTs7UswYsQAFf8F3tC/T0cmjZ/M/etnqOBRv8DOqyH/UJmZkJmVHX3H/s3yWQNo1LA23b/3VtWpvhq8StfEq3RNAIz1jNjWZyWgWDQ8tt8MOgZ6f1DBLjY2Hje38uzZc5iuXfsTFxdYIHF/zcjlctLT06lbt4a6Q9GAoqTR0tKc9u1bfVJ7uVxOWNhLgoNDCAl5RnBwCBERUSQnpxAfn0hoaBgPHjwiJSWV9PQMMjIykMlkylJNgUCAlpYQbW1tdHR00NPTRU9PF319CQYG+hgaGmBsrEj8zM3NMDc3UyZ/trZWWFtbFgqRE1tja0ChRtu60jdceHyFkNjn1Fv4LQAvEl7S4I92+A7dibVRUffJ0kyx5Td+fnuUP48cOYXVqzchEAiQyWS5lig7OTmwfv2Sggyx2CGTydi6dQ8jRkxWrgsGEIu1MTDQp1u3gTnKysVibXR1dTE0VIhBWVpaUK6cC46O9kpBKFfXUnm6HxkZGSi9Pgua7Oxs1qzZTJcu7T5JofmffxawY8d+OnTopdx2+vQFxoyZzq5da5R9DBrUi6FD+yKXy2nVqhvnz1+hXr33l/hbWpozfHg/Jk2azYoV87l16x6XLl3Hz2/iF19jXtDWFuFQshQn96zSJGxFFJW6v1at05yGrXswfPDPbN22nzm/jqZi+VIfP1BDnti0aRmurrXo2nUAu3ateW+7lJRUypd35cCBjbRu7UN0dAwWFh+2A9DwZTx69BiBQKAZIS4kREVF50myWigUKm0P4P0qmbmRnp5OaOgLXrx4+WomL4rIyGgSEhJJSEgkMTGJiIgogoNDSEtLJz09nYwMKZmZmchkWWRlZeWIQ0tLC21tESKRCLFYkQDq6iq+JBIJEokeBgYSDA0NMDBQJIImJkYYGxthZmaKmZkJFhZmym2fak+QIk1FLpdjqGtAijSVk4/OMbrpEAKnXla2qfxrQ04N31VsVCI1qI7586ehq6vDkiVr2LhxBz17dlV3SEUauVzO/fuP8PU9w9WrN3n48DHh4RGkpKQq24hEIkqXdlJWAbwu+XZxKUW5ci4qk/H39m7GuHGzkEqlBW6HcvnyDQCWLJnzyce0adOcffuOoq8v4cKFqwwfPoFt21bi7Oz0TlupNJOMjIxP+tv16tWVLVt2c/bsJWbMWMDcuZPR1i5466v2HduwbPGyAj+vhvxBpQkbQJdB07F1dOH4zhV41WmOhXUJevftwS/De6KtrfLTfxWIxWJ27FhNs2ad2bRpF926dXinjVwuJzMzk8qVK2BnZwtAly798PXVqG+pkvPnryKRfJ2qgoWRmJg4zM1NC+Rcurq6uLiUymGpkVfkcjkxMbGEh0cSGRlFZGQMcXHxyqQvKSmF5ORkkpJSSE1NIyYmlvT0DNLS0pFKpUilUjIzZcpZP7lcrlzH9xqBQIBAIEAoFL5KDBXJoUikpZj9MBKQUCNBIYMtFGAWa8LcfYv5S3eFctYwxjKW8eN/xVTPGIlEgr6+BH19PfT19dHX10NPTw+xWIy2tghtbW3EYm3ldx0dMSLRm226umLEYvEXicN8KQJB8ShlLazMmjWe5cv/xdraSt2hFFqSk5OJiYkjOjqW+PhE4uLiiY9PICEhiQcPHvHgwSOePw8nKSkZAENDA+ztbalSpSIDBvTgm28aqH2gUCzWRigUcPz4Gby9C3Yd98GDx4G8CQi1b+/Nvn1HyciQ4uMziP37N+DqWjpHm6VL17Jt215CQ1/QtGl93Nzeb5H0GqFQyPz502jTpgctWzambl3PvF1MPtGkUW3+nLdAI+9fRCmQJ2J97+7U9+5OVHgou9fMYsHchcyfPY/qterw28zRuFctWxBhFGuqV6/KoEG9+OmnCTRpUk9ZK/2a+HjFguDXydqQIX1YvHjVV+dHUtDcvn2vwBIEDR8nISGRcuVc1B3GJyMUCrG0tMDS0iJf+31dqpuQkERiYhJJScmkpKSSlJRMcnIKyckppKSkkpKiEGxJTU0jLS2dtNQ00kknTZKBVColJSWOjAwpdgG2XJbeeDU7KHv1laVMFLOzFYmi4otXSWO2UuDjv0nk+3h9r3r7u0DwJukEAUKh4K3fP0xu501LS+fhw6BPikfD5xEa+oKsLDlNm34dpVlyuZxbt+5x4cJV/P3vEhgYTEREFBkZGUilMrKyFP9f5HK5ct3sa14PpIhEWmhpiRCLRZibm1G2bGk6d25Lkyb1qVDBtVC9gB8+7MuMGfMJCAjC2tqSMmVKFngMMTGxeT7mtf2OtrYIT093NmzYzuzZk3K0eV0SmZmZSc+eQ9m58wAdO7bO9X7z9jY3twqUL+9Cnz4+eY4rvxg/YQ62ji6F6rOi4dMp0CFMS1sH+o9fhlwu58LxbRzfsYzGjVpjZmFN954+jB/TD7Fm1u2zmTVrPEeO+NK6tQ9Xrx77YFsPjyoAjBo1jXnzphZAdAq2VG6ItoE+Ai0hQpGIdqd2E3PnAedHTiYzORUDRzsarZiP2Kh42EE8evQYBweNpH9hISkpGRsbzai+UCh8VUYpwdbWWt3h5IpMJkMqlZKerigTlUozkUozyMyUvfpZMXuYmZn5atvr2URF28xMGUJhbi9R776svN1u5MgpGBsXj/tPYUUsVpSD/Tc5KUxIpVJCQ8N49iyM58/DldYi0dExxMbGER+fSFKSwmIk5wDFm8RLLs9WDgoIBAIMDPSxsrLA2dmRunU9MTMzxdjYEBMTY0xNTTAxMcLCwgxzc9Mc4h1FiQsXruDjM4jatatz/Ph25btGQdOyZRM2b96dp2MOHjwBKO6Pa9b8Rbt2PZk/f2muhuLa2to0aVKPCxeu0rFja8zMTIiPT1Duj4tLeGew9nXyrQ5eRsRw79Z1hkxfp5bza/hy1JIdCYVCvJp3xat5V+Kiw9m9+jeWLl7CooV/UrWGJzOnj6K2p0JpJz4wmJO93/hsJIWE4jFuOCkvInh29BRCbW2MnB2p//dsdIxVU4ddlDhwYBOVKzdk0qTZzJjxxptNJHqjyNWmTXfOnr0EwKpVGws0YQPw3r8eXfM3a13ODp9AzRljsK1bk4cbtnN70UqqTxhRoDGpiufPw/nmmwbqDkPDK1JT05WzzBoKNyKR6JV5uqRAzztt2rwCX2/ztWFtbYlQKOTaNX/q1CmY8jCZTMa9ew+5du0Wd+8+ICwsnLi4BBITk0hOTiEtLY309Ayk0kzl+lGFaJDWK0EOxVpRQ0N9jI2NsLcvgbm5KebmphgaGipLgBViQvoYGBhgZGT4SljIMIc9SHGmf/9fqFevJnv3rldrHE2aKGZvt2zZQ9eu7T7pmKVL1yp/lkj02Lp1Ba1afY+VlQXdu3+Xo212djZXrtzEzU1ha1K3bk22bdtHw4Z1EQgEbN68i3r1aubPxeQDQ0fMwNDUUiM4UoRR+3SWqYUtvUf/BcCVU7s5svVvWjXviLGpOV19ujJ5/AA6nN0PgDwri80VvHDybkZCUDA1pvyCUCTiypS53FqwDM9po9V5KYUCW1trFiyYzvDhE2jXrqVydOv1CPJrA8mVKxdSo4Y7Vao05M6d+59Uh60qEoKCsXn10LZr6MWRTj8Um4QtNjaOqlXzx5RUw5cjlWbg5KSZ8dTwfuRyuVoEAb42DA0NOHfuyhclbNOnz2f16o2kpWWQmZmJmZkJv/8+ldu37/Hw4WNCQp4TGRlFYmISUmkmAoEAiUQPMzMTzMxMMTExxtHRDgsLM6ytLSlRwoYSJWxwcrLH1tZak7jnkbVrtxIeHsGpU+pfGy+R6OHgYMegQaPo0qXtR0ukjx49BcD16yeoX78NAKamJmzfvhpv727K2bLXa9hkMhkVKpRVljj26tWFwMBgvLy+RSAQ4O5eicmTf1HhFX466RlSTh07Sqf+k9UdioYvQO0J29t4NmqPZ6P2JMZHs2fNbNb8s4otG7fwOPA8WlpCXpy+gGFJRwwd7TB0fPPSZVWjKk/2HlFj5IWL7t2/Y+fO/XTq1JvAwMuIRCJu3Lij3P/w4UWsrN6siWnSpBORkfcLJjiBgMMdfgCBgPK9ulKuV1dMy7ny7LAvTq2a8mTvYVLCXhZMLCpGLpeTmppG7doaSf/CgkyWhbOzo7rD0FCIUSRsherRWKxITU2lTZseJCUlU7NmtS/q6/p1f4yNjfjrr3GULOlAly79GDhwFMbGRlhbW1CqlCMtWjTG3b0SNWq4v7O2W8OXIZPJGD58AhERUWhpaXHmzEW6deuQ72tuP5czZ/bi7FwdMzNXYmMfvTdpu3DhKl279sfNrTylSjkpPdgA7O1tuXVLkcy1atWUsWOH5dqHWCzm99+nfDCeAwfUYwA/YfKfiLTF1PcunqbgXwuF8qlkZGJBjxHz6DxgKqO7VaPPgImsXfkrwbsOUrpj63faP9ywg1LtNT5vb7Nt20rKlKmJj88gtm79h1GjplKzZjWOHNmao93KlQvp27fgZrO+PbIFfVtr0qJiONy+F8Yupai/+Dcujp3BjbmLcWrZBGExGd1+/PgpAKVLl1RrHBoUpKWlkZ2dTb16bV55oeljZGSAqakJ5uamWFlZYmtrjb29LQ4OdpQu7YS5uZlmgfZXhlwu18ysqIhTp87Rvftg9PR0uXDhIGXLlvmi/qysLAkPj6RNm+YAPHhwPj/C1PAJhIWF06hRB9LS0nB1LYVcnk3Nmh7Mnz9N3aEpMTExxt//JFWrNsbMzJXZsycyYEBP5f6EhCQaN25PcHAIjo72nDmzT43Rqo5NGzZRt3lXzbOsiFPgCduKWQPxv3CEJQeffrStrsSAnj8vYNWcIZzr2YGQwyep/p8p5pvzliAUiSjTuY2KIi6aiMVitm79B2/vbsyZ8xeBgU+4fPndWciOHVvToUPBJbv6rwQO9CzNcWr9DVE3blN5aF9a7loLQELQE0KP+RVYPKrk4kWFpL/mJlk4CAl5jkAgYN68qYSFvSQ8PIKoqGhiYuJ4+PAx167demWAnY5UmqkURBAKhWhri9DV1VWuUzEyMsDY2BhTU2MsLMyU/ka2tlbY2yt82wqD4bWGvKOZYct/pFIpPXsO4ehRP1q3/obVq//8qG2DXC4nLi6e8PBIIiKiiIqKJjo6lpiYWOLiEoiPT+DGjdtIpZkf7EdD/nPmzEW++64vzs6OnDzp+9F1pneWrOHh+m0IEGBawZX6f8/h7NBxRPvfRSgSYelRGa+FM/I0WBsYGUzvDW/0DUJiQxnXfDhdPdrTe8NwnsWF4Whqx5r//UVoqD/e3t0YO3YmY8fOfKevxYt/w8en06f/AYoQS//ZjjQ9jbY/jFF3KBq+kAJ/Ktk7l+fm+cOf3N6jfmvOHtrA1K59+dmzKpK3Svkebd5F6LFTtNqzTiNNnwu1a1end+9uzJ69iMqVK7zXD6qg/naZKalky+WIDQ3ITEkl7OQ53EcPIS0qBj1Lc7Llcm7OW0K5H4qHkaq//z3MzDSS/oWFx49D0NYW0a1bx08+JiYmlidPnvHs2XNCQ18QHh5BdHQssbHxxMfHExoaRkpKCqmp6WRkKNbRKGTsFcpwWlpCRCKF15hiVk8PAwMDDAxeJ31GmJgYY25uhoWFGZaW5lhZWWJjY4WNjaVmpkcNyOXZShVDDV/Ohg07GDp0HAB163qSlSWnffteSiuJj5nGCwQCpSfga8N4PT1dJBI9rK2tNKJOKiY2Np4xY6azcOF0DAwM+Ouvf5g69Xfat2/FqlV/fPT4lBcvubd8HZ0uHUakp4vvD8MI3nWAMt+1oeGK+QCc6juCgHXbqJAHyXsXq1Kc/Vmhb5Alz6LCDC+8KzVj4cnl1C9ThxGNB7Dw5HIWnlrONO/RnD69l+zsbG7fvs+RIydxcChB8+aNMH9LAK04Mv/3v6hcsylisWYAsahT4AlbPe//sX/DAlKTE5AYGH/SMT9OXc21ThU5lZhOq1fbQk+c4fafK/A+sBGRxpj4vcybN5U1azbTo8d3H2+sYtKiojnxv8EAyLNklO74LQ5N63N32Vrur1TUdpds3QzXYjLS9ejRY+ztNYqEhYVnz0LR0dHJ0zHm5maYm5tRvXrVPB0nk8kID4/k+fMXhIe/VM4SxMTEEhsbR1JSCuHhkQQFPSU1VaFO9+aFVZZD7vy1B5NIJEJHR4yBgT6nTu0u9i8a6kIxw1Z0E2WpVEpCQiKJiUnExyeSnJySw18vKysLPT1d9PT0lN8lkpxfCrVDSb6Yl0+Y8CugEMR6+TKSxMQkDAz0sba2xNjYCFNTY8zMFGqLFhbmWFtbYmNjibW1ZYErhGrIyf37j/jmm06kp2dw7txlatSoysGDx5kxYyyDB/f+5H6yZTJk6ekItUXIUtOQ2Fhh37iecr+lRxVSXkR8dpynAy9Q0twRR1M7Dt/3Zf/ADQB8X7093y77H9O8FYJ0AoGAKlUqUqXK1yEEdsLvCjHREfyyYIa6fFMBxwAAIABJREFUQ9GQDxR4wmZobA7AuSObadZp4Ccdo42Aijp6TL1xnbYX/PGqU5WLo6eRlSHlcPteAFhVr4rXQs2HMje0tbUxNTVRdxgYlXSkw7n972yvNLAXlQb2KviAVExoaBgNG9ZVdxgaXhEWFo6+fsG8AIpEIhwcFKWRn4tMJiMqKoaXL1+XhMUQHR3L9OnziIiI1iRsKiIzM5OVKzdw9OhJBILXRtzCt35+/SXM8bvCY+nNPoHgje/Sa584mUyWwzMuKyvrLbPxLOX3rKw3puNZWVlvfcmVXl+vf5fL35iSv82buAQIhVpoaQnR0tJCIBAgl8vfOvaNX1hu/eTWn0AgREtLyMSJP3/0xT0lJYX9+9fj5VUr3/6NNKiegwdP0LPnEGrV8mDTpmVUq9aUY8f82Lt3XZ7+LfVL2OA2tA9b3Bog0tXBrpFXjmRNnplJ0NY91P5t4mfHuuvWQTq6K/QNIpOisTFSeG3aGFkRlRzz2f0WdcaMmYmza1VMzAun16aGvKG2Qn3f3Stp1mkg0ox0yM5GrPv+WTKBrh7GO+9Tclw3vv++H/43fel8w7cAoy3aiMXaREREqTuMr47o6FgqV/46RvKKAuHhkRgZFR0zWpFIhK2t9TvG1tOnz8PaunCosBVHRCIRcXHx6Onp5khiXn/J5dlAbr/zn6RHsU0uz35VGquYJdXS0lJ6zGlrK2ZN9fX1EYtFaGtrK0v/tLW1EYvFaGuLEIvFiMViJBJd9PUlGBjoo6+vj7GxwufL0FDh+WVsbIiurm6+rJuVy+VIpVJSUlJJSUkjNVVRvpiWlkZqahoHD55g6tTf8fHphIlJ7h6o9+8/IitLjqfnl6lBaihYFi9exeTJc+jZswsLXw2EBwScRyaT5XltbkZ8AiGHfOnifxIdYyN8ew0jcOteXLq0BeD8L1OxqVMDmzqfp6YslUk5fO8kk1sWDgn9wkLg41CCHwUw9o/iKaTyNaKWhK1SjUbcvaqQSZ3Qszbpqcks2hf40eMGTVnJ5L4NKFO6OnZOzvTs2Y2fhvhoFoh/BDMzU+7de6juMFSOvX0VpRzvsWN+jBs3kz171rFx4w7Wrdum9FFp0qQ+U6eOonVrH2bMGIu7u1uOfq5fv8WUKXMJD49Qlu5MmTKKihXL5imetLR06tSpnj8Xp+GLiY6OKRQzzV9Ceno6QJG/jsJMyZIOODk5sHHjUnWHolaEQiG6urro6upibv7u/qZNG3D06Cl69PiRffs25NrH8uX/avzMiiB//LGczp3bKJM1eGNkn1fC/C5g6GSPnoXiQ1Ty22ZEXrmBS5e23JiziPToWJqu//uzYz0RcIYqdhWwMlQMYlkZWvAyMRIbIyteJkZiaZDLh/crYMiwqVjYOODkWlndoWjIJ9QiX9ekfV9AMRrp7tUKmUz6SceJdSXM3nCVUQt2Y2LpxNzf5mJjU4m6DTqzc0/eZ9zs7asofz52zA8Pj6aEhr5g9uy/WLRoZa7HHDhwDFNTFx49eqzcdvPmHWrXboVUqriOJ09CqFq1EYmJSXmOSRXY2dkoJea/Bk6fvsCYMdPZsWOVsiRt0KBenD27n7Nn9zN16qj3HhsZGc0PPwxn0qSRXL9+gtOn9zJixECePn2WpxiePAkhOzv7i2WrNeQfMTFxWFgU7Yf365lyjfKo6nB1LU1QULC6wygS6OnpEB0d+979vr5nadRIUxZelAgPj0AqzSQzU5Yv/RnY2xJ5zR9ZqsJW5cXpi5iULU3Aum089z1Lo5ULEXzB/WyH/wFlOSRAiwqN2XxtNwCbr+2mZYUmX3wNRY2ExGSuXjxHu14aZcjihFqe+mWrKG7gQfeu0ridov49S/bp0rylyrkzZPpaFu0NpPfYRaSky+nX50esbdz4tv1Art7Imwl0bi/472PnzgPUqlWdXbsOKre5u7tRp04NFi1aBcCoUdOYOPFnjIwM8xSHqqhQoSwhIc/VHUaBcOHCVYYPn8DWrf/g7OyU5+P/+Wc933/fPoeha+3a1fH2/iZP/Vy8eD3fSpM05A+JiUlF3jg3IiJa85lSMR4eVQgPj1R3GIWewYPH8Px5OLt3/5vrfrlczosXL+nevXMBR6bhc/n779W4uTXA2tqSmTPH5UufVtWr4tymBbsbtmNXHW+y5XLK9ezC+Z8nkxYVzb5m37Gr3rfcmLsIUHxufv55MqamLjm+chtET5Wm4Rd4ntaVmiu3jWg0AL/A83jMaYpf4HlGNB6QL9dRlBgxajYSAyM86r/rW6yh6KKWWsLXMvK+u1cycNIKAG6cO0SNhm3z3JeHlzceXt7IpFJO7V/LucMbadakLRcuHqN8OeePHv/6BX/btpUffcFPTk7h8uUb7Nu3nm7dBuZwvJ88eSQNGrRFJNIiM1NGp07f5vlaVEXDhnX599+tH29YxMnIkOLjM4j9+zfg6lo6x76lS9eybdteAKZOHU2TJvVy64KAgEC+/77DF8dy8+YdzMw0ZWuFieTkFOzsbNQdxhcRFRWDSKSl7jCKNfXq1WLSpNnqDqNQs2vXATZv3s2mTcveOwhy8+YdADw93QsyNA2fSc+eQzhw4Dhjxgxl9Ogh+dq3x7jheIwbnmNbn+iAd9otX/6v0ifN0FCf8uXLoqMj5uzZS0yePIfJk+ewY8dq5fNbItYjeNrVHH2Y6Zuyd8C6fI2/KJGVJefAnj206DJU3aFoyGfUtvhL39CEWxePMnu4IrFZPXcYd6+eQleij66eATp6iu+6EgPlNl2JATp6Bujq6Su26+mjJVL45YjEYr7p2J9vOvZnaFsXbt8N+mjC9qEX/Nw4ePAETZrUo0wZZ0xMjLl1655SHtbY2Ijhw/vzyy9TuXTp033mCoJGjeqQmZlJTExssVaW09YW4enpzoYN25k9e1KOfYMG9WLo0L557rNp044kJSXTqJHXO31+iEePgrCzU52kf3xgMCd7v3kAJoWE4jFuOLZetTg/cjKZyakYONrRaMV8xIVkplfdpKWl4+Bgp+4wvojY2Lh8kVrX8H4qVSpHdnY2jx8/oXTpjw/6fW2Ehr5gwIBR9OnjQ4sWjd/b7sCBY5ibm2pmhIsA27fvY//+Yxw8uInatdWz7nrhwuVMnz6P5s0bsXHjUrS0cg5MpaSk4u7emE6derN16z80a9ZQLXEWdqbMXEJ2djYtugxWdyga8hm1Pfn7T1jGwrFdCQm8rdx25dTuz+6vap0WDJi4HACRtg7PQl989JgPveDnxs6d+xk0qBcAHTt6s2PH/hx+HidOnMHKyoKHD4Pea1KtDiQSCbq6Ouzbd5Qffvhe3eGoDKFQyJo1f9GuXU/mz1/KyJGD8txHuXIu3Lp1j1atmgJw4sRO9u49zNGjp/LUT0hIGHXrfp7q1adg4lKKDmcVFgnyrCw2V/DCybsZvr2GUnPGGGzr1uThhu3cXrSS6hNGqCyOooRUmomzs6O6w/giYmPjNAIOKkYoFCKR6OHnd1GTsOVC27bdKVPGmd9/n/LBdhcvXvukgVAN6mXx4lVMnfo7ffr4qC1Ze/gwiOnT5zFkSB9mzBibaxt9fQmPHl2iceMOdOnSjxcv7qCnp/tesTEHhxJs2bKbP//8h9eqrj4+nRg6tC8//jia5s0b0bZtSwDu3LnPjz8q1ns9fx6OkZEhRkYGWFlZsHPnmgL5G3wpQcHP6eYzhMCH9/H+frhmoKQYoraEzbVybZYeCvmiPrKzs8mUZpCeloye/ptZBB1dPV6Ef9yEMS8v+LGxcZw9e4kHDwIRCARkZWUhEAiYPn0MAoGAI0dOkpiYxI4dq+ne/UcaN66HpBAZelepUpENG7YX64QNQCLRY+vWFbRq9T1WVhZ07543w/C+ff9H06adaNy4nnIdW1paep7jKEhJ/xenL2BY0hFDRzsSgoKxqeMJgF1DL450+kGTsKFYFyGXyylVqqS6Q/ki4uLi0dHRJGyqxtrakuvXb9GnTzd1h1KouHLlJk+fhnLnzmnlNrlcTnx8IpGRUURGRhMdHUNsbDw3btxh2LC8VzVoKBju3g2gW7eBvHjxkmHD+jF58ki1xVKrliJxel+y9jYnT+7C1NSFtm17cOzYNuX211oEu3atwcGhBMePn2bp0rXs2rUGW1tr0tMz2Lp1T659urlV4OyrAdD+/UfStm2LPK9bVxcpqWn06D2GU8eOYG1fmol/H8GuZDl1h6VBBRTp2hqBQIBYRxexTk5fEF09fSI/0XfsU1/w9+49Qpcu7fjjj5nKbd7e3bh48Rru7m5MmjSb9ev/plw5F1q1asr8+UuZNOnnz7+4fGbgwF707TsCuVxeJEZe7ty5j6/vWX76Ke8Lhk1NTdi+fTXe3t2UUv7vo0uXfkpbiBo13Fm7dhGrV//B1Km/Ex4egYWFOebmpnmu6U9NTS2w0crgXQcp3VGxuNi0nCvPDvvi1KopT/YeJiXsZYHEUNh5ra5Y1NcVxscnoquro/Lz3FmyhofrtyFAgGkFV+r/PYezQ8cR7X8XoUiEpUdlvBbOQKitrfJY1IGzsxMBAR+3mvnamDVrAdnZ2VSr1pSsLIWx92tem4eLRFpoa2uTmZlJ7dqqqzLQ8HmcOnWO33//m0uXrlOtWmV8fXdgaak+X8fXRu0HDmz85GOGDOnD4sWrlL/npkWwcOEyZswYq/Sx1NXVoWfPLvkYufqZNO1vli3+Gx09ffqOW0I1r1bqDkmDCinSCdv70NU3IjYm7pPb5/aCP2/eEpYtW6ts4+zs9E7y0KZNc3bs2M+JE2do1aop5cq5ADBmzFDq129Dt24dKF265BdfT37Qpk1zhEIhmzfvwsenk7rD+SABAYHUr98WJyf7PCVsr8siAOztbbl1S1HG+Lq88b+87wFRo4Y7Bw9uykPEOQkNfUF2djaVKql+lCtLKiXk8EmqT1aYhtZf/BsXx87gxtzFOLVsUmxfqPPK48dP3lkTURRJSEhET0+1M/cpL15yb/k6Ol06jEhPF98fhhG86wBlvmtDwxXzATjVdwQB67ZRoY+PSmNRF5Url2fDhp3qDqPQMXfuFC5fvo6ZmSkWFuZYW1tgbW2JRCLJ0U4ul2NhUY4SJazf05OGguTmzTssWrSSY8f8SE1No1KlcmzatOyDaxALijt3FKredet6fvIxvXp1ZfHiVWRnZ79Xi+DBg0CqVKmU7/EWBrbvOsHIn8eTmpJM8+8G4e0zokgMxGv4MoplwmZmWYIb1/zYvusE33XI/WUdPvyC/7YC5PsYMKBnrtsNDQ24efNkHqNWLUKhEA+Pyixfvq5QJ2zBwSHUrq0YJfL3z9u6scLCpUvX0NHRKZAb6PMTZ7CoUgGJlWKE1MS1NC13rQUgIegJocf8VB5DUSAk5HmxKCVMTExGX1/1pdbZMhmy9HSE2iJkqWlIbKywb/xGWdXSowopLz5edl5UqV27BosXr1Z3GIWOsmXLfJK35MyZCxGLxYVqLffXxpkzF5k8eQ4PHgSSmZmJvb0tgwf3Zvjwfu8k2OrE3/9eno8pVUoxixYVFZNnLYKizO17QXTvPpTQp4+pUrs5P/yyELFu4fm31KBaimVK3mvUH1Ss3pABfX+kes02PH4Spu6QCgW//jqBu3cDlHLL6iJLnkX9hW3osrofAEO3jcNrwbd4zm6Ox+imIILY2EdqjfFLuHHjDqamxgVyrsc7DijLIQHSomIAyJbLuTlvCeV+6FogcRR2nj0LQ09P9+MNCzkpKSkYGOir9Bz6JWxwG9qHLW4N2FSuDmIjwxzJmjwzk6Cte3B4jzVGccDLyxOZTEZ8fKK6QylyyGQylixZzeDBvTWKpmoiNPQFHTv2RiAQMG/eVF6+vMvt26cZN254oUrWABo0qA0oZmU/ldfvMFZWFkotghs37jB//lJlG4WA2N38DVZNxMUn0apNPxrUa4VcIGbaytMMmLhck6x9ZRSJu2mqNIENN8bwIvERAgF0r/Y7d1+e4nb4cQQCIYY65vTwmI+JnqL8QizWpf+EZYSHBvHPzAHU8GhEyzbtWLV8JrrFYJT9c3F3d6NaNTcGDPiFK1eOqi2OZWf/xdWqNEkZyQDMajOelLhUKlTwgpoweetIpVdfUeTBg0cF4vclS00jzO88XgtnKLc93rmf+ysVpZ4lWzfDtRDPphYkL19GYmBgoO4wvpiUlFQsLc1Veo6M+ARCDvnSxf8kOsZG+PYaRuDWvbh0Ufhknv9lKjZ1amBTp/iuT5JIJIjF2pw7d4nWrZupO5wiRa9eQ9HS0mLChJ/UHcpXiVwup1mz73BxcebUFyhv5xfh4RFcv36Le/ce8ujRY0JCnhMZGUVcXAKZmTKysxWJmqVleeDNmjaAuXMns3jxapYsmU2dOp5vbV+c4xy5aRGMGDGAKVPmsmXLCqytLcnIyGDt2i3vrYwqjGRlyRk5Zi7r1/6LvqEJg6etoVL1RuoOS4OaKBIJ27bb06hg3YD+tZYhk0uRytKwNXKlTUXFup2TQWs4FPAn3dx/zXGcrUMZJi/35cqp3WxePBEnpyNMnDKeoYO+3lmHVav+wN29CSdOnKZp0wYFfv6w+HCOBfgxsskg/j6jKDmSJksVyRrQq1/XIp2sAYSGPsfTs5rKzyOS6NE9OKdpaKWBvag0sJfKz13UePkyEhMTI3WH8cWkpqZhaKhaX70wvwsYOtmjZ6FIDEt+24zIKzdw6dKWG3MWkR4dS9P1f6s0hsKAqakJFy9e0yRsn0hsbDzNm3fm2bPnrF+/RLOmRk306/cziYlJXL58ROXnkslkBAQEcfPmHQICAgkKekJYWDhRUTEkJiaRkSElOzsbsVgbAwMDzM1NKVHChsqVK+DqWgorKwt0dHQZOXIyERFRHD++HV1dXXR0xHTq1JtRo6ZhampCmzY92LVrDfXr1yYzM5OjR0/x448/5Ijlv1oErVo1JSoqmnbtegLZgID//e/NAOaIEZMZP34WAHZ2thw7tl3lf6+8sOrfvUyeMA2pVEqbHqNo/t1AdYekQc0U+oQtLTOJoOjL9PRQLHYXCcWI/uNDJM1KBd7/ku/ZqD3VG7Rl69LJTJk4hc2bd3HhzLb3ti/OODk50LixF8OGTeD+/XMqP19ycs4SrvH7ZjHNezTJGSkAxMcn4OJSC+qDZTVzgqKeMOvb8SqPS5VERcVSuXIFdYeh4S1iYuIwM/uwYmhRID09HWNj1SaeBva2RF7zR5aahpaeLi9OX8TCvRIB67bx3PcsrfauQ/AVvIw7ONhx9+4DdYdR4OSmEBpx+TpXJs8hWy5HW1+f+kvmYPxqHRFAYGAw9eq1wcrKnNu3T2NtbanGK/h6kclk7Nt3hAULZmBkpLqBnaioaPr1G8mZMxcBhQKjsbERVlYWr94x6lGxYjmqVXOjdOmSH03evbw8KVnSgx49hijfS7p164if33kOHtxE//4j6dChF9u2raRjx94AzJw5Dni/FgGAj0+nXNfsL1ky972xrHglrKQu/P0f0a37j7wMC6VGw7Z0Hz73nXdeDV8nhT5hi055hoGOOeuu/8LzhPs4mrjRucpUdEQS9t6by+Vnu9DVNmREvS0f7EcoFPL94Jk06zSASb3rs3zVTgb06VhAV1E4kMvlzJ79F+fOXS6wOnYHh6rs3buO+vVrc+T+SSwMzKlqX4lzjy8jk2Xh7KyQvo/Yfg8tkRaj90xn962D+NQouqV8KSmpBTLDpio+ZEQK4OX1LWXLlmbVqj+Ux/z442jOn7+KkZEBGRlSOnZszZgxQwGQSqVMmTKXI0dOIhAIcHEpxbx505T9FQSKgYGib4Kcni5V+fpIq+pVcW7Tgt0N2yHU0sK8cgXK9ezCWrsqGDiUYF8zhfVJyW+bUW30UJXGok4qVizLyZOqH9QqTLxPIdR/wTK+2bgU07JluL9yI/7z/qbBWy+9q1dvxsBAgr//Kc3MmhqZNWshWloifHxU826TmprK0KHj2bPnMLa21uzcuZpGjby+uF9jYyOOHNlKixZdMDV14fLlI4wZM1T5DFm5ciExMXHKZO3evbOfVIkjk8nw97/L1as3uXMnQDkDGBcXD8DChTPp8qrUuzCQniGlZavOmFnZMevfC5ha2Ko7JA2FiEKfsMmzswiNv0uXKtNwNnNn262pHH24hDYVf6FtxdG0rTiaIw//xu/xv3xb4eO+Z+bWDtRt3oUpE6fTu0dbpQdXcWflyg1MmzYPqTSTIUP6FOj6gtGjp3Hp0hEuP73B4fu+bL+4D4G2gMS0JGgI4ZvvIn41gtShSiv+Or2yyCZsERFRyOVyqlQpGNNsVfJfI1KAhw+DkMvlXLx4jZSUVPT13yT+06ePpm3blqSnZ1CrVgu6dm2Hk5MDM2YsIDk5hWvXjqOlpcXGjTvw8RmIn9+eAnu5S0xMxsbGqkDOpUqkUmmBeMl5jBuOx7jhObb1iQ5Q+XkLEzVqVGXbtr3qDqPAyU0hVCAQkJmkWHMsTUxCYpNTrv/hwyCcnOw1yZqa2LRpF1On/k5MTCxjxgzN938HmUzGxIm/sWrVJgwN9VmyZO4nJzqBkcH03vDmXhISG8q45sPp6tGe3huG8ywuDEdTO9b87y/OnNlH/fptqFmzxXv7++23CZQo8WaNeHJyMpcv3+T69Vvcv/+Q4OAQXr6MJCEhEak0E6FQiESih4WFGY6OdrRs2YQqVSpy69Y9Bg0axf79R1i37u9C8dn9/n8/g0DIuEWHNYI9Gt6h0H8iTPRsMNGzxdnMHQB3u1Yce7gkR5saDm35+8IPn5SwAXT5cSZX/fbSZ+Ak1q36Ld9jLkwcPHiCESMmEhsbj49PR37/fYoyOcovTE1dKFnSgQsXDuVQ4tu0aSfVq1fh2jXFbI2HvDJ/zF+u2GkLuEHoen9eJL+klK4T2dnZHLl/ClfL0rmcpWhw4cJVxGJxkb/Z5mZECrBjx366dGnLo0ePOXzYl06dvn3n2IyMDEAh3JCamsbGjTvx9z+p9EHz8enEhg078fM7T+PGBaM0mJqahr29XYGcS5VkZsowNzdTdxhfBfXr1yEtLR2ZTFbk/z9/Km8rhIp0dbBr5IV943rU+3MWRzv3Q0tPB7GhAW3+s97n2bPnVKtWWU1Rf93UqdOKhw8f06ZNcxYunJnva3X//HMFc+YsAmDixBEMH94/T8e7WJXi7M/7AYVCdIUZXnhXasbCk8upX6YOIxoPYOHJ5Sw8tZxp3qOJiwvk+vVbLFmyhgMHjiGRSGjTpjnDh/fH27sbS5euZc2azURGxpCUlExWVhYikRaGhgZYWVni5GRP48ZeVK3qRu3a1d9bntu9+3e0a9eCLl36U758XQ4d2kTp0uqrwjjhdwU/32MMmf7vV3O/0ZA31D+k8BGMda0w1bPlZdJjAB5GnsfGyIXI5CfKNrfDj2Nj8Okv+SKRiK4/zuTA7l08CXmR7zEXFlJTU+ne/Uc8PCoTFHSFP/+cle/JGsDatX/x9GkoJUq4MWnSbOX2S5euK5M1U1MXuncfjIPDm5fmxo29kEj0GLRlNHXme1NnvjcvkyIZ9c3gfI+xoLh+3b/AJP1VxWsj0g0bluYwIgXYvfsQ7dt707Fja3buPJBj3+TJc6lX71sqVqxHhw6tsbQ0Jzg4BHt723fWU7i7V+LhwyCVX8trMjIycHIq+glbVpYMc/OiuxbP3r6K8udjx/zw8GhKaKjiHrx27RY8PZvj6dmcJk06cvHiNWXb1q19lFLez549x8OjKb6+ZwG4fv0WrVp9T40azfD0bM6wYeNJTU374lgdHEogFAq5cUO9NigFydsKod0enEeWmkbg1r3cWbqG5tv+odu9c7h268iliW8GOi9dus6TJ89o0qS+GiP/OHeWrGFH7ZbsrN2Kk31+QpaeQXZ2Nlf/z95Zh0W1dXH4JUVAUkoQO67dHdiFgajYfVXs7m682Ip97cACxU4UscXGQFFQJCSkc4bvDy6jKEPODPHN+zw81zmcvfeaucOZWWev9fstW8fxeu040bADr3bsz+sws423ty87dtizd+8miSZrR46cpmzZeixfvp4hQ/ri6/s028na79zyuktpfXPMdU256HmdfvWsAOhXz4oLr6+JzqtbtyZ79mwgMNCTT58es3HjCsqWLcWAAb3Q1dWhSpVKjB07jBMndvPly1O+f3+Lt/dj7t+/iKPjLhYvnkmPHp0y7aVs1qwR797dxcTEiIYNO7J796FcPb+cIhAIGTZ4LFXrtKRqXdmLwckpGBSINN6m5hL2PpqEQJhIcQ1zBtW155DHTAKjvFFEET110z8UIjOjUVtrLh3fQp++Y3l0z1lKkectW7b8i7p6UY4e3SnVdbp370Ro6HsmTJjDli172LJlDydP/sumTSsZP36EqLyhbNlSeHv7APDxzkORCMTl8Y5SjU+WvHnzIU25RkFEnBGph8cL9PVTykpMTY2ZMGEOP36Eo6OTkqCmlkRGRUXTo8dgHjxohbp60XR7DX6VbpYFSUlJlCtXWqZrSgOBQIjhfybpBZnfy20vXbrBvn3HuHjxKPr6ejx//poBA2y5fv1Umi9dfn7+WFsPZ9myObRp05ygoGCGDp3Inj0baNCgNsnJyZw9e4moqGjU1XNvMF6smCZ37tynQYPauZ6rIJCeQmjggyeEvnqLYb1aAJS16sKl3im9RB8/fqJbt0F07twmX/UC/Y643jySk4n286f3w8soKCqKfCwLEoqKCiQkJOZobGJiIm/ffsDT8x3v3n3k82dffH2/8vr1exISEujRoxObN6+UWM/76efnsa6d4hsaFBmMsVZKmbqxliHfozJ/7efPn8L8+VMkEksqmpqauLo6s2rVRmbNWsq5c1c5fnyXVG5ui2PY33OJT4hn1IIdMltTTsGjQCRsJXWqMqd12rv5oxvl/o09at4Olo1tzynn61j3aJPr+fIbR46coo2MzG0VFBTYsmU1K1bMo0aNlvTY4GoVAAAgAElEQVTqlfKB7ul5h2LFNIiMjBYla+/e3SsUin3p4ev7lVq1quV1GLki1Yi0R48hrF27jWnTbAE4deocXl7e1KhhAUBkZBRnz15m8OA+acZramrQtGlD7t9/zMiRA/ny5RuRkVEUK/bTB+3589d06ya+T0GSxMTEAKTZ3S2oJCcnY2hYsBX40iu33bhxF0uXzhKVe9asWZV+/azYvfsQ8+alfEELDPyOre0M5s2bQufOKdfr3bsP0a+flSihUlBQoHv3ThKLtUQJI9HO3v8D4hRCP525RPiHT2iXL4Ofqzs6FcsRERGJhYUV1atX5uBBh8wnz2PS6817smIDFrvWiVRPi0rZ41AaKCoqisrQfyUkJIyXLz158+Y9Hz58xtf3KwEBQYSEhBEREUlcXBwCgRAFBQWKFClCsWIaaGtr8eHDJ8zMTHBzOyfRHbuEpAQuvr7Bwk7TJTanJJkzZxLt21vQs+cwKlVqgovLIapVqyz1dR8+fs0559OMmLUFVVW1zAfI+b+lQCRs0qJEqYrUatyByRNn0aPrQ5SU8n2FaJb5/j0YH5+vHDki2zs22trF8PHx4NmzV7RqZUWVKs2oWLEckf+VtL56dbtQ7BCIIygomOrV/8rrMNLg7e1DUFAwjRrVzfKY341IBwywxtn5InfuuIh2EN3c7mNv7/BHwpaUlMSTJ88ZNWoQGhrq9Otnxfz5q1i3bilKSkocO+aEmlqRbMWTG7y9fVFQUCjwfQGpiWdB9pNLLbd1cTmUptz27VsvatZMe6Ojdu3qHD16WvTY1nYm8+ZNoUePnwnZmzfv6devp9TiLV3anM+fv0ht/vyGOIVQjRLGXBs8HgVFRVR1tGixZRXXr7sRFxfP5cv53yJHXG/ezZFT8T59Hp/zV1HT16Ox3QK0C8BOfFRUFI8ePePZs9ckJCSwceNOtm79l7CwH0RHx5CQkEByMigrK1G0aFG0tYtRvLg+JUua0qxZQ8qXL0uVKhWpWrVSmnJ1C4se6Ovr8ejRFdTUJJs8XHt7m5qmVTAslvL5b1isOAERQRhrGRIQEYSBZt4ny3Xr1uTdu7tYWw+nZcvuzJs3malTbaW2nkAgpG/fUZT7qx51W1hKbR05hYOC/Q1GAgybvp5pNjWZMXct6+xm5HU4EsPe3gE9PV2qVKmYJ+vXqlWNsDAvduzYz+zZywHYtGklpqaFW6Y2Kio6X0n6Hzx4gokT59KgQR0uX85e6envRqQlShilKfds0qQ+7959ICAgCEjpYbO3dyAxMZEWLZrQtWuH/45PY+FCO+rXb09cXDz6+rpcuXJCZgbp3t4+qKioyGQtaRIY+B0gX6iZ5RRx5bbpkZycnOY9YmHRhOPHnenfv6dEyh2zgpKSIkKhbMt385r0FEJLW7an9G8G4uYhYQiFwgJxI+TX3rwi2lpcHzoRL8czCBISUFIrQo+bTnxyuczt8XPoevFonsYaFxfHhw+f+fDhE76+X/Hy8sbb24dv3wIICQkjOjrmv9ddCQ0NDfT0dDE0LE7ZsqUoU6YUFSuWo1q1ylnyP/uV69fdePHCk0ePLks8WQM4+eycqBwSoGOV1hx97MSU1qM5+tiJTlXyR5WTmpoa588fYevWf1m40I6LF29w5sx+qVghTZ6xmsjwMObvuCHxueUUPvL/lVbKqKqp023wDPbvXs2c6X9jYCB9yWxZ4OR0ka5d22d+opQZPXoIo0YNRk+vImvXOjBoUO+8DklqhISEIhQKqVOnel6HAoCNzd9cueKKlVUX/v13Q+YD/kOcEWnnzm3TnKekpMTbt3eBjI1IixQpgp3dQuzsUpKOXr2G4+jozNChfbPzdHLMly9+qKkVkcla0uT799ACXwUgrty2UqXyPH/+ihYtGovOff78NZUqlRc9njjxb44fP8PQoRM4cmQ7ysrKVK5cgWfPXv3x3pQUAoGwwL/m0qJChbIIhUKEQmG+v4mQXm9e0EMPNEoYU6Zbyo2l0pbtuT1utsTXDg+P4NMnX7y8PvLp0xdCQ8Pw9w/k+/cQUXlidHQMcXHxJCUliW5UqKqqoKamho6ONiVKGNG0aQOqVq1E7drVqVWrmsSTqokT52Jh0VQqSokxCbG4ermz3nqZ6NiUVqMZdmgShx6dwEynBPsGbZL4urlh3LjhtGnTHEvLAVSs2ISTJ/dItCrkzdtPHN63n37jV6CuLj2TczmFh//7hA2gnfUobjjvoU//8dy8mjcqQZLk48dPfP8eLDKdlDYvHfby7uBxFFBAt0pFWmy1Q/m/L8h3Zy7l/ZFT9O7djRMnzsoknrzC3f0RqqoqMm1WTo+EhASMjFJ84HbssKdPn/wjBmBkZICbm4tM1/z61R9NTdkYxUuT799DRNYIBZnfy20HDerNxIl/s3jxP5w8uQc9PV1evvTkyJHTXLt2Ms3YlSvnMXLkFCZMmIuDgx1//z2INm2sad/egnr/iWI4Op7BwqJJpgpxWSEpKalQvObSILWUzs8vQOTTmB5mZjVFN4GuXHFlzpzlODsf4PDhk9jZbebJk2uULZvSy+jgsJd581Zy48ZpateuTo0aFmhqaoiS5iZN6mNnt5CxY2fi7HyRd+/uiXpjZ89exo4dB/jw4cEf1hfievNUimny7fY9Kg3sjb/7Q7TLi09WhEIh/v6B+Ph8wdfXDz+/APz9AwkK+k5ISBg/foQTERFFdHQ0sbHxJCYmIhAIgJ+74snJyZiYGKGjo4Weni5Vq1aiRAkjzMxKULq0OeXKlaZMGXOZ71oeO+ZEQEAQt29Lx3dQXbUo3ksepTmmp6HLmdEHpLKepKhcuQJv396lf/8xdO7cj0mT/mbRIslUYllZj8C0TGWad+ovkfnkFH7kCdt/jJi9lbUzeuHq9gSL5rLprZEWdnZbMDU1wcTEKPOTc4k49a2K/a35/vQlCeERACxaNJ0TJ84SHBxC8eJ5X6suDTw8nqOtLVtJf4FQQKuNVphoG+E4fBeDd4/D5fEVsIIKFcvyV9MKMo0nPxIQEEixYgX/DmZISEiBKD/LCr+X23bu3BZ//wA6dLBBQUEBTU0Nduyw/8PsXEFBgW3b1tC37ygWLrRj2bLZ7NmzgQUL7AgODkFRUYHGjetLrLpAvsOWMcrKSnz44J1hwpbK78qgAFWqVOL06XNMn55i5XLmzCUqVy6fZpyLy8F0vQfLlCnFhQvXsbHpjlAoxM3tASVKpP+Z93tvnk7VSig0qkewlzcv7B24sdieBOB5hTJsaduL8PAI/P0DiYmJ/UPRVklJSbT7paGhjpaWJrq6OpQvXwYDg+KYmBhhampMqVIlKV26JEZGBigqKvLw4VM6drTh+fOb+e7veP781TRr1kDu8ZgOysrKHD++mwMHHJk6dRFXrtzi/PkjueolnrdoM98Dv7Hq4EMJRiqnsJO/rhp5SPmq9ahUoxEjhk/io9edvA4nV1y6dIORIwfKbL301LeEAgEPF9rRatc6Pp+/KupdW7FiA+vXL8tkxoKJp+d7sV8YpMV2t/1UNCxHZHwUp0+fx8XlCviC/71XhaIMUBIEB4eip1fwS51DQn7k+e6tOHx9v6Knp4umpkaG54krtwUYMWIAI0YMSHfcuXOHRf9WVVXl9Ol9oscNGtTmopT6jgSCJBQV5Tts4lBVVc2SKEt6yqAAXbq05cKF60yfPo7Pn33R0iqGikrWvpakeEG60KxZA86du4qBgT5+fv4sXbqWiIgoQkJCCQsLJyIigujoGGJj40hISCApSQBvvVA4fR5lZWVUVVVRV1dDU1MDrdg4goND8fPzF7tu69bNOH58d5Zi/JUGDWqjoqKMs/NFevXqmu3x0qR9ewuOHXOiadMuHDiwJU8NpPMrgwfbYGHRjI4dbfjrryYcOrQtRyrcPr7+bN+yle5DZ6KlU3gF2ORIHnnC9gsj525nVv86rFizm3kzR+Z1ONlGKBTSvn0fEhISmDw5dwaXWUWc+tar7fsw79QG9V/ukBsY6LNv37FCm7D5+HyhatWcywBfuHCdTp1aZ1mMw++HP1feujKtjS1jts7gyj5XjG0MWb1svjxZ+4XQ0LBC4cEWFvaDIkXyZ8JWs2Yr1q1byrBh/fI6FImSlR229ErClYqo8nj5ej6duYiCkiJ/De9PtdFDZBS1bJg3byVxcfHUry/eo04oFBIfH0/fvqNYvnw2L154cvPmHUJCwrh27TbJyckEBATRsaMN/v6BgALBwSEMGmQLKOLvH0jFio2BZJKTEV0bhUKhaI1q1VIMu1VUVEhKSuLyZVd0dLTQ0dHC3NwUA4MaGBkZYGpqTMmSppQuXZKSJU3T3eVq164Xfn7+DBliw7p1S//ozfvnny2sXLkRXd0KhIV5Zfs1q1ixHMeOOeW7hM3BwY5p08YwePB46tfvgKVlO7Zv/0cqQhsFGXNzU169us3ff0+ld+8RDB3al3XrlmZrju5WIyhuYk77XmOkFKWcwoo8YfsFTS0dLLoNY8uGLQUuYUtKSqJ58274+n7F3f1cGqleaZKu+tYxJz45X6LLubT9gHZ2Cxk+fNIf6m+FhaCgYGxscp6wDRiQcgF/+fI2ZmaZq2nOPbuChR2n0bZTL6gOa9cu4bH6M5ZfWs+aq1tpWaExizpPp4jy/3fyFh4eiZGRYeYn5nPCwyOkot72O15B3gw/9FMl0Cf0C3M6TKJvXSuGH5qEb5gf5rqm7B24CR11be7ffwJA375WUo9N1ggEggx72AqzIXNGrFixHgeHvRgaFmfYsInExsYRFxdHfHwCiYmJJCUJEAqFonLCyMgoJk9eQJEiqqioqFCkiCrx8Qmi0kIfn69ERUVTv34toqNjqF69KqVKmXH0qBNjxgzBxMQYLS1NdHS00dHRYsOGHXTq1IbAwO84OV3gzZv3BAS8olat1ty8eTpHpX0zZy7l8ePnHD++m3btWqZ7zowZ4+nSpT1Nm3ahdeue3LhxOsMePQ0NdSZM+PldwtfXDx+fr0CKkvOpUy4oKiqhqKjA+vXLuHbtNvHxCSxa9NOr7OVLT0aOnMKDB5ez/ZyyQ7lyZXB3P8+5c1eYMGEupUvXo379WvTta4WNTfd8u7svaxQVFdmzZwOWlu0ZPXo6t265c+mSIwYGGe+W3bn3nOUrNuP7+SPL9tyWUbRyChPy4vzfqN20EwnxcXkdRraIi4ujXr12fPsWwMOHl2VazvCr+paiigqlu7bnyapNRHzy4XidthyrYUFSTCzH67QR+Se5uEj3gyeviIyMFhn45oTPnz0AqF69BUeOnMrw3EueNyiqUJS2tXoBKc34w4f3Z2Hn6TyccZkbk04RFhPOxps7cxxPYSE6OhpTU+PMT8znREREoq4u/YStgmFZ3Ka64DbVBdfJzhRVKUqXau1Zf2MHLco34cmsa7Qo34T1N1M8HkePTvlyWbRo4TN9FQhS5NMzIrUkXJiUJCoJf/PvUWrPHF+gDZkz4tQpF7S1tahduzp16tSgS5e2jBw5kIULp7Ft2z+cObOfBw8u4ePjgYaGOn5+L6hXrxbTp4/D1/cpXl4PGDt2GJMmjeLRoysoKyvTqlVTTp/eR+XK5Zk5czyrVy9AW1uLUaMGMXSoDT17dqF162bUqVMDTU0N1NWLYm3dFV/fryQmJvHli1+On49AIGDXroMMHtxHbLKWSpUqFdm8eSVPn74kLOyH6Hhqj97Jk3vE9vRpamoQGRnFlSs3uXLlJq6uzri7n8PZeT+mpiZYW1vi5HT+t9f6vEx35Cwt2/Px40OWL59DXFwc06cvxsSkOnfvyvutfsXKqjMvX94iOTlll9fZ+eIf59x2f0pXqzGYlKhF18698f7kw/AZG9E3KpkHEcsp6Mh32H5DW88AoVCQ12FkmaSkJGrVak1SkgAPj2sybxpOT32r+rhhVB01WHTOPrOa9PG4Lno8a9YyunXrKNM4pU1YWDgCgUCkVJcTtLWLERbmxYABtowbN5sdOw7g6uqc7m7ksZtOnHl9CWzAwFifp4EvGXVkGjv7rwWgiHIRBtS3ZvOt7PdaFDZiY+MxNzfN6zByTURElMz8x1K55XWX0vrmmOuactHzOi5jUnbN+9Wzouv2gSzpMhNf368y7ZmVJQKBIMMetsJmyJwVdu8+hI+PH/b2i7NcApueMmgqRYuqsXjxDMpnoNAojpIlS7Bw4XTs7DazdOnabI9Pxc5uM0CWy/UHDuzNhAlzGTIkRYlZXI/e7ygpKaGpqcGxY87o6elSpEhK9cOvn9va2lo8fvxM9Fni7HyBU6f25uh55RRFRUVGjRrEqFGDAOjZcxgDB47jw4cH+d7CQZYYGRng4XGdKVPmM3z4JM6du0L/gf1Zt2EXjx88ID4+FsMSpWnXawytuw9HTV0zr0OWU4CRJ2y/UUw75U6orNXBctoH8fLlG4KCgvH19UBTU/YXg9/Vt/RrVKHyEBux5w8a1JuDB0/IMELZcP/+Y1RUVCRSsnb48DYuXrxO//5j0NOryJs37mnU8mbOXMqZXZeoVasaN286cefjAzbf2s3O/msJiAjCWMuQ5ORkzr+6yl/GeWOcnp9ITEzM8EtUQSEqKjpTUQ9Jc/r5eZHZbVBkMMZaKe9DYy1DvkeF8OzZKyDFHL0wIhRm/DlQkAyZc8vDh08ZNmwigYFBDB3alyEZXOfT43dl0F+xtrYUMwq6dh0k+n9QtWpltm//J83vhw3rx/Pnr7l27XaOkwlHxxQ5++yM19XVwc3tPsrKygwYYIuLyyEqViyX5pxt2/Zx/PhPqfyAgCAaNKjDu3cfUVRUoF69drRs2YSePTvTtGlDIOW1OH36PPXq1eLRo6fo6enmeQ/uoUNbKVeuIRMnzmXLltV5Gkt+ZP365XTq1BYbm1GcOnUOI7OydLQZT+vuw1BVk/cBypEM8oTtN1LvgIRHRKGnm3PZ1uyQmz4IfX09kpOT8yRZS6XunEnUnTNJ7O+H/qIMN3/+VA4ePIG/f6BMbAdkxePHz9HWllzfYKdObfj48SHlyjXgr7+asnPnWqytLSlTph4REZEsWTKTiRP//mPcqCPTCI4OJTk5meol/mKddfYaogsbqca+ef2FRxJER0djaCi70rqEpAQuvr7Bwk7TxZ5ja5viSZTqhVXYEAozLonMS0NmWTNs2ESKFdPk9u0zYis5vLy8qVChbJpj4pRBxZmd/6oI+uKFa7rnODisSfM4MTGRIkVUePLkerrnZ4av79c/LCQyo0WLRpw5cwkVFWUaNKjNoUMnWL16QZpzbG2Hpulhq1HDAiurTsydu4Jv315y795j3NzuM3z4ZBYtmk7//tb07GlJhw59WL58DqdPn88wmZUV6urqbN26ipEjpzJq1GBq1KiS1yHlOxx2nUBJWZmle26jZ5C5zYUcOdlFvredLgr4BwTLdMWc9kEUL55yp/JX1az8jKFhSmPurVt38zgSyfLmzftsf+Bnhp6eLmFhXrRs2YRRo6ahr1+JiIhIrl49kSZZa1auIY7DdwFwdsxB7k47z73pF9jZfy2aRWS7I5Pf8PMLAJCZCI80iY2NlenzuPb2NjVNq2BYLOVv1rBYcQIiggAIiAjCQFOft28/MGCAtcxikjWZGWf/WhKenJzMt1v30KlUjlKd2/Lt9j2ATA2ZCw7JtGrVTGyy9v17CA0adMiTz6KoqGjU1HJeLmxgoE9AQFC2xjx69AxI2ZXbu3cTHh4vWbt2W6bjunRpR2JiEk+fvqRZs4bMmTOJNWsWcvZsSm+3mZkJ5uZmuLs/5OzZy6Le77ymZ09L6tevjY3N3wXm+4asWLjMgdvXrzF51RF5siZHasgTtnRQVFQkIFB2ql6/9kEcqdwEVa1imLVuTsQnX7xPn8e5lRWXeo0g/OPnP8amyu5GRETJLN7cEhj4GhubHpmeZ2ZWU/TvK1dcqVu3LV++fGP16k1UqdKM5s270rhxZy5cSLmrunr1JjZvTtuzVaOGBSEhoXz96k/Nmq1ETeI/foRTs2YrfH1z3qj+K58++VK2rHTK7pyd97Nv3yYUFRX5/PlJrvrk/t/w9v6cqWhEQSE2Nh4dHdkZs598dk5UDgnQsUprjj52AuDoYycaGtcBYPnyOTKLSdak7LCJL0T5tST8dJMuJAuFVB5iQ80po/l89jKnmnTh8VJ7mm9cIcOoc45XkDfN13UV/ZjPr8U2t70sOLeaoBYhOCY6MXDfWMJjI/4Ya/DfDUU3t/uyDpvIyOhcid5YWXXO9phv3wKoXv0v4GeP3smTZzMt+VdRUcbQsDgbN+4SHVu3bnsag25ra0vmzl1BmTLmIg/T/ICj4y5CQ8NYuFBeFpnK6bM32LJ+A31sl1C+aoO8DkdOIUaesKWDopISQd/DZLber30Q/d+4kxQT+0cfRKUhfbg9XvwXo8TEBJnFm1tUVVWzJeufnvqWre1Q3Nxc2LdvExMmzMn0jp+ZmQnDh/djyRJ7ABYv/ochQ2wkJkYRGBiUKw+2zOjevRMhIe/Q1pZNmW5hwcfnS6GRo46PT5BZwhaTEIurlzuW1TqIjk1pNRpXL3fq2rXF1cudl4feAMg0iZQ1Kb3MGSf8dedMovfDy1jfu4DFDnuUihShiLYWHY7vxvruebpdOYH+f1/s8zviFEJbVWhK0YtqjNQbSDmD0qy7sV3sHPv3H5dhxClER8egqZnzXqFFi1JKe+3tt2bp/KtXbwFw6JCD6Fhqj569vQMXLlzLcHzt2tW5cuUmjRp1pGlTS1688KRq1cq8dNjLycadKLbzALVev8Oqa3vRmLszl7Lvl5uYeYGOjharVy9g27b9eHq+z9NY8gNv3n5i1PBxNG7XGwvLwZkPkCMnF8h72NJBSVmZkJBQma33/9QHkV0yU9+qVKk8yspKhIRknmCPHTsMCwsrtm3by4MHT1izZqHE4oyIiMqVpL8c6eDr+03myorSIiEhAV1d2SRH6qpF8V7yKM0xPQ1dzow+IHqsO7tCjnYmChIpoiOFY4c2u/yqEBrgFURURDTjx4/gts89zry8lO4YRUVFnJzO8++/G2Qaa2xsLAYGOVdIVlcvSps2zVmxYgOdO7ejShXxYk3fv4fQp89INDTUMTc3y1aPXmpP3rRptly+fJPbt8/y7VsAtWu3YUw/K270GiHqZS8+bCIl/+sN/f70JQnhf+5q5gXDhvXD0dGZrl0H8O7dvQx3oAszUVExtG3XC7OyVRg0+Z/MB8iRk0vkO2zpoKysSnAWEgBJIYk+iKioaFmFKzPi4xMYMMCWQ4e2/aG+lcrjx89QVFSkePGUD+tt2/bRvHlX0c+vfQkqKiosXTqLuXNXsnLlPIntvERERCIQCOQJWz4kICCw0AhiJCYmoqqqktdhAODt7QPwh8hCYSOzkkhpklFJuLjSbwA/P3/69x9D3bptqV27NbNnLyMhIYHr191E10Uzs5rUr9+e5s27MmbMjHTX/1UhdPXqTVSoUBYtrWIcenSStpXS9yobPLiPJJ56tomNjcu1guqJE3sAaNq0i1gfzGvXblOxYiMAPn9+kqN1li9fR7t2vVFSUuL06fPY2W0BQENDPd1edqFAwMOFdjRYMjNH60kDZ+f9JCQk0q/f6LwOJU8QCIQ0aWGNkrIK0//J2DNVjhxJ8f95ayQTlJRVuHb5KqVK6FCmjDlly5bC1NREandaxUnjJ8XF4/r3VF457ENFU11sH0Tp0iWxsRnFw4eFy5A6I/WtVLlkTU1N9uzZICqxTE+V61euXbuFsbEhb9540apVM4nE+fChB8rKyqJ+Qjn5h8DA74WmjLRx4/pMnryAe/ces3nzqjy9sz1x4lzgp4hQYSUzWX9ZkFoSfvr0XrGGzKkkJyczePB4hg/vx5Ej2xEIBEyePJ9ly9axbNls2rRpDoCl5QCWLZtN7drV053nV4VQoVCIu/sDVqyYi/11B5QVlelTp1u644YMsWHfvmMkJydnq+w9t8TFxVOsmHhBHq8gb4Yf+qlk7BP6hTkdJtG3rhXDD03CN8wPc11TvL8+wqrLUMaNm824cbPR19elRYvGPHr0jK9fvwEpidXnz09y/Pc3ZswQHBz2Ehsbh61tShKmp6cr1tPv1fZ9mHdqg7qERa1yg5qaGqdO7aVjRxuWL1/P/PlT8jokmdK73yT8v/qydM9tlAtJyb2c/I98hy0dimpo8frlS6ZOXYiV1VBq1myFoWEVKlVqTPv2vZkwYQ5bt/7LhQvXefPGi9jYuFyvmZs+iHPnDvPpky/z5q3MdRz5iYzUt1J72C5ePEqTJvWzNN/Ll564urpz5coJHBz2ZlsVTByPHj0rFCqEhZHQ0LA/PJ8KKk5O+9i9ex0uLlcpXbouJ0+65Fks7u4P6dChVZ6tLyvycocNfpaEOzruypKX4O3b9yhSRJUBA3oBKUbNK1bM5fDhU8TExGZ53V8VQk+dOodQKKRozaJc8bzJzv5rxSZjtWpVA+DBA48sryUJ4uPjM7wGi+vNW39jBy3KN+HJrGu0KN+EDa47cXV15uPHhzRr1pCQkDCcnC7w9es3qlf/i2fPbvD16/NcvSeKF9fn27eXjBw5QHQsNDSMbx8//dnLfsyJT86XqPqfgXV+okGD2qxevYCNG3dQvXpLXr16m9chyYQlK7bjeu0y45cdRLd4/hGEkVP4ke+wpUPNxu3xe/+Q8qUN8PL6hJ/fN8LDIwkKCiYoKFgk5/sr2trFMDUtQfnyZahatRJly5aiTBlzypQxR1dXR6p3G01NTdi4cQXjx8+ma9cONGpUV2pryZpU9a3OnfthaFicQYN652ie5ORkpk1bxMqV8yhZsgQTJ45kwYLV7Nq1Ltcxenq+w9jYINfzyJE8P36EU7lyhTTH0jOpd5swh+Bnr1BUVsagbg2arV+Gokr+KD/8lZ49LenWrSMTJ85j1Khp7Nx5kJMn94i+rAqFQtzc7uPsfJH586eIlWDPKjExsbTtNlEAACAASURBVJia1hA9NjU1QU9PB4C1a5fkau6CgECQdwlbakl4Vg2ZAd6+9RIlTaloaRXDzMwEb28fqlXLmjBSqkJoYOB3FixYTflWZdnsuotztodRV828J/TAAUeZfg5lp7/z1968i57XcRlzCIB+9azoun0gS7rMRE9PFxeXQ9IMmZkzx7N792E2b17JhAlz6VevPU30dWlbTBNFFRVKd23Pk1WbEMTFcbxOSj9cUkwsx+u0oY9HzvzmJM2oUYOwtu5C376jadGiGz17dmH79n9k9jfzw8ubG8N/7pxG+nyh7pxJmDRrhPu0hSRGxaBpbkqrnWtRldBN1S0bN2M5cCqVajSSyHxy5GQVecKWDqUqVOdHwEf27dssOhYTE4uPz1c+ffLl0ycf3r37wNu3Xvj4+BEcHEJ4eCTh4e/w9HzH2bNpG7KLFCmCnp4ORkYGmJmVoHTpkpQsaUqJEkYYGxtiYmKEoWFxVHLxBbFDBwuUlBS5e/fhHx+UZmY1RY3RV664MmfOcpydD3D48Ek2bdrF8+euIklmM7OafPnyjE6d+jFtmi3t2qX0Kjg5XeDw4ZOcPPlvmvlkQar6Vpcu/XO8W7J/vyNmZiVEZZAjRgzgyJHTuLs/oGnThrmKz9vbhzJlzHM1hxzpEBkZjbHxT4N2cSb15Xt3w2LnWgBujpzC2wPHqTJigLhp8xRlZWUcHOwYO3YYvXoNp0KFRlhatuPp05f4+n4lOTllZ8Xb+zNnzhzM1VpFiqjSr58VT548x9vbFz8/f/z8/AHyldy4tEhOzruELbuGzIDYUsTslCimKoTWialB1U7NKVmyBNE1YhDEC7DaORSAeqVqsd56mdg5jh51+sPcWpokJiZlOWH7tTcvKDIYY62UUkNjLUO+R8nOzsfAoDja2lr4+voRFubF7oV2BGzeTUnjatgMsMZaIKD6uGFUHfVTfXCfWc18k6yloq+vx9WrJzh79jJjx86idOl6ODjY0a1bh8wH5xKdCmXp6ZZSaSAUCDhapRmlurTn+tAJNFw2C5OmDXl36AQvNu+m3rzcl20GBoWSlJhA6+7Dcz2XHDnZRZ6wpYOhaVm++n5Kc0xdvSh//VWBv/6q8Mf5AoEAPz///5I5X7y8vHnz5j3e3r4EBAQSHx+Pv38g/v6BPHv2Suy6xYppoq+vR4kSRpQsaUrZsuaYmBhjYpKS2JUoYSR2t65z536Ympowdaqt2PnT64XQ09Nly5Y9LPmloVlBQYF165YybNgEmjdvhEAgYPnydZw8uSfT106SZEd9C2D27Il/HEtV5Ro6tC9Dh/YVHVdSUsLV1VkicQYEfKdLl/aZnyhH5sTExFKyZFrrhtTGfkUVZVFjv1nr5qLfG9StSfS3QFmHmm2qVauMp+cdZs5cypUrrjRoUJt//llMq1ZNuXv3Id26Debduw9UqlQ+x2soKSn98cVbV7cCzZv/f9xdTkoSoKaWNz0qqSXhPXoMYe3abUybJv7ankrlyhVEBsypRERE4ucXkOWbSuqqRZlpMo65s1cydapttvuT+vWz4uhRp2yNyS1JSUno6Ohket6vvXn5gbp1a3LhwjXmzp3MyKWzeKJWBN2dBwk7fApHoEaVilTN6yCzSLduHejcuQ22tjMZOnQCzZs3zPUNo+zw7dZdipU2p5i5KeEfvDFukuKJZmrRjEu9hkkkYXN2uYmKqhpq6oVDyEpOwUKesKWDoUlpvvv7kpgkQCULprtKSkqYm5thbm5Gy5ZN0vwuOTmZHz/C+fYtkICAIPz9A/j2LZDPn33x8flKQEAQwcEhREREERmZ8vP5sy/wSOxaOjraGBjoUadODbZsWc38+avw9vYVJSfpIU4ef+DAXhw5cprJk0ehq/vzA69KlYp06NCajRt3Eh0dQ9++PbLUQ/H/SEREJA0ayM2s8yPx8fGUKvUzYRPX2J+KMDGRD47ONF41Py/CzTaKiorY2y/+43izZo2oUqUiI0dOwc1Ncr1ugYHfAdi0qWAYQecWgUCImlrODZlzS3ZLwlu2bMKSJfYcO+ZE375WCAQCFixYTf/+PbNsb7Fz50Hmzl3J4sUzmDjx72zHPGhQH5knbAKBIEvVF7/25gEYFitOQEQQxlqGBEQEYaCpL+1Q09C3bw/G/WLXU3fuZOrOnUxCQgJWVkM5tnANcxeu4ejRHXTs2JqhMqxsyQnKysrs2rWOSZNG0apVjyzfaJAE3qfPU846ZedUt3JFfC9ep1Tntnw6c5FovwCJrHHr1j10ihtLZC45crKLPGFLB1W1omhq6+Pl/Y0qFUvmai4FBQV0dXXQ1dWhatVKYs9LSkoiMPD7f0ldIP7+QXz96sfnz1/48uUbgYHfCQ0NIy4unpCQUEJCQnn79gPHjjmTnJyMg4MdJiZG6c6dUS+EhoY6Awdas337fubMmZTmd7NmTcDCogcqKircvHlabOw1VlqgWUQDJQVFlJWUuTnJidVXNnHgwXH0NVI+RBd0mkb7vyyy+KoVHGJiYkhKSqJBgzp5HYqcdEhKElCu3E87jF9N6otoa3F96ES8HM9QwaY7AO7TF2PcpD7GWRSyyc/s3r2eJk26cOfOfZo1k8yO2KxZSwEoXfr/owRYIBDkufF6dkrCFRQUOHjQgenTF/HPP1sRCoW0a2fBggVTs7SWk9MFZs9exqJF03OUrAGikvxnz1790U8nLYTC5CwlbKm9eal0rNKao4+dmNJ6NEcfO9GpShtphvkHVladGT16OvfvP0nTyqCqqsr580cIC/tB7dptRPL5bm4uWe5DzEuqVavMzJkTWL16I0OH2uS6lzYzBAkJ+Fy8Qb2FKTunLbas4t7sZXis2UKpTm0k1o/s6fmGEqXEe/TJkSNN5AmbGIxNy/D6zedcJ2yp/PgRTpky9QgK8ky3V01ZWRlTU5NM+0JCQ8OoX78DoaFh2NoOpXXrZkRERNKzp6XYMRn1QgCMHj2E5s27MW5c2rpsDQ11rKw6o6GhTpEiRTKMy2XMQfQ10l6UbZsPZYLFSDEjCgePHj1DSUlJrhKZD4mIiARSymlTEWdSX8GmOx52m4kLDqXtwa15Eq+kqVy5Ah07tqZr10EYGBTHwqIJtrZDxUq5Z4XmzRtRr97/z26yUCikaNGMr325ISkpiYSExHR3v3JiyJx67rFjOzNc99y5w+keX7LkHzp0sGDSpFFZCT9dUkv29+93lFnClpycjIFBxhYTqb15v/beTWk1mmGHJnHo0QnMdEqwb9AmaYeaBmVlZczMTNi//1i6Ii26ujp8/vyEDx8+iXzzAN6+vYuRUfaFrsT1s6e2SDRr1pVKlcqxZ0+K8fn06Yt58OAJiYmJ+Ph8pfx/XrDTp4/l8uWbdOjQiu7dO6W71owZ4zhx4ixVqjRnxYo5jBw5MNvxZpWv125TvGYV1P+zGdGpWI5Op/cBEP7hE1+uuEpkncBvftRvbSORueTIyS5yWX8xGJqW4d37zxKbL9ULasSIydkeGxUVzZ49h2nfvg8LF9oRGhqGmZkJCxdOp23blhkma5CxPH5qbL16dWXPniPpjlVUlL9NxPHw4VO0tOT17PmRT598/3j/ijOpf3vgOF+vu9Fq93oUCtH7/ciR7Xh4XKNbtw7cv/+YNm2sKVGiOp0792PnzoNERUVla74RIwYwfvwIKUWb/xAIBJnerMoNa9duS6PCmZd8+fINH5+vLF4sGYPmAweOS2SezIiJiQHI9DqsrloU7yWP0C768+aanoYuZ0Yf4Mmsa5wZfQBd9cz74CRNy5ZNuH37fobnlC9fhrAwL86eTekJq1y5CUlJSTleM7Wf/eTJPaJk7d27DwiFQu7de0x0dMpram+/GDc3F44f303p0ua4ubng5uYiNkn7nfv3L/L33wOYNWsZDRp04NMnnxzHnBEfT54TlUMCxH5PEY9JFgp5au9A5WF9xQ3NMomJScTFRlOjkfTFVOTISQ/5DpsYDEzL4vXhs8TmU1BQYNSoQezceRCBQCDWhFsoFHLzpjs7dx7gSjp3hR4/fgrAxImjUFPL+heJzHohxo0bRuvW1jn6EFBAgZ67hqGAAkMb9WVoo5SL4667hzj2xJnaJaux3HIOOupZU/EqSLx69QZDQ7mkf37E29sHFZW0lzhxJvX7TGuiWbIEZ9un/F2U7tqeOjMn5EXYEqdMmVL/9bktJi4ujv37HTlx4iyLF69h1qyl6OnpUKtWdSwt26GpqUF0dCyxsTHExMQRHR1DbGwccXFxGBsbMmtW4XhNskrKDpv4HjZxhsyh0T+48Po6igoKGGjqs9XGDhPtP0vWra0tWb16EyEhoVIvG8uMFSvWYWxsmCuRmlSsrDrj5HRBAlFlTnBwGECBvbE4fHh/Dh8+RUJCQqblt82bNyIszIvg4JAcq5eK62c/edIFG5vuvH//kYsXr9OrV9cczf8rioqKLF8+l9Gjh9K379/Uq9eeiRNHsmjRjFzPnUpSTCx+ru40W/9z5/TjKRc8d6fsIpe2bE/F/3wJc0PfgVNRVlHFwEQyVVdy5GQXecImBiPTMrg9vSnROVevXsDOnQcZO3YWO3bYA+Dl5c3u3YfYufNPNSU9PV1GjRrE0KF9MTIyIDw8kqZNO+PnF8DMmUt4/PgZq1fPTyMWkhEZ9ULo6+thadkOB4e9mc4TExNL1arNRI8HjurNnEmT+B4VgtXOoVQwLMvwxv2Z0XYcCiiw4vIG5p9bxZY+q7MUZ0HC29uHsmXlYiz5kS9f/NIVjKg7ZxJ1f+vXHBH8/2H6qqamxujRQxg9eggAPj5f2LfvGNeu3WbevJUkJyejpKSEkpISyspKKCkpo6KihLKyMl++fKNSpfL06JG1u+uFAaEwY9GRVENmAIFQQJVlzehSrT06RbWY1zFFlW7Hnf2subYlXRn81BKzefNWsX37P1J4Blnn3LlrjB07VCJzDR7cR2YJ2/fvwQU2WQOoXbs6KioqODqeybLPaPHiORNHyaif3cnpAqdP7+PDB2927TokkYQtlZIlS+Dufp59+xyZOnUBlpbtqVu3pkTmVlYvyiDvtCJt1cYMpdqYoRKZH6BL91Hcd7/N5JV/ViHJkSMr5AmbGAxNy/LtN2n/3JLaU3P8+Jk0pqep9Otnxd9/DxLbY6KtXYxHj66yatVGtm79l+PHz3DhwjXWrFlI375WYn12stoLsWLFXFasmJvmWHpS+aGh79Ndx0BTH8tq7fDwfUHTsg1Ex4c07IPNvznvicjPBAQE0b59q7wOQ046+Pn5o6mpkddh5GtKlSrJokUzsnTHu1u3gaxateH/LGFLznIlw6+GzL8SnRCLAuI90CpXroCjo3OeJmzHjjkRFxfL1KljJDJfixaNAfD0fE+VKtIVaQgL+4GSUsFN2ACqVq3EsWNOWU7Ycoq4fnYPjxfo6+thbm6KqakxEybM4cePcHR0JFsVM3SoDY6OTgwfPonnz10lOrc0EAiEtOs0hBdPnzBjrROlK0omyZQjJycU7KucFNE3MuNHaBCRUXG5mic+Ph59/Uro6lagdOmfTcWNG9dj795NBAV5EhbmRViYFw4OazIVBChaVI2lS2dx9+55atWqRlRUNGPHzqJNG2vev/+Yq1hzQnRCDJFxUaJ/33h/h7+MKxIQESQ659yrq/xlXDiVlcLDI6lXT34Rz48EBn6XeX+hmdnP98KVK67UrduWL1++sXr1JjZv3v3H+fr6lWjevCvNmnWlZcvuPHjgAYCv71dMTKqJfte+fR+8vLxl9jzSY/nyubx/782XL9/SHI+Li2PPniP8+BGRR5FJj+RkYZbl8H81ZAZYdnEdVZc354THWeZ2mCR23LZtKT53UVHRuQs2FyxZYk+nTm0kZmGQuuN18KD0+9hCQn6gpFSw7z337WuFh8cLqa8jrp/91KlzeHl5U6OGBbVrtyEyMuoPPz9JsW/fZr5+9efAAUepzC8pzMxq0syiDy+fedB71EL+XTOR0CA/AO5fP8VS23YsHdOWJaPbcPXUDgD2r5uGx53zaeaZ3PMvIGW33nH7IpbatmOZbXtWT+pKcICvbJ+UnAKNPGETg5KSMsWNzPB8/yVX8ygqKtK7dzcWLZrOx48PRcnZhQtH6dGjk0gxssZKC5qs7ULzdV1ptdEKgAXnVtNgTQearrVk4L6xhMf+/EJUqVJ5btw4zdatdmhoqPP06UsaN+7MokVriI3NXZKZHb5HBtPJoR/N1nWl7SZr2v9lQdvKLVh0fg1N1nah6VpL3D7eZ2W3uZlPVsCIi4sjMTGRxo0LvgR8YeT79xD09DKX+pYG6TX1p0fRomq4ublw544LCxdOZ+lSe9HvUpv879xxoV8/K9at2y6L0MVSo0YVTE1NmDcvxYPt9OlzWFj0wNS0BrNnL6NSpcYyK4OTFSk7bJknMamGzD1q/Nx9XNBpKq/nu9G7Tjd2uR8SOzZVSXH58nW5DzgHXLp0g8DA76xbt1RicyYkJABw8OAJic0pjh8/fvzRq1rQGDy4N/HxCTx8+FTqa6X2s588eZaDB08gFApxdr7InTsuvHjhyosXrhw+vJ1Tp85JZX0jIwMGDerNnDkrciWcIk0SE5OIiYnF2+s9/Ses4trpXUxYdgA9Q1NePbrJDec9TFx+iIXbrzF383mKamhlOueT2y6EhwQyf+tlFmy7wugFOymqUfj6+uVID3nClgFGZmXxfJu7skgVFRW2b/+HyZNHZ/rl0WXMQdymunBzUorpaKsKTbk77Tzu085RzqA0626k/cKmoKBA//49efHClT59uiMUCtm0aRe1arXi+nW3XMWdVUrrm3Nnqgt3prpwb/pFprcZC8COfvai2I8O24GxlqFM4pElHh4vUFJSREcn84u1HNkTFvaD4sVlL+SQ2tTv6LgrW2bzkZFRYkuQUn6X9++ziRP/5vz5axgbV2PUqOkULarGyZP/Ehj4mn79rBgxYjI2Nn9n+EVMKBQyefJ8kQm3LIiIiGTx4jV07GiTzWtjcpZ22H43ZP6VXrW7cvZlxrsVJiZG7NhxIBtxSY65c1fQokWjTGXxs0JERCRt2lhjZFQVgGXLZmcyIvf8+BGBqqpkfLbyCjU1NczNzdi+fZ9M1kvtZ7e3d+DSpRuUKGFEiRI/DaGbNKnPu3cfCAgIymAWmDJlIVWrNqNq1Wa0b5/1ck57+8UoKCjQsGEHPD3Tb7HIK+LiE6hVtxPJyckMmbqW80c2MG7JXgxMUq7ll4870HPEPHT0U0SEVFTVaNaxX6bzhocGoa1nKNp91i1ugkYxecImJ+sU7NtSUsagRBneS1DaP7u0rtRc9O/65rU48/JSuufp6emyY4c9w4b1Y8yY6fj4fKVXr+G0b9+KDRuWiTXUlpM77t9/gqamXNI/vxIeHomxsWxvFGTU1J8esbFxNG/elfj4BAICgkSy3QCfP/vSvHlXoqKiiY2N4+rVk9IMPUuMHDmA69dv06pVU0aOHJhGqW7DhuX06dMNG5tRlC/fkJMn96Tr2dahgw2PHz/j9u17eHhcz1EcO3ce5MKFq2mOFS2qhoaGBpqaGhQrpomWVjESExNxcrrAx4+f0dLSpFSpkvTuPQJDw+LMmDGeYcP6ZihYkZxMlnzYfjdk/vj9M+UMSgNw6fV1KhqWzXD8jh32dOs2iPj4eKnaCPzOw4dP+fz5C05O+3I1z7dvAVhY9OD7f3Lq8+ZNYdo0W7F91ZLkx48IihTJW3NzSWBp2ZajR52lukZW+9mVlJR4+/au6LG5uRn37qXdPXdwWJPjOJSVlXF3P8eQIRNo1sySli2bsGfPBvT0ZG+r8CtRUTHUrteJmOhoFJWUOLx5DlPsHDEu+VM59ZvPO0pVEN+6cnrPSi4e2/LH8botLLGf3osPrx9RqWYTGra2omQ52fgUyikcyHfYMsDQtCwfPn6WyVqp0vgWG3qw7/6xP35/6NFJ2lZqmeEcjRrV5dGjKyxYMBUVFWWuXLlJ7dqt2bZtLwKBQFqh/9/y6tVbjIxyf1dajnSIjo5Oc9dYFvza1J8VUksiHz68zMmT/2JrO4Pk5GTgZ0nk06c3WLlyHlOmzJdm6FlCUVERR8ddjBkzNF1Z8SZNGvDx40Pq1KlBu3a9KV++ASNHTuH589cAWFsP58ULTy5fPo6fnz/Tpi1Kd50fPyIQCoV/HL927RaVKjVm7twVREfHEhcXT1xcPLGx8fj7B/HypSeuru6cPOnC9u372LXrEGXKmHP16gk+f/bg1q0zeHndp2nTBsyevQxz89osW7Yu3bUgxZBZXV09w9ck1ZDZstpPf6YlF/6hsX1nmq615Mb7O6zqnvH/u+bNGwGwfv2ODM+TNFOnLqBOneqUKpUzqfI3b7zQ1a1A1arN+f49hG3b1hAW5sX06WNlkqwBREZGyjTJlRbjxo0gNDQMf//AvA5FJpQqVRJXV2ecnffz7t0HKlZsyNSpC/OsTDLsRyTVa7UlPi6eZf+6oaSsQtm/6nL3cvZ67XqOmMu8LRdFP6noFjdh8a4bdB8yEwVFRTbM6c/bZ3ck/TTkFGLkO2wZYGRahsc3T8lkrUvjjmGibZRGGj9VadH+ugPKisr0qdMt03lUVFSYOtWWXr26MXHiHG7dusfcuSvZu/cYO3bYZypqIifreHv75PiLjhzpExcXj7m5mUzXTG3q79FjCGvXbmPaNNssj23QoDYhIWEEB4f+8btOndowfrz0y8skgaqqKqdP7+XLl29s3bqHCxeuYWHRgyJFVBEIBFy5coLatauzfbs9I0ZMpnz50nz7FoiHxwu8vX0IDg4lKSkJVVUVOnVqg41ND06cOMudOw8IDg6lXbuW7NixNsclovr6euzZs4GEhASWLVvH1q172LnzAIsXz2TEiP5/nK+hkXHClmrI/CsHhmzNdlxFi6phZ7c5XWVeafD2rReenu+5fftstscGBn6ncuUmosenT++lVatmGYyQHpGRURl65RUUTEyM0DHSpuuGgSjqK6KgAJt7r+bqW9csefoVVFq0aIyn5x127z7EokVrcHR05tSpvTRqVDfzwRIiMCiUevU7oKJalKV7rqGmromigiJ/z3Fg47z+XHTcQieb8QCYlKqIj9dLKtdqmu11VFSKUK1+K6rVb4WWTnGe37tC5Vp583cjp+Ah32HLAEPTsvh/kay0vzhSL8C/SuMDHH18miueN9nZf2227liam5vi7HyAQ4cc0NPTwcvLm9atezJp0jzCwyOl8hz+3/j2LVDqktVyck5iYmKeeOT93tSfVd6//4hAIEy3LOj+/ceULm0uyTClTsmSJVi9egEvXtzCz+85ixZN59q1U6KbRlZWnenTpxsLF67h+PEzCAQCunfvyIEDW/Dze87ixTN49OgpAweO5enTl1hZdebZs5s4Ou6SSD+fqqoqy5bNxtf3KdbWlsyatZTKlZtw8WJKmWbqrltWVSJzy86dawFkVg2xbt12zMxKUK1a5WyP/fTJFxUVFW7dciYszCvPkjVIKWMrWlQ2/4+kTbF2mvx4Fc7DmZdxm+JCJaNyTLAYifu0c7hNdaFDlVasufZnuV1hYOTIgfj4eFC+fBmmTl2Q+QAJ8eVrIHXqtEVNXYvFu11RU//Z5qCqVpSxi/fy6KYz7pdTKp869hmL07+rCA9N6e9LTIznxpnM/Wt9P7zkR0jK7qlQKMTv01v0DE0zGSVHzk/kO2wZoK1nSEJCHEHB4RgWl15zaHRCDEKhkGJqmiJp/Jltx3Pt7W023tzJOdvDqKvm7AOpS5d2tGzZhGXL1rJr1yEOHDiOs/NF1q1bSs+eXWRWtlIYCQ8Pp04duaR/fkQoFCIUJlO2bN4kOemZ1NvbO6QRFXj9+o6ohw1S+qUcHOxQUlICfvawJSeDqqoKmzatkPnzkBTq6urY2g774/j27fZs326fzgiwtR2W7hhJo6qqyoYNy1m8eCZjxkxnwABbypUrzZYtqwDSLf2UBpaW7QHYtesgYyRo+iuO3IjyNGpUl6AgTwlHlDOio6PR0Cj4CVtEXCQJegmEHA4jLi4ONTU1VJXT9uZl5ulX0FFWVmbDhuW0aWONn58/pqYmUl3P6+MXmjezRM/QlLlbLqX7t65RTIfxyw6wbmZvNLX0qNm4PRFhwWycNyDloq2gQJN2fTJdK/JHCIc2zSYpMUVBtXTFmlh0HSLx5ySn8KKQ2i+RpZMVFJK3XfCRYjj5j1UTu2Bvv4h2Lf9snpcUn0N8Gbh/HAACYRLWtbsyvc1Y6qxuQ3xSAnrqKXfc65WqxXrrZTle59Wrt4wePR1Pz3cANGxYBweHNXmyC1HQSUhIwMioKu/f35OIupocyeLj84VatVoTFuYl8bnj4+MxNq6Gn98Lme2+yJEdPj5fGDFiCh4ez0lOhpCQdxkKk0gSXd0KAFJ53/5Oly79UVBQ4Ny5w1JfS5q0amWFgYE+x4//6XNYkHjp58nkUwt45voK4yqGtKnZnFXd56Ohqs6yi+s49sQJLbViuIw5SHFN/bwOV6pUqdKMRo3q8u+/G6W2xvOXXrRra4WJeQVmbXCR2d+4HDm/Y9u5FMnJyZneiZHvsGVCmUq1uOP+VKoJW6o0/u94zM6Zgpo4qlWrjJvbWfbvd2TevJU8eOBBgwYdmDp1DNOm2RaKxm1Z4eHxEkVFRXmylk/x9vaR2s6IqmrKXe86ddqkUVL7f+Klw17eHTyOAgroVqlIi612BD54wsOFdiQLhahoaNDCwQ7tAngzqFSpkly7dpJHj57SpUt/BgwYQ9OmDfHx+UpgYBACgRAlJUWUlJTQ1tZi3bqlEvuyt3nzSiZMmEtycrLUqx9iYmLzxPZC0iQkJKKmVvA/u5KEAp77vaaKQkVU76mgXr8oG27sYF7HKSzoNJUFnaay7sZ2drkfYk4GRuyFgbFjh4nEgKSRSK22c8Bu9XrKV23AFDtHebImp0Agf5dmQoXqjXF3gKhozAAAIABJREFUv5/XYUgMRUVFhg3rx/PnrnTr1gGBQMA//2ylTp223L59L6/DKzA8fOiBpqZGXochRwyfP38RK/UdHhvBkAPjabCmAw3/6cDDzz/Naje77kZ3RgVCov8U/khFQUGB48d3Exj4ncePn0k89vxO9LcAXu84QI8bTljfu0CyUIj36XO4T1uExc619HRzoVyvrjyzz77wRn6ifv3a7N69gdu372Nvv5WLF6/z8eNnvnzx4+NHH969+8D+/Y4S85MLCgpmwoS5AOzb96dSsKSJi4svFNewxMTEQnGzsYS2MSW0jRnXezgvX76lW/WOPPd7neacrHj6FQbGjh2GggIsXvxPhud5BXnTfF1X0Y/5/Fpsc9vLgnOrabCmA03XWjJw31jCYyNEY27eeswauw0ATPvnhDxZk1NgkL9TM6FCjUZ4Pn9EYlLeyuILhVkvXc0KBgb67N+/hbNnD1KihDHfvgXQvftgBg8eL1ND24LKy5dvMDSU767lV75+9Rdbrjj7zHLaVGqRprEf4OsPf1y93DHTKZHp/O3atfzvv1k3iy1MJCclkRQXhzApiaSYWNSNDVFQUCAxMgqAhIhI1I0LvpJdt24d8PN7wefPHrx6dRt39/Pcvn0Wd/dzXLiQklQZGRnkep3Jk+dTqVJj0eOpUxfmes7M0NHR4tMn3/+xd95hUR1dHH53gaX3JtKriqLYS8AWS+wajcbeYo01GkvssbdYktg/e4+9d7GAir2jNFEBEaXXZVm+P1CMEQSEZQHv+zw8svfOPXPuddmdM3PmdxTej6KRyWSlog6buZ4plgYWuDeoRHp6OhtP7aScuROBkc+y2uSlpl9pQCwWM336r/z993pCQ8NzbOds5sClXw5z6ZfDeI06gKaaJq0qNaOR8zf4jDmK95gjOJra8ce5VQAcO3GZTt/3wNBUEPsQKHkIAVsu6BmYYGBcBu9rj5Xmw2P/lzg4e7Bm47HcG+cTT8863Lp1hnHjhqGqqsLhwyepXLkBCxb8RUpKaqH3V1oIDHxW5JLxAnknPDwCXd1Pi5rHpcTjE3SdnrUyAy2JqgR9zUzFwUmHZjO91bg8p6IFBvoCuc8Clza0y5bBbXh/dro1YHv5ekj0dLFq7Innstmc7DyA7RU9CNh9gCqjBirbVYUSHByCWCwu0Ay9XC7H0NCZTZt2MXr0YKKj/Zk5s2jKN0yaNIp79x4RFRVTJP0pirQ0GRoaJV/WH2BBuykM2T0O1c6qXHjgw5jGQ/Jd06+0MHhwH4yNjZg5c3Ge2l/w98HO2AYbQ0sal/NEVSUzJb6mjTthsa/4Z98ZenTrT61G7b9Ikl9AQNkIAVseKFelLmfPX1Na/2MnLKRCtfrMmzOf8dNWF/pqm7q6OhMnjsTX9yT169dFKk1j7txluLnV58CB4+RHmOZrISzsFRUqOCnbDYEceP06Mlvp95C3LzDRMeLnXeOpv6QtI/75jURpEscensVC3xy3shXy3IeRkSG9e3dh2bI1xL9bWfoaSI2JJeTYWbrcOUe3x97IkpLx33WQ+ys30Hz3Wro9vIxLt45cnTxX2a4qlJCQlwXeJykSiejSpT3Pnt1k6tQxAAwenKkcd+LEuQL7+Dk8POpgZGTIjBkle8JBJpOVijpsAG6WrpwfuZ9RNgNJOZyKgZY+m3v/zZWxx/Aec4Sd/dZQVr+Mst0sMhISErC3z9s+2H13j9KxautPjm+9vodyOuUZNOBnPFt2o/eYPwR1bIESiRCw5QFntzp4eysnYDt80he/B3fpOnQW4xbv5/jR4/zYZzLJKdJC78ve3paDBzezf/9GbGysePMmir59R9CwYXvu3HlQ6P2VZKKjY6lWrbKy3RDIgbdvozE2/lRQ4f3G/n71unFx9CG0JJrMO7WcP86uYGKzUfnuZ+nSWQBUrOhZYJ9LCqFePujaWqFpYoxYTQ27Ns2IuHaTqAd+mNXIFGdy6NCK1763lOypYgkNDS+w2IVIJGLVqoXo63+YXFBVVcXVtRxhYa8K6mKu9OvXlT17PhW8KkmUpoDtPYMG9SYuLp7AwKKpA1tcqVatMvPn/0nDhu159Ohpju2kMinHH56jfeUWHx1fdHYFYpGYZSPWYudSha4/Z5ZGEQI2gZKIELDlAWe3Ojy+dwNpmqxI+02TpTN50iy+7/cbEg1NDEzK8MuCf4h4HUWzVgN4/SZWIf02bPgNN2+eZtGi6Whra3Hv3iMaNepA//6jePXqtUL6LEnIZDKkUin16tVStisCORAbG5ft3qL3G/tr2GQGFm3dvuNe6CNCol7iuaQNlec0JCz2FQ2WticiLm97OQ8e3Ex8fALe3r6Feg/FFR0rC17fuIMsKZmMjAzCLlzBsLwT0rgEYgMyB5ihXt4YuDgq2VPFEhb2SmFlHby9j9CvXzeF2P43Y8cOJTVVys6d+xXel6KQydJLTeHs9xgZGWBubspff61XtitK5ciRbXh5HSA9PR0Pj9YMHTo+23Zn/C5SxdIVM90P+8p33NjHqUfnidiTjEwqY9S8fwn5CAGbQAlECNjygK6+McZmZbl8tWgLhS5ZsQd1TV2qebbKOqahqc2gyWswsy5Pw2+78PCJYjaNq6qq0r9/dx4+vMTAgT0Ri8Xs23eUypUbMm/ecpKTUxTSb0ng7t2HiMViypQxU7YrAjkQH5+AhcWnohfvN/b7vw4C4GLAFSpbuuI//Rr3fvPi3m9elNUvw4VRBzDXy5uYRP36dVFTU6N16+6Feg/FFbMa7ti3/Y79Dduzr14rMuRyyvfugueyWZzpNYx9Hm3w33WAWr9nP7gqLURERKKn9+k+yZKERCKhShVXNm/erWxXvpj09HQ0NUu+SuR/+fZbT06d8lK2G0qncmVXLl06zM6da9i5cz8+Pp9OjO25c+SjdMgzfhdZdn4NnulNuH3lCiPnbkci+bAKW5qLjwuUXoSALY+4VK7LWa+iS4uMfBvH30uX8sOgaZ8s34tVVPhh0DTqt+pFq5Y/ctrrdg5WCo6+vh7z50/l+vVTNGhQj7S0NObP/xM3t/rs3Xvkq9zf5ut7C21tLWW7IfAZkpKSsbbOXglsQbspDNwxhm8Wt+Z+2GPGNB5S4P78/TM/G8aN+73AtkoC1SeO5Affk3S8coyGqxehoq6OXetmdPQ5yveXD9P6yDb07GyU7aZCefMmCn19fWW7UWCio2OxtS25Akrp6emlsoD9zz/3JyzsFXFx8cp2pVjQrFlDGjXyoFev4cjl8qzjSdJkvPy9aV2pedaxcQdmEJUQyx/3FqHb1wSfxF0fGxNW2ARKIELAlkec3ergU4T72CZM/YvKtZti7VgpxzYN2/Sh+4j59OszmDWbjyvUHwcHWw4c2MSBA5uwtbXm7dtofvppNPXrt+X27fsK7bu4ce/eI0xNS37B2dKMVCrNcRD6fmO/95gjbOuzEgOtjwfd937zwlg7f/+/+vq6DB7cm7VrtxAbG5f7BQIlnujoGIyNDZTtRoGJiIikVq1qynbji5HL5Whplb4JNFdXF7S1tVm2bK2yXSk2bNnyFwkJCUyZMi/rmJZEk6AZ19HX1M06dm3MSVI2pWPvV435nW7Qreqcj+wI8ZpASaRgEldfEc5uddj8x1hSU9NQV1dTaF93HgRz6uhBpq46k2tbt1rfMmLWVub9/hPHjp7FxNQYTS1NtDQ10NbWRFNTk6aNauJeyb5QfGvQoB43b55m06ZdTJu2gAcP/Gjc+Hvat2/BnDmTsk1DK234+wdjbV1yZ6S/BmSydBwd7Yq0z7lzJ7Nq1SYcHGry9u2TIu27NGBlVYWXL+8CcOqUFxMnzuLAgc1s27aHzZt3Y2xsSFJSMq6uLkyaNJry5Z0BaN26OxERkVkCIGPHDuXatVtYW5dlyJC+AHTs2BdLSwuWL88cuE2ePBcLC3N+/rnfJ37cX7GBJ1t2I0KEoasL9f+eT8S1m/hOnU+GXI6atjb1V8wnNjYed/ecJ9QUjUwmIzz8NaGh4bx69ZrUVCkSiRpqaqqoqakhkai9ey1BTU0VdXX1d/9K3p2XoKqqQlJSMt9+W/8j29k9AxV1CTdmLSH44HFEKmIq9OtGpUG9lXT3H5DL5aU246FHj46sWrWRSZNGCQWeAS0tLcaMGcrSpauZPfu3HNu1ajeAtLQ0Rs3dkUMLIWITKHkIAVse0dEzxKSMFRevPqRpA3eF9nX7nj+OFaqhq2+cp/bWjhUZv+QAd6+cRpqaTGxyEpExyaRJo0hJSuDPP5awbv0KmjWqWij+qaio0K9fNzp2bMO8ectYu3YLBw4c5+jR04wePZhRowaVOtWufxMaGk67dt8ppe8HqzbyZNNuMsigfK/OVBrSl5ToGM71G0nC81B0bCz5dsNy1A1KfqrWlxITk7nCpYzJg2PHdtCyZVe8vLxp2FCo9fMlXLjgw/jxv7Nv3wasrTOLmA8Z0ofhw38CYN++o7Rr1wtv7yOYmGR+Rq5Zs5iqVd2ybGRkwMGDxxkypC9yuZy3b6M/Kr3g63uLOXMmfdJ3YtgrHq7eTKerx1HV1OBs3xEE7TvCnT9W0XTbSgzLOfFo3TbuLPqbhITEfBXNfi9WlJqahlQqRSpNIzExkfDwCCIiIomIiCQy8g1RUbFER0cTGxtPXFw8CQlJJCcnk5KSSmqqFJlMRnp6epZdsViMqqoqYrGIjIyMdz/86/eMd8/k43//zenTF+jfv9tnnwEZGSSGhvOD70lEYjHJkW/zfO+KpDQHbLNmTWTDhp3Mn/8nEyeOVLY7xYK2bZszd+6yHM8vXr6FG1d9GL/kwEf71v6NEPwKlESEgC0fuFSux9nzvgoP2CzMTYiPzd+Xob6ROfVb9cj23MMbXvTvO5ily/+gY9vCG0Tq6+syd+5kBg7sydix0zl37jILFvzFunVbmT9/Kh07ti6V8rnKkvSPevSUJ5t20+7sXsQSNU506o91s0b4bdqFZf16VBk9iLtLVnN3yWpqzRhX5P4VFwIDgwtc0PhLqVu3Bvr6enTo0IeoqKel8v2vSHx8rjNy5CR2716XY/2l779vxalTXuzZc5jBg/tk26Z27WpMmpQp4f34sT8VKrgQEfGamJhYNDU1ePIkkMqVXbO9NkMmQ5aSglhNFVlSMlplzBCJRKS9C/ikcfFolTEnLi6ehQv/ZvHilZnXfSYgygmRSISKikrWCpiGhjra2lro6Gijp6eDvb0NRkaGGBkZYGZmgqmpCWXLmmNpaYGFhTkSiSTPfeXEggV/MXbsNBo3/ibrmWf3DG7OXkrDtX8gevd3pWmatwlFRSOXZ5TKPWyQKf41cGBP/vxzHePHDxcCDcDZ2YGMjAyePw/Fxubjfcr3HgQwe8Ys2vT8BVuXKjkbET6XBUogQsCWD5zd6nD15BZgoEL7sbQwJi76TaHZq1ijIYMmr2H0iEHEJfxO327NCs02ZNZv27t3A5cvX2PEiN8IDn7OgAG/sGTJapYvn0316p/54CxhyOVyUlNTqVu3ZpH3HfM0ENOa7qi+G5xYfFOTZ0dO8fz4WVod3gqAc9cOHG3T46sO2EJCXiCRKDZt+XM8eHARa2t3Roz4jT//LN3FowuT1FQp3bsP4fDhrbjkUhKgShVXnj4Nyno9cOCYrJTIgwc3Y2FhjoqKKi9ehOHre4uaNd0JD4/A1/c2enq6VKxYLttgR7tsGdyG92enWwNUNdSxbOSBVWNPPJfN5mTnAahoqiPR1aHtqX+QrNnMjz+2p1evzqipqb37UUUiUUNVVRUNDfV/pSZKiu1gOzo6Fm1tLWxtrYGcn8H5n34haN9RQo6eRsPYiLrzp6BfxGnH2ZGRkYGOjray3VAY06aNZd26rcyatSSruPrXjFgsRl1dwuHDJz9KaU5Lk9G6VTfsy7nT4sfhn7UhqEQKlESK5zdIMcXZrTZPHtwmNTVNof1YlS3cgA3AqWJNhs3cxPTJ01m2WjE1dzw8anP9+imWLJmJrq42jx49oUmTTvTuPYzQ0HCF9FnUPHjgh0gkykrVUiSnTnnx/fd9sl4bVnDmlc91UqKikSUl8+L0BRJDX5H8+g1a70oMaJUxKzapSsoiJCQUDQ3lpeTq6GgzevRgtm7dQ1RUtNL8KGmoqalSq1ZVtm79J9e2/13EWrNmMZcuHebSpcMYGRkCmatsvr638PW9Tc2aValZs+q717dyFNlIjYkl5NhZutw5R7fH3siSkvHfdZD7KzfQfPdauj28jEu3jlydPBcdHW0MDPSpUcOdKlUq4urqgrOzA7a21lhaWmBsbISeni4aGhrFNliTy+Vs2LCDoUP7ZvmY0zNIl0pR0VCn/fn9lOvdmYvDJirZ+0wyMjLQ1i69AZuqqipDhvRl5coNyGRFWwu2uNK8eSOmTJlHmTKVqFWrOQMG/ELN2q1Jk6UxMsd9ax9ISUrItY2AQHGjeH6LFFO0dQ0wLWvDBZ8HCu1HX0+bDDJISU4sVLs2Tm6MnreTZYuXMnPhlkK1/R4VFRX69PmRBw8uMWRIH1RUxBw6dJKqVRsze/YSkpKSFdJvUXH16s0iUyT766//cf68d9Zrw3JOVBk5kOMd+nCiUz+MKpZHrKpSJL6UJMLCXil9xv39TLijo1BcPa+IxWI2bFjOrVv3s9IMc+LevUeUK/f5VbhatTIDtkePnuDq6kLNmu5cv34HX9/b1K6dfcAW6uWDrq0VmibGiNXUsGvTjIhrN4l64IdZjcxUeIcOrXjtewtNTQ2io2O+7GaLCQcOHEMqlTJu3LCsY9k9g9e+t9AuWwb7tpnS6XatmxH10E9Zbn+Crm7JroeXG5Mnj0YkEjFt2gJlu1Is2LTpL169esDChdNwdXXB68IVQoIDGTVne7b71uJj37Lvf3MY0tKWIS1tuXIm90khAYHihhCw5ROXynU5o+B6bGKxCH0DE+JjCneVDaCMtRNjFuxm68bNjJ28ArlcMXXU9PR0mTNnEjdunKZJk/qkpclYtGgFlSrV559/DpXY+m337j3ExKRoJP0DA599cqxczx/ocOEgrY/tQN3QAD0HOzTNTEh69RqApFevi83eEmUREfEaPT3d3BsqkJs3M9UOnZwKR531a0FLS5Ndu9awZ88htmzJflB16NAJzp+/TMeOrbM9/546dapx8uR5DA0NUFFRwdDQgNjYOK5fv02tWtkLMOlYWfD6xh1kSclkZGQQduEKhuWdkMYlEBsQDEColzcGLo5oa2uV+ICtZcsmaGpqMHz4h9Wy7J6BQTlHbFs2IeziFQDCvX3RLwbv7ff1uHR0SqfoyHvEYjFjxgxl7dqtpKSkKNudYoFEIqFnzx/YuPFP1DV1capUK9t9axkZGYzrWo3Te1cD8F2XYdT+tmNRuysgUGCEgC2fOLvV5ar3VYX3o29kQlx0pEJsG5tb88uCfzh+9BiDRy5QWNAGYGdnwz///I8jR7bi6GhHdHQMAweO4ZtvWnP9uuIKfiuKp0+DsLFRTDpkTEwsaWkf0m3Dwl59shfrfbpjwoswnh05hWOn1th81xj/HZlprv479mPT4luF+FdSePMmSqn1sW7fvk+TJp0wNDTg+vVTSvOjpGJoaMA//6xn0aIVHDuWWdpk5cqNeHq2oXr1JuzefYiDBzdnKUTmhKtrOaKioqlRo8q/jrmgp6eLsXH2ky5mNdyxb/sd+xu2Z1+9VmTI5ZTv3QXPZbM402sY+zza4L/rALV+H4+urk6JL2qsoaHBypUL2bXrYFY9zZyeQZXRg3h26CR767Xixu+L8Fw2W8neQ1JSEpCZNljaGT16ENramowY8am66dfMuQs3CH3+jF6jF2V7XiQSsfJYSNZPu96/oqNnWMReCggUHFE+Fa0yVh4LUaA7xZ+khFgm9a5HUNA1NDUKrtCVE83aDKFawx9wr6c4+fjE+Bj+ntYHl3IubFk3AzUFp9elp6ezffteJk2amyWx3apVU+bNm4KVlYVC+y4sKlb0pGXLJixcOK3QbRsaOmf9PnbsUBYtWkGFCi74+BzNOn64RVdSo6MRq6pRe/ZELBvUIyUqmnN9R5LwMgwdq7I03rgcDcOSX9D3S6lTpwWuri6sX5+z9LOiuHv3IQ0btkdPT5eQkFtF3n9JIC4unidPAqhZs3DKjCiLLl0GEBERiZfXAWW7UmBat+7O06dB+Pl5F9v9dtkRHh6Bq6sH0dH+ynalSNi+fR/Dh0/Ez88bU1MTZbtTLKhcrQVqGnr8ujjve/P3rpvFmX1r+drHswLFgyEtbcnIyMhVCafkfDIXE7R09DGztOPSlYcK7cfYxKTQhUf+i7auASNmbyMk5AUdfhxDcopUof2pqKjQs2dnHj68xM8/90NFRYWjR09TtWpjZs5cTGJikkL7LwyiomI+qvdUmERH+7N79zr09HRZtGgFAI8fP2Xq1PkkJ2emwbQ5voNOV0/w/eXDWDaoB4CGkSEtD26m880ztDy4+asO1gDi4+OVUoPt3r3MYE1HR1sI1j7Drl0Hadass7LdKDD6+nol4jMrL+zcuZqYmBhWr96kbFfyRUJC4ldVOqNCBWfkcjkvX5YOEa+CctnnDi+CA+k1KvvVtZywsHHOvZGAQDFDCNi+AGe32grfx2ZmakKcAvaw/RcNTW2GTt9AQqKUVh1+Ji5e8aIguro6zJo1kZs3T9OsWQNkMhl//LGKSpXqs3Pn/qx9CcUNuVxOSkoK33yjOEn/pk0bEBJyi+hof9avX4ahoQF//rmOsmXdMDR0Zvz430vNIFFRJCQkUbZsmSLt8/79xzRo0B5NTQ1evLhTpH0rg9jkOHpvHkatBc2pvbA5vs8y05vXXN5MzQXNqLuoBVOPzM/22u7dM/ePPHz4pMj8VQRGRgZZKXl5wcrqQ2rmqVNeVK/ehBcvwvD3D6J16+54erahdu3mjBo1GYDLl6/RpcuAj2wMHTqOgwePM2/ecmbM+HiQev/+I2rXbv5F96KjkynaYWmpePVbyPlZzJu3nD//XJd1TiaT4ehY65N7bd26O40adSApKRmRSMTt2/dp3bp7kfiuLORyOT/+OJB69WoqbNKwpDF8xGTsXCpjbv15AaL/UrdpZ/4+HJR7QwGBYoQQsH0Bzm51ueaj2IBNoq6GLE2xK17vUZNoMOC3lcTFxbN+2/Ei6RPA1taaXbvWcfTodpyc7ImJiWXIkHHUq9cKX9/it7/t6dNARCJRVr0iRdOhQ0uCgq4THe3PsWM7sLS0YM2aLVhZVcHQ0JnRo6fkuIfG0bEm5uYVcXSsRc2azWjbtgfDhk1g2bI1nDrlRWTkp5MBnxtEubp64OnZJusnNjYu2wElZA6matZshodHG5o374K/f9F+MaakpGJra1Vk/T144Ef9+m2RSNQIC7tfZP0qkwkHZ/Ftufr4jjvJpdGHKWfuyKWAqxx7eJbLvxzmytjjDG/4U7bXvi9yPHnynKJ0udAxNjYiOTk139dduODD+PG/s2fP/7C2LsuECTMZOrQvly4d5tq1kwwY0DNXGx07tmb//qMfHdu79yidOrXJtz+Q+R6WydJp2bJo97/+91n8l3PnLuPkZM+BA8c+EaqKjHzLhQveX80K26RJc4mJiWPHjtXKdqVYcMX3Ps8Cn9Jj9MJ8XysSiRCrCArLAiWL0r9TVwE4VazFhoUjSU6RKmwf25s30ega2CjEdnaoqKohTU2mYgWHIuvzPfXq1eTatRNs376PSZPm8ORJAM2bd6ZFiybMnz+lSGqe5YUrV26gqZn/+l6rVm1izpwlGBoaYG1tibOzA87ODlhbl8XGxgobG0sMDPQ/O/CoW7cGDx5cBDIVCAcNGsvGjTvZuHEnAF27dmDOnEkYGOgDEBMTx7hxw5DL5QQGPuPFizAuX/blyJFTJCYmI5PJEIlESCQSdHW1MTIyJDk5hVGjJiMWizl27Axbtvyd9eyHDOnD8OHZD8CzY82axVSt6sbGjTuZOnV+kQ4y0tLScHCwK5K+YmPj8PRsg4qKChERj4qkT2UTlxKPT9B1VnTJXEGTqEqQqEpYf2U7oxoNRF01s4C1qU7OoiA1a7rj5eVTJP4qClNTE6TS/E2q+fhcZ+TISezevQ57e1sAXr2K/GhFuGLFcrnacXZ2QF9fjxs37lDjXbmBAweOsXfvhnz58573e4pv3bqfo4JmYZPds/gve/ceYfDg3qxfv53r1+985NuIET/xv/9tL1F77r6U589DWbNmM0uW/K50BdziwvDhk7Bxqoilbe5/LwICpQEhYPsCtHX1MX+3j61ZI8V8ub198xYn66LblJ+aksSrl0F8U6tCkfX5b8RiMT16dKJ9+xYsWPAXK1Zs4PjxM5w+fZ5u3TpSo4Y7jo52ODnZY2pqrJRZ1Tt3HuSoLvc5Nm7cSXx8IvHxiTx/Hoq3t+8nbdTVJZiZmWBtbYmLiwNOTg7Y2FhmG9BVr16FGzdOA5lpUIMHj2PHjv3seKcU2aFDK9TU1NDR0ebnn/tl65NcLsffP4h79x7h5xdAUNAzAgKCOX78LJGRbxGLRVn7jMRiEWpqEtas2YKxsWGWn5BBZORbnj8PxcrKItuBU716NVm1amO+n9mXIpPJyMjIwM6uaFbYxGIxvXp1ZlkxUMwrKkLevsBEx4ifd43nQbgf7laVmNtuMgGRwVwJvsGsE3+grqbOzNYTqGZdOVsbc+ZMomnTH5BKpUgkihNvUiTm5iZIpWm5N3xHaqqU7t2HcPjwVlxcPqRwDR3ah7Zte1KrVjUaN/age/eO6OvrAZmTRJ6eH1bNXr4Mp3nzRkDmKtu+fUepUcOd69dvY2RkiKOj3RfdS926NWjY8Bs6d/6JgIBrClddzOlZ/Jvk5BQuXrzCkiUziY2NY+/ewx8FbDVrVmXDhp1AySwRkx8OHDiGtrYWvXp1UbYrxYKbd/wIfOrHb38ezb2xgEApQQjYvhBntzqc8bqmsIAtKuotugYbEsGXAAAgAElEQVRFpwIV4n8PG4fyaGmqF1mf2aGjo83vv4/np596MG7cDE6ePM/mzbvZvHl3Vht1dXUsLcvg4uKIm1sFXFwccXKyx8HBVqGzj0+fBmJjY5nv60JDMzeI7969jpSUFEJCXhIQEIy/fxAvXoQSEfGG1FQpL16E8eJFGD4+1z+x8bmA7siRrRgY6OPnF8DPP49n//6j1KlTneXL1+YYsInFYsqVc6JcOaesY6amFZBK07h48RCVKpVHLpcTGvqKGTMWcuqUF0lJScTGxhIQEIyhoT9RUdEkJ6dQpUpDAFRVVdDQ0EAqlTJgwGhsbW2IiYlFRUWVI0dOUaGCM/b2tgqdEX/xIhSRSFRkxc11dXW+qmANQCZP527oQ+a3n0ING3cmHJzJ0nOrkcnTiUmO5fTwPdx6cY++W0ZyZ+K5bCdX3q8KrVu3jaFD+xb1LRQKZcqYkZ6enuf2amqq1KpVla1b/2HevClZx7t370Tjxp6cPXuRY8fOsnHjTi5dOgRkBlK7dq3Najt06Lis37//vjXNm3dm1qyJ7Nt3NNe6dLmxc+dqHB1r0bv3cLZt+3zh8oKS07P4NydPnsfDozZaWpq0bduchQv/Zs6cSaj8K5WtadMGPH0aqFBfiwMxMXFoaOQ/u6O0MnTob1g5lMfasaKyXREQKDKEgO0LcXari8/xTcBghdiPjXqLrkHRFUAO9rtNlarFR2bbxsaSnTvXcOPGHc6evcT9+4948iSQly/DSElJJSgohKCgEE6cOPfRdbq6OtjYWFK+vDNubhVwdnbA0dEOOztr1NULFoy+fBlO06YN8nVNfHwCCQmJqKio8O23ntkGKxkZGcTExPL8eSjPn78scEDXu3cXLCzMuXr1Jjt37ufHHzvkydf/DqLEYjHW1mVxcrKnSpWKn6REXr58jT//XMeuXWuJiIjk0aMnPH0ayLJla3n1KpKwsIgsu/37j8pajVBRUUFDQx1dXR0MDfUxMzPF0rIMtrbWODnZUb68Cw4ONl80QAkMfIaqgstTfO2U1S9DWf0y1LDJDLraun3H0vOrsdQvQxu35ohEIqrbVEEsEvE2MQqTz6RGTpo0p0QHbPkRSBKLxWzYsJz27XuzePFKxowZknXOwsKcHj1+oEePH6hbtyWPH+cuU29lZYGNjRXe3r4cOnSSU6d253rN55BIJEyYMILJk+fy9m3UF2UT5JXPPYv37N17mGvXblG5ckMAoqNjuHTpKg0bfpPV5v0E2vXrpVvoJyYmFg0N5U6mFhfu3vfn6eMHTFh6SNmuCAgUKULA9oU4VazFxoWjSE1NQ11dLfcL8klszFt09YsuYHv25DZdO7cssv7ySo0a7lmz8ZAZ3Lx9G0VAwDMCA4N58iSA+/f9CAgI5tWrCOLjE3j48AkPHz5h794jWdeJRCKMjQ2xs7PG1bUclSqVx8nJHkdH+xzT+f5LVFQ07u75m9F79uwFkJk+lVMfIpEIQ0MDDA0NqFLlU/u5BXSvX+cc0A0dOh4nJ/uPnmFO5GUQlRPm5qaYm5vSqJEHhw+fYubMCdkqmUVFxfDokR9PngQRHPyM589DCQ9/zZUrNzhx4hyJiUlIpWlkZGQgEolQU1NFQ0MDHR1tDAz0MDLKTMksW7YM1taWODjY4Ohoh62tNWKxmJCQ0AIH5gKfx1zPFEsDC/xfB+Fs5sDFgCuUM3fC3tiGiwFX8HCsTUBkMNL0NIy1cx70T5gwgnnzlheh54WLubkpkFm8ObsV3ffv4X+jpaXJrl1raNmyK2ZmJvTs+QNnzlykQYO6qKmpERERSXR0DBYW5nkS6+nYsTW//TYbe3sbLC0LVsvyxIlzTJ06n/btWyg0WHtPds/iPXFx8Vy9epMHDy5m/T1v27aHvXuPfBSwJSUlo6GhzvLla7GzKxoxKGUQFxePppKzX4oLQ4b+RllbZ2xdsk+3FhAorQgB2xeirauPmaUtF688oGnDwl2ZksnSSYyPQUdf8V+akDmwCHp8iwbfTCyS/gqCSCTCxMQYExNj6tSp/tG59/VpAgODCQh4xuPHT3n48AnBwSG8eROV9XPjxt2PrlNVVcHc3AwHB1vc3Crg6uqCo6M9Tk52GBsbIRKJkMvlJCUlU7du/iT9nz17DlAgZcm8BHSxsXE8f/6S589DswK6a9du8vixP716DeP69VNoa+eeJvi5QVRhYGRkgIdHHTw86ny2nVQqJSgohICAYEJCXvLiRSjh4RG8fv2GBw/88PG5TkJCIqmpqaSlyYDMgDPz/VE0fzdfMwvaTWHgjjFIZWnYGVvzd+d5aEk0GbZ7InUXtUSiqsbKHxd8dq/p8OE/MW/ech49eoqrq0sRel84vJ+ACQ+PwNHR/qNziYlJWFlVYeXKBZ+scBsaGvDPP+tp1aobxsaGeHv7MnHirKzAZMaM8Zibm+YpYGvf/jsmTpzF/PnZpxXmlQcP/OjefQi9enVmyZKZBbL1nuDgEHr2HMa5c3tz3Kf432chk8lQV5dw5MgpPD3rfjT50rJlE6ZNW0Bq6gdlzuTkFDQ1NUr933x8fEKRpXkXZx4+DuLxg7v8univsl0REChyhICtADi71eGsl2+hB2wRkTFoauuiolI0/z1Rr0MRicDZoXioMX4pYrH43b4uSxo18vjoXGpqKs+evSAw8Bn+/sE8evSEx4+fEhLykri4eEJDwwkNDefSpasfXaehoY6lpUWWitutW/eIjo7F3t4GExOjXMVPgoIyA7by5RVXqFMkEmFgoI+BgT6VK38I6FJTU6lTpwXPnr1g3LgZ/P139nWx/st/B1EAK1duZPfug1lt3u9xuXjxChUrfnjWGzb8WRi3hEQioXx55zw/t7i4eAIDnxEY+OyLhRcE8o6bpSvnR+7/5PiabovzbOO9vP+UKXO/WN1Q2aioqGQbsGlra9GhQyuGDBlHYmIS/ft35+XLDxNFVlYW3L17HsgMRGbP/u0T2x4etfHwqP3RsRUrFnz02sTEmMjIxwW+j127DmBsbFhowRqAgYE+Dx/6YW5ekeDgG1kKtkCOz2L79n3UqlWNZs0a0q1bx4/sGRoaEBCQKdh05Mg2AA4ePI6qqipeXgcKze/iSEJCYp4m3Eo7c+atxMi0LA4VqufeWECglCEEbAXA2a0uV45vAgYVqt2wV1HoFeH+NblcjlisilhceuvZqKurfyKy8Z64uPis1ZyAgGAePHj80X6594EAwODBv2Zdp6amhrm5CXZ2NpQv74SLixP29jbY2VljbV0WdXV1Hj9+CkD58p/2q2jU1dXZsmUFDRq0Y/v2fbRr9x3NmjXKsf3nBpQTJoz4pL2NjRXh4Q8+Of5+MFWU6OnpUrWqm1BQtoRRvXplzp27rGw3vhhVVVUiIiKzPbd+/VL09HQYO3Y6iYlJjBjxac3C4sLduw+wsyvcMjKGhgY8f34bG5uq2NvX4Pbts5/to169Vjg52dG4sUeObf5LSkqqwhUtiwNpaTLU1Er/feZGdHQ0uoZFJ8YmIFCcED4BCoCi9rGFvSpahUiTMtakpiQR8jISWyvTIuu3uKCnp4u7eyXc3St9dDwjI1O2PiAg+N3KXBB+fv4EBYUQFvaK5OQUXr4M5+XLcC5f/rSQuqGhASkpKQCFPhjKK5UqlWfSpFHMnPkHAwb8wq1bZ4tkf4qAQF6YO3cyzZp1Ji0tDTW1wt8LnF/8XwfRb+vIrNchUS+Y2HwkYbERnHx0HjUVNeyNbfi7yzz0NfWQSNSIjHybo72lS2eho6PNtGkLSEpKznbiozgQGBjCd981BnJ+Bj9W70C/rSN5Hh2KjaElG3osx0BLPyeTQKYIVGTkY0xNK1C16recPLk7xzpvPj75l2jPDNhKv8hQ27bNmT17qbLdUDqJiUmoawgrjQJfJ6W/4qQCeb+P7YLPp6sMBSHidRR6RSg4IhKJsHOpjM+1h0XWZ0lAJBJhZmZCvXo16dnzB37/fTy7d6/jxo3ThIXdJzj4BufO7WP9+mVMnTqGH35oi7t7JYyNDRGJRERHx5CcnIJIJMLVtfCKe6bL06m/pC1d1mfO2GdkZDDz+B/UmN+U2gubs/rypo/ajxw5EHf3SsTFJTBw4BgyMkp/3SKBkkHNmpmD9/XrtyvZk0yczRy49MthLv1yGK9RB9BU06RVpWY0cv4GnzFH8R5zBEdTO/44twrIVGeNjIz6rM1ZsyYybtww5s//k8mT5xbFbeQLf/8gXr16TYMG9YCcn8GSc6up71SPm+PPUN+pHkvOr86TfVVVVaKj/bGwMKd5887s21d4tbO+ls+ygQN7IpVKP1FF/tpISkxEXVNb2W4ICCgFYYWtgJSr8g0nT/sUaj2216/folOEKZEA1k6VuX7zAV07NizSfksyBgb6OabhSaVSXr4MJzj4OUZGBlhZFUzB7d+surQJFzNH4lMTANh+Yy+hMeH4/noSsVhMZMLHM/4qKips2vQXtWo149y5y2zbtocePQpXTERAoCBMmDCLQYN6K9uNj7jg74OdsQ02hpbYGH6ov1jTxp2D908AoKmpSVRUdK62Jk4ciba2FtOmLSAhIZGlS2cpzO/8EBwcQv36bala1Y3WrZt+cv7fz+D4o7McHrwVgK41OtBmVQ9mtBr3yTU58ejRZX78cSD9+48iKCiEsWOHFth/c3NTEhKSCmynuCORSHBzq8CyZWuyVkK/RpJTUjDW1lO2GwICSkFYYSsgFarW5/Klwt2D8ToyCh39os3TtnV2497d+0XaZ2lGIpHg4GDLt996Fuq+qtCYcE75edGrduesY+uv7GBc02FZqnWm2dS9srGx5I8/fgdgzJjphIS8KDSfBAQKQmEM3BXBvrtH6Vj102LUW6/voUm5zHqM2tpaREfH5MneiBEDWLhwOps27aJ//1GF6uuX8OJFGB4ebShXzolTp3ZnW3bk38/gdfwbyuiZAVBGz+yTiaG8sHPnGkaNGsTs2Uv46afRBbsBwNbWiuTk5ALbKQm0bducR4+eKtsNpZKanIKGlq6y3RAQUApCwFZAnCrV5HmgH2+i4gvN5ps3RVuDDcDWuTL+j+8hl38dKSYlld8OzWZGq3GIRR/+dIPfPmff3aM0WtaBTuv6Exj5LNtru3b9nqZNGyCVSvnuux+zSg4ICCiTkSMHAvDkSYCSPfmAVCbl+MNztK/c4qPji86uQFWsSudqbQGoUMGZ48fPceGCT57s/vRTd1asmM++fUf54Yefcr9AQSQlJVG3bkvs7W04d25ftsFaTs+goEybNpa//prL3r1HqF27eYFs2dvbkJoqLSTPijcikThP9UKLK/dXbGBP3RbsrduSc/1HIUtJ5eGaLeyu9i3rDJ1Jefv51GIAqTQVbd3P75sUECitlNy//mKCmkQDR9fqHD15NffGeeTtm7foFnFKpKFpWTIyICjkVZH2K5B3Tjw6h4mOMe5WH4ujSGVSNFTVOT9yP71rd2bYP9nX0xOJRKxevQhHR7t3e1bace+esG9RQLno6GTuSZkyZZ6SPfnAGb+LVLF0xUz3Q6bDjhv7OPXoPGu6Lc4q57Fu3RJatWpChw59mDt3WZ5sd+36PRs3LufMmQs0b95FIf7nxt9/byAjQ87Fi4dyDAL++wzMdE14FfcagFdxr7Ndyc8r3bt34uDBzTx9GoShoTNyufyL7Dg5OZCenv7F15ckpFIpKiolc8iWGPaKh6s30/7cfjpeOUaGXE7QviOY16lGiwOb0LG2zN0IkJYmRUunYAFbZHgIIf5CNpFAyaNk/vUXM8pX9eTU2cJLi5RKU0mXyQrNXl7IFB5xw1sQHim2XHt2ixOPzlJ5TkP6bx3FpYCrDNw+hrL6ZWjrljlT3bpSMx6G++Vow9DQgHPn9lGjhjtxcQk0bdqZ8+dLrqy6QOmgSpWKnD59QdluZLHnzpGP0iHP+F1k2fk1bO+7Ci2JZtZxsVjM+vXLWLx4BosWrWDhwr/zZL9duxbs3LkGX99b1K3bstD9z43duw/SoEG9z67Y/PcZfOfamB03Mmvv7bixnxau3xbIh/r163LtWuZeQGPjciQl5T+10dQ0M2j8nFJnaSE1VYpYXHIVMTNkMmQpKchlMmRJyWiVMcOkckV0bazybCNdloa23pepHMvSpMwZ3pKp/euzf/2cL7IhIKBMhICtEKhQrT6+3pcKLZ2wc+f2XDq2pVBs5Qdrp8rcuFm4ipcChce0lmN5OPky937z4n89luLpVIc13RbTslITLgZcAcA7yBcnE/vP2tHT0+Xo0W20bNkEqVRKp0792bPncFHcgoDAJzx//pK7d4vPRFGSNBkvf29aV/qQrjfuwAziUxPpsKYPnn+0YfTeKR9d07dvVzp0aMmWLf/kuZ/mzRtx8OBm/Pz8MTTMW4H4wiAlJYXAwGcMH55zSmZ2z2B0o0F4+XtTfX4TvPy9Gd244PVHXVwc8ffPzE6xtKzM69dv8nW9SCRCRUWFwMDgAvtS3ElMTEQiUX7piy9Bu2wZ3Ib3Z6dbA7aXr4dETxerxp75tpOeno6OvmG+r9v7v9kMb+fMi8CH9PplMaPm7si3DQEBZSOoRBYCZW1dkKVJeej3HDdX2wLb69ejOYsXLCLI7xYO5asVgod5w9a5Mj7HNhZZfwKFw+hGgxiw/RdWXNqIjkSLZT/MzvUaiUTCli1/8+uvM1i/fjsDBvxCeHjEZwdxAgKFiVQqpVmzzlnBmo/PMSV7lImWRJOgGdc/OnZrwtlcrxsxYgANGrQjLi4ePb28CSP8e4XL0rIyoaH38ufsF7Bu3TY0NTWoW7dGjm2yewZG2oYcHLS50P3R0vpQV6tcubr4+ByjQoW8B7Dq6hKCgkKoV69WoftWnIiPT0RDQ13ZbnwRqTGxhBw7S5c751DX1+NsnxH47zqIc5d2+bIjT09HVy/vqbghT+8xb1SbrNd/Hwku0fsABb5uhHduISASiXCtVp/DJ7wLxZ66RI1e/fpxZm/e6twUFrbObgT43ReER0oAHo612dVvLQD6mnrs7r8OnzFHOTX8H9zKVsiTDbFYzKJF05k6dQwAU6fOZ8KEmV/FfhAB5TJv3nLMzSty9+5DVqyYT3S0f74G6cWRypVd0dHRZuXKjXm+pk2bHqioqHDhwgGSkpIxNHRWeG2xnTv3U6tW0U0E5kbLll0BiIrKVECsV69lvtK0NTU1ef48VCG+FScSEhJKbMAW6uWDrq0VmibGiNXUsGvTjNe+t/JtJyNDjp6Raa7tUpISGNulSlawNmTa/wCY0tcj330KCBQXhICtkChf1ROv85cKzd7IwZ0IeHCdiJdBhWYzN/SNzFFT18Av4GWR9SmgXEQiEaNHD2bFivnvREk207fvSNLS0pTtmkAp5OLFKxgaOjN//p907NiaqKindO36vbLdKjQaNKjLP/8cylPbBQv+BODp0ytUrlwxa4Vx0aK87YP7Up48CaRnz04K7SOvREfHcPfuQxYtmo5IJCI62p/KlV3p1m1wnm3o6ekQFlb6xbJMTIx5+TK8RE6o6VhZ8PrGHWRJyWRkZBB24QoG5RzzZUMmSwfIdYVt18qpjO5UkcT4GIbP3MzKYyFUrt2EsQv3EBUZyvSBX28dO4GSjSg/s3kikShj5bEQBbpTckmIjWJK//o8C7qGunrh5JmPGr+coBdv6TZ8bqHYywurZw6ge9fW/NSzcKWcBYo/Z85cpFu3waSlpeHhUZu9e9cjkUiU7ZZAKSAiIpLy5esBmbXLHj68hL5+6SuA6+t7m+++68LLl3c+SvXLDkNDZ9q2bc6mTX9lHUtOTiEjIwMtLc3PXPnlXLjgw/ff9yUy8nGxSA1zd29ESMhLoqP9v9hG48bfY2RkwJ496wvRs+JHUlISdnY1mFS/Dpah4YgQYejqQv2/5xNx7Sa+U+eTIZejpq1N/RXz0Xco+PaMwuTm3GUE7T+GWEUF48queC6fzeONO7m3fC3JEW/QNDVGtVJ5ZB1a0alT60++e8JfvcG1Ql1yGoM+vOHFX1N7A9CobV86D57+SZun96+yZHwXPFp0o3sRjqsEBD7HkJa2ZGRkiHJrJwRshci8ka2ZM+c3WjbJeW9AfngZ/pbatZozddUZ9I3MCsVmbhzbsRxNUTyrl/1aJP0JFC9u375PmzY9SExMomnThmzfvhJVVWGrq0DBaN68C76+tzh3bl+hFpIvjlhZVeGXXwbzyy9DPttu1KjJLFkyM6tEQFHQp89w7t9/xM2bue/JKwrWr99O1apuOb4n7q/YwJMtuz8KTlTfpQX6jPudp9v3cqxeTSIj33L+/P6idF0pzBo3A/W1Wxn+/DYaujqc7TsC66YNuPPHKppuW4lhOScerdtG5K27NFixQNnu5pmbN+/Su/dwwsJeoaamRlpaGlZWFnh61sHAQJ/ExCTCwl9z+pQXK489++ja2KjXTOhREwAdfWNmrr+EhqZ2jn2FBvshVhFjYeOiyFsSEMgzeQ3YlD/FVoqoULU+x08WnkS6lYUxjb9rg9fhjYVmMzdsnSvz8L5Qo+RrpWpVN44e3Y66ujqnT3sxaNDYEpmCI1C8OHlyF9HR/qU+WAP45pta7Nx5INd2S5fOKtJgDcDb25dmzYpPSli/ft1yfE/kVLsLIPL2faSxcQCYm5sSHR1bZD4rk5EjBiIWwYI5Sz6SxxeJRKTFJwAgjYtHq4y5kj3NH4sW/U1qaiqPH3sTEfGQU6d28803tbh06Sr79x/Dy8uboMBgIIPQZ5lla+RyOSum98sK1iYsO8LCHbc+G6wBWNqXF4I1gRKJELAVIhWqeeJzqXBrWo0b04dLx7eTkpRQqHZzwta5MoFPHpCeLgzSv1aqVKnIgQObUFNTZd++o/zyy1SFCyEICJQWRo0aREBAMJGR+ZOoVzQzZ/5BVFQMQ4b0UbYreSa72l3y9HR8p86n1oxxAFhaWpCQUDTfj8pAJpPx5EkAhw6dZN0/h3hkaozxqs0fyeN7LpvNyc4D2F7Rg4DdB6gyaqCy3c4Xdna2qKmpYW6eKShSo4Y7K1cu5N69Czx6dJk7d85z48ZpLCxtObR5EVdO/8PPre2573uW7/v/xspjISwZ3znL3oPr55j6UwOiXodyZOsSTv9LwC09XcbYH905sGF+1jF5ejpzRrTC//61rGPLJ/Xg5qWjRXD3AgJ5Q8h1KkQcKlTnVegztu05T/dOjQrFplt5W9xr1uPS8W007Vjwuje5oaNvhK6+Ed6+j6lft6LC+xMontSpU51du9bSqVN/Nm3aha6uDjNnTsi2bYx/EOf6jcx6HR/yguoTR2LhUQfvMVNJS0hCx8aSRmsWI8mj3LmAQEmlbt0amJmZMH78TNavX6ZsdwDYtm0PS5asYsWK+djYWCrbnTzx79pdqhrqWDbywKqxJw9WbcSmxbdolcncJmBjY/VFRbeViVwuJzw8Aj+/AAICgnj27CWhoWG8ehXJ27dRxMbGk5SURGqqFLlcjkgkQiJRw1Bdg86pKSwQi/m+VVPM30Thv+sgz46cpPnutZjVcOfe8rVcnTyX+stLTnFoV1cXNm/elWu7nn26smjuQu5dPY2tSxV+XbQXFdWPNQP87lxm18ppjJi9FSOzT9/rj29dxNzSgZuXjtCuzzhEIhFiFRW6Dp3F1mXj+e3Po9y6fAxEIqp7tiq0exQQKChCwFaIqKpJGPb7JiZPGITfk37MmNgXsbjgKS/TJ/9M+3bdqdGgLYYmFoXg6eep3fh71v7vHyFg+8pp1MiDzZv/omfPn/nrr/+hq6vDuHHDPmln4OzA95cyC2/L09PZ4eqBbatmnO0znNozx2PxTW2ebP2He3+uo8ak0UV9GwICRc7YsUOZOHE2Uqm0WAj3jB49haFD+/Djjx2U7UqeybZ21879BB84QasjW7PaOTjYIJVKlejpB2Ji4vDz88ffP4jg4Oe8eBHKq1eviYx8S0xMLAkJiaSmpmYpHqqpqaKhoYGurjYGBgaYmhrj5FQda+uyODjY4exsT7lyjmhrZ6b5BR04zsuzFylXtybDh0/gh+m/EnHtJlEP/DCr4Q6AQ4dWnPihn9KewZdQvXoVkpNTcm03dmRvFs5dQNefZ1O/VY9Pzvs/8GXr8gkMm7ERU4vsRVeuex2icbt+XDy2hWC/WzhUqA6AffmqOLhW58i2JVz3OsiI2dsKdlMCAoWMELAVMvblq/Lr4v2s/L0/T58EsHHNdDQ1CvaFXcPdmY4/9mD3qmkMmrymkDzNmXrNuzBraHNi48ahr/d5pTOB0k2rVk1ZuXIBgwf/yty5y9DX12XQoN45tg+74IOunQ26NpbEBgRR5l0xW8uGHpzo1FcI2AS+Cvr168b06QuZM2cp06ePU7Y7qKmp4ehor2w38sW/a3cB2LVpxs25y0lPSWF3tSYAyJKSCR70K+npcuRyucKUL58/D+XGjdsEBobw/PlLwsIiiIx8Q1RUDPHxCSQnp2SVQlFRUUFdXYK2tjYGBnqYmBjh6uqClVVZ7O1t3gVhTpiamuTbj/fy+J3nT+Xvv9ZxYNEKek8aTfDBE8QGBKPvZE+olzcGLvmTzFc25cs7kZGRQUREZFZaZHaoqani6uaO96mdnwRsaWlSVv3+E6Pn76KMtVO210tTU3hy15vuw+eSlBjH9QuHsgI2gPZ9xvNbrzo0bt8Ps7J2hXJvAgKFhRCwKQAjM0vGLNzLxkWj+Pa7vuzZ+SdlyxgVyOacaYOoWactt72PU/UbxUruG5pY4FypFuu2HGPMz8WjXo+A8ujSpT0JCYmMHTudCRNmoaurQ7duHbNtG7TvKI4dWwNgWN6F58fPYtuyCcEHj5MYWvprJQkIQGZR+r59u7Ju3XamTh2rdAn9MmXMuHLlBn37dlWqH/nh37W7VDQ1CLtwBbef+1JxYK+sNhutqtD17nmGGjoTERGJhUXBxTYePXrKkSOn8PG5zpMnAbx584CCss4AACAASURBVBaZLB11dXW0tTXR09PF2NgQa2tLateujp2dNY6OdlSo4Iy1taVC/6/Narhj3/Y79jdsz3B5BhfjErgmEtF42SzO9BqGSCxGYqBH/b9yl6xPSUkhIiKS8PDXvH6dGXxKpVLS02VIpWnIZOnIZJm/p6fLSEuTIZNl/puenp71WibLfP3+WHp6OjJZOnJ55r/p6XLS02VZQXXmOTnp6em0b9+C334bhVgsRk1NjRs37tKqVZPP+v3rr0Pp23MgUmkKEolG1nEVVVUcKlTH5+SubCX9Ae77nsWlcl0kGppU/aYFx3cs54cBUxGrqADgf/8amtq6hIU8zft/ioBAESHI+isQuVzOoc0LuXXpCNu3r6KGu3OB7B07c4Ofh4xmyopTaOnoF5KX2XPf9ywndizj5tU9Cu1HoOSwdOlqZsxYhEgE69cvp337jycO0qVStlfwoOOVY2iZmRDzNJArE2aSEhWDbYtvebh6Mz2DrivJewGBokUqlWJtXZWff+7H1KljlOpL9+5DePbsBd7eR5TqR37JrnaXirp61vmNVlXo8/IuJibl2b9/I56edfJl/+3bKP76639cu3YLf/8goqJiyMjIQF9fDwcHG2rUcKdZs0Y0aFC3WJY3GT/+dzZt2sXgwb2Jjo4lNjaO2Nh44uMTSExMIjk5meTkFFJTU98FYZkBlVz+YdynoiJGRUUVVVUVxGLxux8RItGH3z8cz/xRUfn37yrvbGRen2lHBVVVlXfnVLLaqKmpoaIiRlVVlZSUVE6cOMf9+xewtLTA0bEWP/3UnYkTR37mjjMpY1GFpp0G06rbh7ajvq/Agu23WDapG5VqfUuLLpnp+0e2LkFdU4umHQexetZAAh/dRO1doBcf+4YhU/9HhaoepKYkMWdYS4ZMW8eWpb/S4sfhVKpZfBRVBUoveZX1L36fQKUIsVhM+z7jKWPtxPfte7Jw6QK6tK//xfZaNqlBXc9GHNw4n67DFLuhuGL1huxcMYXL1x7hUdtVoX0JlAxGjRpEXFwCS5ason//UWhra9G0aYOs8y/PXMSkiitaZpmpPgYujrTYtxGA2IBgXpzyUoLXAgLKQSKRMGHCCObMWcqoUQPRU6LgTo0a7ly+fC33hnlELpcTExPH27dRvHkTRVRUDFFR0cTGxmUFDgkJCcTHJ5KYmEhCQhIWFmZs2bIiX/1UnziS6p8ZwPd5eRcAdXUJwcEh+Q7YevQYyp07D6hSpSJdu35PixbfUrt2NaWviOaVuXMnc+3aLXbuPICGhgba2ppoaWmhp6eLtXVZDAz0MTDQw9jYCBMTI0xNTTA1NcbCwgxjYyOl36e7eyMGD/6Vzp3bER0dQ/nyeZvU9mzUCJ+Tuz4K2AAkGpoMnb6Bxb92Qs/AhG+a/5h1LjkpnoCHN5iz+Qpqau9q+Z3azY0LB6lQ1YNj25dRzbMVZayd+HHoLNbNG0a5KvWygjsBAWUjBGxFQJ1vO2JaxoZxvwzhydPBTB7b84vFSJYtHEut2i2p2agDThVrFrKnHxCrqPBNsy6sWrsLj9ozFNaPQMliypRfiIuL53//20a3boPw9j6Ky7v9EoF7jmSlQwIkR75F09SYDLmc24tWUL7vjzmZFRAolYwePYiVKzcwcuQkNmxYrjQ/WrRozO+/L8LEpDwAH8q/ffgeyjwm+s/5D8fkcnnWz4drRFmrLKqqKqipqSGRqKGuro6GhjqamhpoaWmSkpLCyZNeiro9tLQ0ef48NN/XhYdH0KLFt8VGzTO/iMVivLxyr/mXF6ysqvDyXQB86pQXEyfOonPndhw5cgrITBV1dc2sX9ajRyeio2PR1tZi+PCfcrQD8H/27josqvQL4Ph36EakRFExAAVRMdfAWptQMFBQsdYu7MDCwAJb7NY1EAPExEJAsQMLGwsLQaVhfn/wE5cFFHDGQfd+nodHmLn3veciDHPufd9ztm/fw5UrN5k/f2qOYy5ZMpv27d0IDY1gzJjBODq2zVesnlOGU79eS96/fp6jEqS6ZjGGzNiMz9hOaGgVJz09DQVFJa6GHs5MwBS/3qGtVq8le9d78ezhLa6GHWHS8sMAlK5giUXNRhzZvRI71xH5ikkgkDYhYftJKljWZqzPXlZM78Pdu/fZsHIKSooF//br62rhMdWDBfPHMXHZoWwvPpJWv6UzMwa1JDZuLDra325GKfhvEIlEzJ8/lZcvXxEUFIyPz0pWrpxPWkIiz0+F0nDhjKxtH+wJ4NbazEpbJnYtMXMV1kMK/nu0tbVkHQKVKply+vR+4uMzm01nZIgRi8X/T8Ayp8eJxZmff0nIMp8XZz2urq6Gnl5xihfXQV+/OCoq+b/z4Ou7gTlzlkr+xP5PS0uTFy9ivrvdv5OS+PhP7N0bREZGBvv3H+bSpeOUL59ZXXDFig1MmjSbEyf8sba2Ii7uI+PGeXL+/CUA6tatydy5U9DW1uTp02fUrduaihXLIRZnJpDLl8/B1LS81M5ZWk6fDmPcOE/8/TdQrlxZxo0bCmR+70L+Xw0YYM6cH78A0ahRPVq0aEyVKpXzNRXyi8qVylFcz5ADmxfQc/RCABb53856vrh+SWZuCAUg/LgfFSxqUqV2M+q16JRtHHXNYszfcQWA6WtPZXvOeYBwoVpQtAgJ20+ka1ia0Qv24DutN9PnbGTW5L7f3ykXvVxbsXPXfo7sXIFdN+lV3SumVwIzq7qs2xLE6CGdvr+D4D9BJBIxZcpogoKC2bMnkDlzPChWTDvH+rQqA3pSZUBP2QQpEBQR0dEvcHcfIOswqFpVdlPbHz58iqamhtTGL1ZMm5iYN/ne/ktSEhzsx+rVW1m5ciNlyxrj7x/I6NGDAdi//zCVKn2tNjhs2AQqVzZj5cr5AHh5LWb48Ils3JiZiJqYlMlKaDZs+Bsfn5X4+s6T1Cn+FGFhFxg+fBK7dq2lXLncy+JL2s6dawq1n1NHR7Zu3vrNbWYMbIlBqXJUrlH4pSgCQVHxa0zU/o2oqmnS3d2bTWtXE3n3aaHGkJMTsWLJFE4FbuLlU+lWM2rQ2oXtW3dI9RiCX4+5eUVq1apOWloaGzcKPx8CQW5iYt6QnJyMg0NLWYciU7dv36NEibzLtf8ofX1d3r17n69tvyQlO3euoVy5snh5TaJKlUo8ffqc3bszE67Hj5/+vxpkZnXnhw+fcPVqJGPGDM4aZ+zYIVy5cpNHj3IWYvv48RPFisn+zmpBJCen4Oo6kK1bfbOmuRdGYmISNjb2WR+zZ2dON41LjMdt8xDqzGtF3fmtiHh8hRvPb9FiaUdsfOxputiRS0+vfWf0rzwm9Cc58TN3r4fnuc1k36P091iFvLxwb0Lw6xMSNhnQNypDq44DGDx0WrZqTQVRsZwRA4cNZ9uS8dnWFEiaRY1GxMW+40x4pNSOIfg1jRo1EIDly9eTnp4ulWMYG1fL+vzo0VPUrNmc6OgXzJmzBB0dUx4+/PpmacWKDejomHLlyg0AqlZtQv36tjRoYIetrUu2NS66uubZ3lQ8ffpMKvEL/tv27QtCXV0NDQ3p3V36FVy5coP27fO3PqkwDA31iY2N++52eSUltrYtMDevSFTUQwIDj+LnF4iT09d479y5j5VVZeT/X/4dMvutWVlV5vbt+0BmkmdjY4+1dTNWrNjAoEFFu3l1amoqBw4c5saNW6SkpKCoqECdOtZs3br7h8ZVVVUhJCQg62PixMypjuP3z+RP80ZEjD1CiHsA5oYVmHpwHmNbDCVkZAATWg5n6sH835HU1tLApKI5QdsW/VC8AsGvQkjYZKRZ+z68e/cW3w2FL7M8fkRX5ERizh7aLsHIspOTl6dhqy6sXLNTascQ/JpatGiMvr4eb9++58iRk1I91pcpTH5+6yhduiQAFhbm+Pt//f359xQmgICALYSGBtKwYV28vb9WqPv3m4oyZYylGr/gv+nEibOYmJSWdRgydedOFAkJifTs6Sy1Y5QqZcSnT5++u923khIXFydKly7J0KETCAo6jq1ti388K/5XIZb/Pyr++viXKZFXrpxg9uxJuLt7FPJsfo6oqEe4uQ2lUaN2GBpakpiYxNGjp1i1ajM6Oqbo6JhSvXpTuncfxLx5S0lLS+fZs5cUpBXUFymkEPbwAt3rZC6tUFJQQltVC5FIxMekzP+3+KSPlNAyKNC4gwf35X7kBVJSkgock0DwqxESNhmRV1DEddhc5s2azcuY2MKNIS/HsiUzCNjqzYe30mtKXK+lM6ePHST2w/f/IAr+O+Tl5Rk2rA8A3t6+UjvOv6cwfWFr25ygoGAg5xSmf6td2zpfRQkEAkm6efMOderUkHUYMrVp0y6KF9eR6l3GsmWNSUj4/pt2OTk5NmxYwuXLN3J9zTIxKcPnz4kYGxtla8NQqZIp16/fzjabJSMjg5s372BuXjHHOG3a/ElYWNHuOWlhYUZsbBSxsVG8eHEDFRUVFi+eRbdunVBVVUFJSYknT54RGHgML68lJCcnY2XViOLFzdDRMWXu3KVMmTIXHR1T9PQqceHClTyP9ZFP6GkUZ/DOcTRa6MCw3RP5nJLAbIdJTDk4F8uZNkwJnMuUtqMLdA593NqhoqbOjuWTf/TbIRAUeULCJkMmZtWo1ciBYaMKvzC5Tg0zHDu7sGvlFAlGll0xXUPMqtZjzeaDUjuG4NfUvXtnFBUVuHz5OrdvR0l8/G+tq9DU1KBUqRLcunUvxxSmfwsOPoOtbfOsr/+5zqJbt0ESj1sggMw1bPb2v9b6tRsrNuBXrw176rXlRJ8RpCUlIxaLuTDDh121WrC7biturtqU7/E6dLAlNvYDd+/el1rM5cqVJSUlJV/bqqmpsnPnavz8DrBlS/Y7bdHRz6lVqxqjRmV/TShfvixVq1ZmwYLlWY8tWLCcatUssqpK/tPOXQEYGEhvzZ6kqaqqIC8vR48enVm6dDYREUcpUcKAbdt8s5I6dXU1YmOjuHv365oxRcXMhtvp6el07do/z/EzEHPteSS967twxv0AakqqLDqxivXh25ltP5FIjxBmOUxk2K6JBY595OjhnD+xh5SkhEKdu0DwqxASNhmz7z6KyxfC2X/oXKHH8Jo2gJfRUVwNOyzByLJr2NqFv4XiI4J/0dbWolOndgAsXVq4al/f8r11FU5Odvj7B+YyhSmTvX13TE3rcupUGB072mc9/s8pkVu3FqyZr0CQH9u3+yMWi2ncuL6sQ8m3zy9eEblqM+1P7KVDeBDijAwe+gcStX0Pn5+/pFPEETqdP0IFJ7vvD/Z/tWpVx8ysAoMHj5Na3BUrlsvRIw4y12nlRkenGLt3r2fBghUEBR3Pevz167c4OdlSrZpljn2WLvXi/v3H1KjxJ9bWzbh//zFLl3oR8/o96zfv5969B+jpV0ZHxxT3ERN58iSaEiWr4dh5CJev3pXsCUvBP3unGRsbce3aSdq2bZ7jeQMDPSpXzuzH9vr1bd68uUNsbBT370fkGAfAxaUDcydPpqR2CWqVqQ6Ag1Vrrj2P5O9Le7G3agVA+6ptuByd/6IjX4wa3gNVNQ3+Xl60p6AKBD9KSNhkTEVNA+eBnowbM4WPnwo3D1tdTZkF3jPZuXIqiZ/jJRxhpso1GvEx/gOnw4TiI4Lshg7NnBbp5xfAhw/fX/hfEN+bwtS6dTN27tyfYwrTFwEBW7h+/TSVK5vi5fVrNscV/JqmTZuPvX1L5OR+rT+z4rQ00pKSyEhLIy0hEbUSBtxe/zfWY4cg+v+5qOrrFmjMZcu8uHLlptSStuLFiwHw4kX2pQFmZvVo3bpL1td5JSXjxw+jV68ufP6ckC3BDgzchrW1FZDZOmDJUi/GTBiHZfXanLsQialZAyqZ18V32SpKlDblj+adGDRtPUsPPGCx/21adBjAzRu3+bOpHaXL1qZn34k8evJCKt+Dn6lNmz8LtL2hlj6lihkR9fohAGfuh2NuWBEjLQNCH0ZkPVZez6RQ8Ywa607EyX0kJQjLNgS/r1/rL8lvqmrd5hiXt2DC9JWFHsO2RW3+aNiE/RvnSjCyr+Tk5GjYuisr1wh32QTZVapkSq1a1UhNTWPz5l0SH/9bU5hUVVWYNm1MjilM/95m9uxJ7Nixj9jYDxKPTyD4t5Mnz/Lu3TsWLZol61AKRL1kCayG9mGHVWO2V6qPkpYmxs1siH/0lIf+B9nX1JHDHfsQ9+BxgcatVas6u3atZefO/XTq1EfilY3j4j8hJyfHzt2HuBv1lNTUNAC8vDw4f/5StmqyeVmwYAVaWppZza7T0zM4ffYyQ0fOpm6DDpQ0roFRCUuGDhrBufAL6JUyw3mgJ967b7B47x0m+x6l27A5WNX5EwUFBZRU1LB1Gc6M9SHM//sKdZp14NSJ09So3pgKpg1xHzuPd+8LfoE1t/L4AKvPbqb2vJbUW9CGKYHffh/w6VMCzVu7YVjCCpsmXdi4NYD09Pz/n7Rp06zAcc9rN5l+f4+igbcdN17cZlSzgSzqOAuPAC8a+tgz45A3izrOLPC4AO5DXFHT0GTHCmEtm+D3JSpIxR+RSCT2Dfr+C5+g4OLexzBrcBt279lC3ZqmhRrj9ds4rK2bMXnFMYrplZBwhPDiyT1WzfiLu5HHJD624NcWFBSMq+sA9PR0uXs3TGJ3FYyNq2VdFX/27CW2ti54eU3i+vVbqKurMXRo9ubzdnauzJgxHmtrK6pWbcLJk/5ZhUjGjvVEX784Y8YMyTauQCBpzs5/8fhxNOfPS2+aujQkf4jjeI8hNFu/CGVtLYJ7DsPEoTWho6ZQY/wwqg7pw6OAI9xcsRH7Q38XePwrV27QsmVnxo4dkq2nWW6iXj+k99bhWV8/eR+Ne+OBnLt5jXPPI0hJSiH9QwYZJzNIT0hFJJIDkQhxxv9bjIhEyMsrkJ6WOS3SsGRpNDQ10dbWRqe4Dgb6epQoYUCpUiUwKVuSPj0HUKx4cXQNjHhwL4r4D+8A0CymR8my5lSq3oAaNvboG/1Y1c83L6M5uH0hN84fJ+FTHEbGZXFxdWbCmD7Iy3//dXPgjrHUK1eLHnU7k5KWQmJqEtef38I72JedfVajrKDMm0/v0NfI/S7o5u2BjHafgLKKKn86/sXV8CNEP4gExFQ0t6BHd2f69emAomLevcsyMjLQ1TUnJiYSJSWlwn4rJGrZyp1MnTQV713XUVH7b7fREPxaBrYti1gszqUObXZCwlaEhARtI+LEbs6d2ZGvF+7cdO01GWXtMrR2/vYfw8KIfnCTLQtHcf1SgMTHFvza0tPTMTWtS2xsHMHBe6hRo6qsQxIIZKZs2RoMGODGhAnDv79xEfJw3yGeBZ+h0VIvAKJ27OX1hau8CDlHa791aJYxRiwWs7lsDdye5l0V8Fvat+9BfPwnTpzwz3ObT58SOHI8nNNnznPjxi2ePn3M+xYxsB/kdORQT9BF36AMqdWS0NEviZuNN2oa2ln7p6Qk8S7mGe9ionly9zqB23wwtaqLipomnz9+IPFTHEmJn0hOTCA1NZn01FQyMtJRVlHDqIwpFSzrUMOmLSZm1aU6pfXp/Zsc3L6IyIunKGlchohzB1BRzjsBik/6iI2PA1cnnED0jz4DvbYMw62uM03MGuS5b+yHjzg49iPy2iXqt3TGZahX1rllZGRwOSSQUwGbeXLvKukZ6VQ0s+DggQ3o6xeT3AlLWRmTOlSybkTvsUtkHYpAkG/5TdiE9u9FSIPWXTl/wp+5i3cwcaRLocbo07MDgweNoVXnQdle0CUhKeEzqsKVK0Eu5OXladPmT7Zv9+fQoWAhYRP8Zz148Ij4+I/07+8m61AKTMPYiNcXr5KWkIi8qgovToejZ10FRU0NXpwJx7xbJ16GRqBdsVyhj9GmzZ94enrn+lzwmau4D59A9OP7yMsroK6lg65haUo2sERBU40xa/ehofU1gbj6/DCXXwRlS9YAlJRUMCpdEaPSFalSqylXww8TdeM8Kw4+lvjfxR9RpmIVBk5Zy4d3McwY2ALLKs2IOB+EbnGtXLd/8i46qzz+zZd3qG5cBa92Htx/84jwRxeZedgHZUVlZtiNp0bpr6/Bvmt2M2XSNNQ0tJmw5CClK2QvqiInJ0etxg7UauwAwPXzx9mx3APrms25EHEYoxJ60vsmSNCESWOYNH4yXYbMQk0t55pmgeBXJqxhK0Lk5ORwHeaF75LFPHhcuL5qzWyqoaCoyP2bERKODpISP6Gmri7xcQW/vqqzmxCifw4cYWn0WgDmHF2CxYyG2PjYY+Njz9Hbp2QbpEDwEyxfvgFDQ/2sQhi/EoNa1Snn0Jq9TdrjX98WcUYGldycqeben8cHjrCnvi0XPRdgs7jwa/OcnR1JSEgkJuYNAGIxBJ24ipW1LR3bdUZeWZMpq4JZFvCAudsuMtZnL5o1dGlq2TNbsgYQ9mQXloZNvnvMcQv3A7B61oBCxy1NxXQNmbExFDFyVK3WlMdPX+a6XVpGeq7l8dMy0vmQGMexoX542o6j15bhiMViYl6/p259JyaNm4RNG1e8tkTkSNZyU7VuczzXnkFNU4eaNVvwJI94ipqBf3VCU0ub7UvGyzoUgUDihIStiDEqY0Zj2+4MGVG4P4hyciKcOnck/Jjkiz8kJX4WEjZBng4O2o78ATmSd6bw9m3m+o+BNj0JGRlAyMgAWlZuItsABYKfIDr6OUlJScTHf5R1KIVSc8JwOkUcoUN4EE1WLUBeWRllbS1a7VpLh7CDOBzdja5V5UKPX6yYFurq6uzaFcC+YzewqmGLa4fOKCipMmXVccYt3IdR6a/NqNMyUrj+8jg1StlmG+fQnaXIiRSoU9rxu8dUUFTCwW0MV8MO8zHuXaFjlyY1NU08156hmG4J6tZpydWr93JsU1K7RK7l8Utpl8DeqhUikYiaZaohJxIxY+FKLC0a8PbteyavPE7nAdMKNL1TQUmJKSuD0dYtQd26rXnw6LnEzlWaJk0ex+WzQSR8kmzFYoFA1oSErQhq1XkQjx7cY9OO49/fOBf9e7bjRkQwESf3SjSu5MTPqKsLUyIFuVNTV6V69cwS2CdOnJVxNILfUW5NnZ+fDmNv43b429gT0LoLcfmoCChNW7YsR01NjTZtunx/4/+o0mXLMHXqHHp17oCCkgqTfY8ybtGBbInaF5GvTlGmWBW0VL42og5/4seNV8H0rr0431Mc2zgPAWBs1xqSOQkpUFBSYtLyI5iYV6d583YcPZG9P2te5fHbVmnOmfuZDa1Dblwg+sVLFs5cyJ9OfzFrU1iu39d8xaOgwGTfY+iXLEv9eq25fefRj53gT9CvtxNa2jpsE+6yCX4zQsJWBCkqqeAy1Ivpkz15H1vwq7TGJXXZ5beFwK0++K32zKqS9aNSU5LI+FKBSyD4BxEinNb04mXdGDCHffsOAbAmbCsNvO0Ysms8HxKEK57SlFsyIxaLuTDDh121WrC7biturtok6zALLa+mzqGjptJktTdOIQFU6GjP1QXLZRqniooKbm7OxMS8lWkcRY2xcbWsz5s2aYhYLKZ9r3FUqdWMGQNb8PrF46zng/euZWDbsjy5d50Lzw5QLK4EMwa2ZOagVkz0qE/AtQVYJ7Rl8/zRWfskJnxkcm8b3r56mmcMY3wyL2LeuVp0LyjJycnhPmcn1Ru2oUtHN7buOJTt+dzK43er3ZHH76KpOP4PHHxc0Limi+faEBx7/XjSIicnx4QlQZQsW4nGjey5diPqh8eUtslTJ3Al7DCfPwptXAS/DyFhK6LMrP7AslZj3McvKtT+9WqbE3J6D4/vXuT8CcncabOu34ZzISe4cUuoFCrI7vDgHZwesZ/1zovBAk7cCsGtjjNXxgcT4n4AQ00DPAK9ZB1mgfwKd3O+yCuZidq+h8/PX9Ip4gidzh+hgpOdrEP9Ibk1dRaJRKR+zGyYmxL/EbUShjKO8ov8V2D+Lzl9OoxDQYepUecPjuxaTkZGBqVMKnHx9IGsbS6fDcKojCmpGUncenWau/vDGb3AD48VR5BvKEe6XDoRyv7cKBXM8mO9AAjY4kP9lp3RK1Emz2OXr1QDZRU1Fk90lfp5/qi+45bRtF1vhg0azvyFXy+0WJWy4OTwvYSOCmRbT1+KqWkTHf2G0Lk3iF3zAQet0cyZG/HD7Qf+SU5OjjE+ezExr8afzdoRcTFSYmNLQx+3dmgXK87WxdJp1C4QyIKQsBVh9Vo6c/F8eKH3N9QvRouWLXkVLZkrYsX0StCyQ3/cx8yWyHiC34eRduab5DpW1qi+USVZK4VnUS+Ql5NHTk4Ot7qdufT0uoyjzL9f5W7OP+WWzNxe/zfWY4cg+v/aFVX93Hsz/Qryaupss3gWRzr/xXbLhtzftY9qI/rJOtQiVYmwKAkLu8Dw4ZPYuXMNBw+sQ5yRwZXQIKrVa8n1c5n9Pd+8fIqquiYa2rooyqkwwmI7akpaKKtkrp+e0fosc+0uMOnPw4yx2cs7/2c8uXedu1dDadGh/3dj8NpyHoA964p+U/NO/SbTvtd4vGbMYtT4BbluM85jIbVrNQMUmbkxlDZdhkolFjk5OUbO242Z1R+0bd2Rs2FXpXIcSZnmOYlr4Uf5FC/cZRP8HoSErQi7fzOCmnX++KExTE3L8uYfU01+VNP2vXn25DHb95yS2JiCX9vnlAQ+JmXe4UhITUTDTA1iwS/oa7++wJvHqFzCTFYhFsqvdDcnr2Qm/tFTHvofZF9TRw537EPcg8eyDrXQkj/E8SQoGOerJ3C5HUpaQiJRO/dzw3cDrXatwSXyLGYuHTjnIfs7udHRz4Wk7V+Sk1NwdR3I1q2+mJlVQEVZiZVrFvMq+j4f496jo2/E88d3uXh6PzUb2WftZ1zOAs1ienj0bshmn9FcP3/8H89VxqJGIxZNdKHzgGkoKH6/ibOquhYNW3fl+J7VpCQlSuVcJallxwG4jVrIhtVraNC4JNCEWQAAIABJREFUM14L1hH9LIbI2w8xr9yUtStX49R7IpNXHkNHz0jq8QybtRXLWk1o59CF46ckX41aUtxc7ShWXI8ti8bIOhSBQCKEhK0Iu3MlhOZ/1v+hMSqbmRDz/KGEIgJFRWU69Z/K9CmzSEhMlti4gl/Xm49vabOiKw197Gm+pAPNTG3gGWy/7099b1saeNsR8uAcsx0myizGhIREXr9+y6dPn8nIyPju9r/S3RzIO5lJT0lBXkWZ9if3Yu7WmTNDJsg61EJ7fioMzbLGqOrpIqeoiIl9S2LOX+L9zTsY1Mqsmlfe0ZbXEZdlGue6ddvZtm0Po0cPkmkcRY2iogJ16lizdevurMfa2TbGuIwJ4cd3Y93QlounD3At/CjV67fK2kZOXp6hMzbTb6IvBqXK4bfak8CtC7Oeb2znRjFdQ8yr5f9vpcvQzKR+uFMlCZyZ9NVt5sjQmVv4+DmFJT5LqWrVkIb1W6Gsro3XlvM0d/rrp8YzcOo6qtdvjXOHHgQdLrrrAWfM8uDG+ePEfxDWkwp+fULj7CIqJTmJh3euYNtyyQ+NY1mpDG9fRZORno6cvLxEYrOs1QSjMqZMn7ORudO/PwVF8Hsz0S3D2ZFf76YlJCTi5xHAp8DP7PPehIGBbJuuhoVdoEOHXiQlfb3AoKioiJKSIioqyqioqKCqqoK6uhrq6mpoaKijraSExcWrxLt0oJRpOZKDzxK1cz+PA4/QatcaDGpV5/qSNZzz8KLREtlPEf5nMgNgYt+S1xGXUS9ZgnIOmW9+Texacmbwr1s5La+mzo/2Hybu/iO0K5bj+alQiplVkFmM27f7M2bMNCZPHvVLNs6WJjk5OTZsWEL79m54e/syatRAAJw7tcXHZyXJiQlEnNhLGVMrVP/V9FgkEmFiXh0T8+pUtrZh88LR2HVz//+4oqwpv/kV8+xB1ufPHt3GuFzh2xT8LJWtG1J5aRAAKUkJvH7xGOPyFjKL568JK9i4wJ1urn1Yu8EXJ4dmMoslL67ObZg10xvv0R2Yvva0rMMRCH6IkLAVUfcjIyhboTK6Oprf3/gbtDRV0dAqTuzbF+gaSm4Rcoe/pjDX3YG+PR0wLSf9aRiCX4eamiq1alXj/PnLDBo0jo0bl6ChIZv+fU+fPqdz574kJSWjqqpCWlo6qampWR+fPyfkul/V//+7e80WAFrr69JdQ42P/7qbc7hT759xGt+VVzKjqKnBizPhmHfrxMvQCLQrlpN1qIX2z6bOcvLy6Fa1oJKbM+olS3C8R+Y6PaViWjRaJpspkY8ePWHo0Am4uw/A3V24kJUbNTVVdu5cTdu2XTEw0KN7904oKMgjr6hIWkoS7XuPx7BU9p/RD+9iiI99TZmKmS1Doh9GUtygVKFjePHkHjMGtsj6etbg1vgGFY3iQfmlpKIm02Tti56jF6KkrELfngNJ8l2Mi3NrWYeUw9Ejf1O9WmO2LBpL9xHzZB2OQFBoQsJWRN25EkIDm4YSGatkaRNinj+SaMKmb1SGxrbdGTlmHgF+C7+/g+A/Zfr0cbRr14Pg4DPY2Nizb98mypaV3M9ffnz69Jn27Xvw+XMCdevWJDBwKwoKCmRkZJCQkPj/jwQ+f07k8+cEEhISSEjI/PzTrXukbt+DqVtn1m7cifabd6zaF4SDikqRuZvzT3klM2lJyZz6ayQ3V2xEUUMNm8VFv9DCt9ScMJyaE4Zne8zEriUmdi1lFNFX3boNwty8ApMnj5R1KEWCjo4pM2dOYPDg3v96vBi7d6/H1tYFXV0dAOREIlJTk6nd2CHHOOlpqexZO4u4969RVFJGQ6s4LkMLd1c7+kEks4e2BWDFwcd8ePeKiT3+4FTARprY9yzUmP91LkO9UFRSYcjAYSSnLKBX95z/h7JkXFKf5auWMKDvIKrUaYZ1/aKXVAoE+SESi/NfelgkEol/tStRv6pZg1vh4+NJiybWPzxW977TuHzpIsYm5mjq6GNVp3mB5vvnJSUpkekD/mTh4rk4tK77w+MJfi/37j3A0dGNFy9iUFNTZds2X5o0afBTjp2RkUHnzn0JDg7ByMiQsLCDFCumXaAxLnkt5uHeIMQiEXc/fWLxixgqA520NClZygiV4sVotMwLLZO8y4gL/hv27g2iT58RXLhwhAoVft27mJI0dqwna9ZsoVMnB1av9v7mtmVM6tDYvhe2LsO/ud2PGti2LAoKSiw98LVy8qIJXbl7LeyXu8tW1OzdMIdjfiuZNXcWA//qJOtwcujVbxIBe/cya2MY2sUNZB2OQJBlYNuyiMXi71apEhK2Iiju/Ws8B/zJo4fnUVL88Zugr9/GcfZcJC9fvSUs7CLPX75hwJR1EogULp89yKG/F3Pp3D6UlIQbtoLs4uLicXUdSGhoBCKRCE/PcQwe3FvqFfQ8Pb1ZuHAlKirKnDlzAFPT8j80nlgsZuPGvxk71pO0tHRKly7Jjh1rsLD4tSpfCnIyNq7Gs2fXADh69BQTJsxk377NbNvmh7q6GkOH9s3atmrVJpw86Y+ubnGeP3/JmDHTuXv3PtHRL9DW1iQyMgQlJSW2b9/DlSs3mT9/ata+dnaujHAfxOu3H4m4cBUVFWXGjOyDbnGtn37OP8vmzbsYPnwSZcsac/XqyTy3Mylfj3otu9DOTboV/cRicY7XnoyMDF4/f0iJ0hWleuz/gsBtCwnavhiP6VMYObSbrMPJwbJqS5KTU/FcH4JcAdc9CgTSkt+ETfiJLYIiL57CqkY9iSRrAAZ62jjZ1WdwXwd6ujkR9/6NRMYFsG7QFg1tPeYs2i6xMQW/D21tLfbv38zgwb0Ri8VMnjyH3r1HZCsAIml79x5k4cKViESwefPyH07WILPoQa9eLpw6tR9j45JER7+gcWMHNmz4m4Jc9PpVGRtXy/r86NFT1KzZnOjoF0RFPcTOzhUbG3vq1m3FiBEe2fYbP34GFhYNsypzbtvmh42NPTY29hgYWFC/vi02NvZMmzb/p55Pbk6fDmPcOE/8/NZRunTJb24rFovp0WMItrbNuXTpOCtXzuft2/eMHj2NN2/jiLgYSWj4Fdo6/IVV9VaUMq5BaGgEnTr2ZPiQUez1P8DmjVuoWKEmlSybMXHqEuLiP/2kM81b1OuH2PjYZ32U8aiOb8gGZh1eSANvO2x87HFa3ZOXcTH5Gq9Hj84EBm7lyZNn6OiYkpaWlut28vLypKVKv+pwbheK5OTkhGRNQuxc3WnXczwzp3oye75kLgpL0onjO4iLfc0mb2HasuDXI9wSKWJCj+xg38a5LF2xWCrjlzLSlWiJW5FIROcB0/AZ54ybSxvKGutLbGzB70FeXp6ZMydgbW3FgAFj2LcviDt3otizZz0lS5aQ6LGuX4+kX7/RAEyZMoYWLRpLdHxLS3POnTvEsGET8fc/yMiRUzh27DQrV85HSyt/BYK+dUdn8+Zd6OrqkJCQiIWFGZMmuVOpkimQeYcmJuYNysrKKCkpsnjxTKysLGjevAPJySnExsaRlJSEkVFmb7ht23wpU8ZYouf/Janx999A6dIl6dChF4MG9aJt2+YAREbezdo2IyODwMBjlCpVgrCwCzRsWBdX1464unYEMu9WBQRsQVe3uERjLIwvDZ137VpLuXJlv7v9mTPhKCsr4erakZjX7zkTdgORnBxbtuxmy5bdiOTkUVBQpERpMDSxpFazKlw8fYCug2ZQ3qJm1jjRDyI5tGMpG9ZuwHfJMkqWNqGzsxNjRvZETVWl0OeTkJjE/sAzHDt2mmvXbvDy+TOSEj5h07Q5/ruWIS+f+7VaU4PyhPy/4mt6RjoWMxpiW6UlxVS1mNQ6syrjqrObmHd8GQs7zMhXLA0a1OXKlWCsrf9EX78yjx5dzDE9WV5entSUlEKfr6DoaNVpAIpKSizw8sSubWOqWhadZNjQoDhrN6ygZ/e/sKrTjFq5rJkUCIoqIWErIlKSEtnpO5nHd6+wb/82alaTzoucsZEe8bFvcp0aUlhGZcywae1Cn/4eHA1YiZyc0DBWkFOHDnaYmZXHyakXd+5EUa9eW3buXMMff9T8/s758Pr1Wxwde5GWlkb79m0ZPlw6vYnU1dVYt24RLVo0ZtiwSRw6FEydOq3YsWM11atXyfc4/05+AAYO7Jk1Bc/f/yDt2vUgNDQQvf+X61+92htrayu2bfNjypS57N27iePH9wDkOg1PknJLal69epMt6ba0NM/6PCTkHJUrm+Hk1BY/vwAaNiya61y/NHQOCNiK2b+KyPj6bmTXrv1ZX7969RqAsPDLvIv9RAXThrx/G4O6ZjFqNrTj8b0r9B6/jFdPongSdZ0ug74mNZEXTyKvoJht/NIVLOk3aSUAD+9c4fDOZfgu82Wxtw+lTSrg0q0zwwe7oqKcd0Pod+/j2bPvOCdPhhJ58xavXz0nOSkReQVFtHUMMDIxo1WD9ugalGTLorFUNG/IkcM7Mav47SJAp6PCMNEtQxmd7BUZP6ckIqJgr/EmJmV48uQyZcvWoFy5Wpw/fzjb91pOXp70NCFh+100a9ebc8f96Np1IJHXj8k6nGza2TbG2bUbGxe4U75yzR+qOCoQ/EzClMgi4PXzR8wf1R5FUQpnz/hJLVmDzDL/CgpKJCV8lOi4bV2G8+b1axYs2yXRcQW/FysrC8LDg7C2tiI+/iNt2nTB2bkvd+/e/6Fxk5OT6dixN+/fx2JhYYav7zypr5Pr0sWRsLCDlC9vQkzMG/78swPLl6/P1xTJL8nPzp1r8ryj4+RkS9OmDfHzC8jxXO3a1rx8mb9paZLwJanZutU32xvtQYN64uDQnY4d+7BixQbi4uKzntuzJ5AOHeywtW3B0aOnSE1N/WnxFkRuDZ2/GDiwJyEhAYSEBLB+4woUFBWxrtmGeXMX8+jhI8ytGzFtzSkW7LxGn/FLUVHTRElRBfL62fvGz2T5StYMmrqORf63Ge61Aw2dUnjP9aGkkRU16tizePl2njx9ic/SrTh2GkLlKs0xMKhCxQo18ZgwhUuXr6NXypT2vSfitSWCZQfuM2tTGEOmb6RVpwHUauzA3G0X0SxmQL26LfBdk/N8/8n/2kE6WNtlfT3jkA+WM23YffkAE1sVvDiIlpYmb9/eAaBu3dYEB4dkPaeiqsrD25fz1dRe8GsYOHUdL58/ZcmKv2UdSg4rl06hVBkT5o9yEn7mBL8MIWGTgk/xsWycP5ztSyfwIPLCN9/AXT4bxPzRTrh0d8H/7/noaEu/X5WWjh7xsZKbFgmgoKhEz9ELWeLtzfVbQmEaQd709HQ5cmQnAwf2Ql5enqNHT1OvXlvc3Ibw6FHBf3bEYjFDhkzgxo3b6OgUw99/IyoqylKIPKeKFcsRGhpI9+6dyMjIwMPDCyenniQmJuW5T17JT26qVbPg3r2HOR4PDj5D27YtctlDOvJKalxdO3L+/GHat2/N2bPnadGiE8nJyaSkpHDs2GlsbZujpaVJzZpVOXHi7E+LtyC+NHS+fPkG3t6+2Z57GfMOV7cxlDGpQ51azUhKSsKydlN6jl5IWdNq9HBfkNU3LDHhI7FvXqBvVBYNTR0SPsVlGyvh4wc0tHTyFZN51T8YOnMzS/bdZbDnRpRUizNz+iyqV2vEvNnzuXvvIWXNa+Iy1AvvXddZsu8enmtP02/SSprY9aCYrmGu46qoaTBxaRDNO/Rj0rhJ2DsOID095xvWlLQUDkWeoH3VNlmPTW4zkkiPEDrVcGBN6NZ8nce/ycvLExsbhZVVZTp27M2qVZsA2Lh2IW9ePGaeu4PwBvo3oaNnRGPb7sycPouEb7weysqJ4ztJ+PSBdXMGyzoUgSBfhIRNwt6/ecGc4XYYlyyOhVkpti0dx5S+jTi4bRFvXn59M5qelorfGk/2rp/Flm3rmODe9adNJSxWPHNapKQZlTGjbdfh9O47mpTU3BeXCwQAioqKzJ49kWvXTuLi4oRIBAcOHKFmzRb07z+a6OgX+R5rxYoN+PkFoKAgj7//BgwNf+46ShUVZZYsmc3GjUtRUVHm1Kkw5s5dmuf237qj82//vtbTr98oLC0bsnjxGvr16/6joefbt5IaIyNDunXrxPbtK5GXl+f27SiOHw8hPv4jDRrYUbVqE86du8SePYE/Ld6C+tLQ2c/vAJ4zF9Gx63B8fFbhu3wt4eHnqd3EkTlbL6CjV5IOfTyo09SRlOREzgVnTkfNSE9nz5qZ/NG8I0oqqpQ1q8qDW5eIe585hfLJveukpqago//tYia5sazZmBFz/mbp/iiWHnjAIv/bTFl5nJ6jF/JH8w6oaRSsXQWAY6/xjJy3i4hz4VQwbcCde9kvlBy/c4ZqpSww0NTLsW9Ha3sO3DhS4GP+05kzB+jVqyvjx89k8OBxVK9uxpmzB3kV/YAZA1uQJqxn+y106j8NRSVlXHqMknUoOegW12LT1tVcCT1E+HE/WYcjEHyXkLBJmLy8AkmJnxkyoAtzpvXj5pVDrFmzGPm098wf6Yj3mA6cDtzMwvHOfIh5RMjpvTRpkP91L5JQXFdPooVH/qmJvRtKqppMmLZKKuMLfi+lShmxfPlcLl8OxtExs6Htrl37sbZuyogRHllrhvJy4sRZJk+eA8DKlQsKtIZM0tq1a83evZl3DJYvX8+zZy9z3e5byc+/Xb9+C3Pzr3fhVq/25urVk3TsaM+YMdMkFnt+/DOp2bIlM9k8fvxM1lTHmJg3xMZ+wMjIkD17Ali8eBbXr5/i+vVTXL16kpMnz5KQkPhTY87N6dNhuVYr1NLSIh1lFnovJyI8gtKmVbF1HcnsTefo1H9qtt5NIpGI/pNXcznkIFP6NmbqX01QVFKmXc+xmWPp6NO5/1SWT+3JrCFt2L16On3GLfnhUuIKCpJbdl7Rsg5zt15Aq7ghDeq1YvnKnVnP+V0NzDYd8sGbx1mfH44Mxszgxyuv+vh44uPjyfbt/tSu3ZJKZmW5cOEo8bGvmdavKSlJCT98DIFsycnJ4TZqIaeDj3Hh8i1Zh5ND6+b16NG7N1sXjeXNy2hZhyMQfJPQh00Kjvuv5v71EE4cWpvtrllSUgp+B0LYuSsQq6oWzJjUJ89qXdLUve801A3MaGLfUyrjf3j7itnDbNm0ZTVNG1pJ5RiC31NU1EOmTp3HoUPBQOYb1D59XBgzZnCOaoIPHjzGxsaexMQkhg7ti6fnOFmEnEOXLv04cuQktrYt2Lp1RY7nv1SJjI39QNu2XRk0qDfdu3dizpwl2fp+HThwmDFjpmcVHbGzc2XGjPFYW1uRmJhEjRp/sm/fJszNM9e8SqLoSHz8x1yrXf6zsuWzZy+xtXXBy2sSoaERHD16CmXlzCmoQ4f2xd6+JZaWNly7djLbWN27D8LR0RYnJ1sge0+zn0lHx5TixXV48CAi67Gk5BRq1bXnTcwrJi4Nyprm+F+xb+M8ju5eQT2bJmzf7o31vGZcGX8CbdXM/78emwYT9eYRciI5SuuUxKeDJyW1C1bh9VTIJfr0GYGCggK9endn1PAeKCoqEBJyDgeHzLvFb97c5tDRcHq49sa++yjadh0m8XMV/Hxz3duREP+Wu7fy7sUnS7XqOvDmzVu8tkQI/dkEP53QOFuG0tNSmTWkDeMmjMStS3NZh5PDyInLeBWbgUOP0VI7xqUzgQRu9eZ82D60NFWldhzB7yky8i6TJ8/h5MnMdU9KSooMGtSbESP6oa2tRVzcRxo2tOXZs5c0adKAPXvWF5k/tE+fPqNGjeakp6dz9Ogu4uI+0rx5o6zn80p+rl+/la2sf+XKZnh4ZC/r/yVhA1i2bB13795n6VIvQDIJm46OKf36dWfu3CmFHqOoO3fuEm3adGHu3Mn069eD2A8fqVW7DUlJSUz2PZbn+q/f3f3ICJZNdkNFVZVDQX9TuZJkktbU1DScXd05efwIlarWR0Vdk5sXTiDOyKBGnXrM9ByFvq4GNWpk/q0UyclRpVZTBkxZW2R+pwU/Ji72DRO712X8pPGMGdlT1uHkEBf/ifLlatF77BJqNrL7/g4CgQQJCZuM3bkayrbFY7l0IajIJSzzFu8g5FwkrsPmSvU4G+cPR19Xgy1rpFNmXPD7u3LlBpMmzSY8/CIAqqoqDB/+FyEh5wkNjaBsWWNCQgLQ1NSQcaTZeXh4sXz5eipXNuP27XtUr16Fkyf3yjqs75o50wdvb18uXz6er35kP1PU64f03vq1OuGT99FMaDWc958/EBQZjJxIhL6GLsud52Kk/e2kq3//0ezatZ9jwXtxbN8TBSUVJq8KRk0tf730fldJCZ9YNKEL0Q9uMXXGNIYN6vJD4/kfOMHggSNBLKLP+KVUqd0MyOzRd+64H0f3rCQm+gHaOnpYVrUi7HTmHZiZG86ia/jttgOCoiVl71rSjuwAkQg5k0oou89HpJTZSzDZdwqJQduYLCfHo4cX0NBQk3G0OVUwbUjVem1wHjhd1qEI/mOEhK0IWDdnMBaVyrF4btGa1rFpx3E2bNrDgCnrpHqchE9xzBrShtlenjg7Nfr+DgJBHs6du8SECTO5evVm1mNqamqEhQVStmzRe2MXH/+RKlVs+PjxM+7u/Vm4cBUODq3YtGmZ1I4ZlxjPsN0Tuf0qCpEIlnaaQx0Ta1af3cyasK0oyMnTolITPO2+PXVURyfzjl5sbJTUYv1RX5o6HxvmRzFVLbRUMhOtVWc3cSfmfr6aOn85T8NS5fFYfgQFpbx7nf3X7N80nyO7llO3QSMO+K9EUbFga+fi4j/h1GkQly+co6aNLT1HL85z/V3c+9fs3zSPyAsn+dPpL/au96Jjvyn82b6PJE5F8BNkvH1F4pgOqK0MRqSsQtLsQcjXbopii06k37tO6v71pIUfYZqSMtWqV+fg/tWyDjkHm6ZdSE5TYOQ8oTWR4OfKb8ImzDeQIqe+HuzZsZUbd4pWkluyhK5UqkT+m5qGNj3cFzB+7ERevHov9eMJfl9//FGTkyf3sn//ZiwszFFRUWbnztVSTdbiEuNx2zyEOvNaUXd+KyIeXwFg9dnN1J7XknoL2jAlMPe71FpamkybllmAYvPm3Sxb5sWBA0fw8PCSWrzj98/kT/NGRIw9Qoh7AOaGFQi5f46gyGDOjgwgfPQhhjbp+91x7t8/D0CfPiOkFuuP+mdT5y/JGuS/qXPouWtZTaw1tHWFZO1f2rmNYeQ8P65cvIBx6RqYlP8Dk/L1KFehHuUq1qd8xQaUr9iACqYNMz/MbKhobkNF80aYmjemYoU63Lt7lzEL9tB3/PJvFkvRLm5AD/cFzN1+iathhwGEZO1XlJ4OKUmI09MQJyci0jVEnJ5OyvpZKPWZAECfcUsJO3OKh4/zXwW4IPz9D6KjY0rv3gXvE1jZohJvY4TCI4KiS3IlpwQ56OgZ0bJDf0aMmk3wwaJTNdGkTAlev3hC4ud4VNW1pHos82r1qd3YgT4DpnLQf8lPa10g+D01alSP0NBAMjIypL6+5UsCtKnHMlLSUkhMTcqWACkrKPPm07s893dzc2bJkrU8eRLN8+evmD59LFOnzsPIyJDBg3tLNNb4pI+EPbzACufMBFJJQQklBSXWh29nRNN+KCtkFgXR19D97li6usWZNWsikybNZuTIgVhamks0VknIranzjkt70VLRJGDAlm/uGxAUQs/uf2FRoxF/NO/I2jmDuXbuGNX++Hl97X4FFS1rMW/7JY7vXUtqSjJisRixOAPE4qzPM/8Fsj7P/NDRL0mLDv0K9DualPCJR3eu4NRnovROSiAVcnolUHTqx2e3eqCkgkINGxRqNCJl33rk67ZArnjmFGVTq3qAGEUFeYke/9atezRokFnMqHz5sixbNqfAY9StY80+P6G8v6DoEqZESllaagozB7Vi8rTxuHZsKutwsnTrO5WYN/H0HrcMkUi6SVRqShJzRjjQ3a0bY4c5C0mboMiLT/qIjY8DVyecyPb70WvLMNzqOtPErEG+xjl1KhRHx54oKSly/fppFi1axcqVm1izxoeOHe0lFu+N57cYsWcy5gYVuPnyDtWNq+DVzoPWy5xpa9mc4LtnUFZUZobdeGqUrpqvMb9MGXz//p7UXyMKIiUthcozGhI+OihHnzCfEytJTk1mQqvcr7Bv3BrAyGGjqdvMEbdRPgDMHtqW6AeR+PjdRPU/voZNljwHNOfl0yiE9xi/HvHHOJJm9UdlwnJQ1yJp9iAUGrQm9dB2VOfuRCSvwCenyrzx+pv5I9vz/v09iRw3Lu4jVas2Jj7+I8APrb199uINVpb1WbovSrjjLviphCmRRYSCohKdB05n+pSZfE5IlnU4WVYtmUjMs/uEBG2T+rEUlVToPWYJG9dtwNyiGQPc53MmPJKMjPxfLBAIfqYn76LR0yjO4J3jaLTQgWG7J/I5JYH7bx4R/ugizZd0wNbXhcvR1785TpMmDbCx+YOUlFQmT56Dl5cHtrYt+OuvkZw6FSqxeNMy0rn2PJLe9V04434ANSVVFp1YRVpGOh8S4zg21A9P23H02jKc/F6ke/o0cwqoo2NPicUpCYVt6rxg0SZGDhtFc6e/spI1gAlLDgIwsqPsevj9133++IGXT6NwGTJb1qEICiH96llEJUoj0tZFpKCIQoPWpGz1QfzyCQl9GvO5ZwNITkRzSk9U1H68QFRGRgY9egzBxKRGVrIG8PZt4ZdeGJfUR05Onod3Lv9wfAKBNAgJ209gUaMRxuUtmDxzraxDyaKupsymjYsJ2OrNs4fSb2hZqlwlpq46QT+P1Xz4rECf3kOxqNqKoWMWcf5y0S1uIPhvkmQC5O09HTk5Ebt3H+DGjdts3bqCKlUq4ejYk2vXIiUSb0ntEpTULkGtMtUBcLBqzbXnkZTSLoG9VStEIhE1y1RDTiTi3ef8vanR1NRgxYq5nD4dxvnzRedNTGGaOo/zWMhsz1m07zU+x5Q7kUiE57oQALbL5DT2AAAgAElEQVQvE6bjycKswa0BsGnrKuNIBIUh0i9Jxp0riJMSEYvFpF8NRdGxL+rbLqK+MRT1jaGgrMqBmo0orpvzQktBrF69BV1dcwICjjB27BBiY6OIjY2iRAkDWrbszK1bhb97p6ahSdTNcz8Un0AgLULC9pN0/GsKu7Zt4ta9orOo1dqqPOMne7DWazBJCZ+kfjyRSETpCpa07zUOz3Uh9ByzmFfvU+japS+W1dsycuIyrtx4KPU4BILvkWQCZGpanh49nAFwd/dALBYTEhKAmpoqTZq05/Hjpz8cr6GWPqWKGRH1OvP358z9cMwNK9K2SnPO3A8H4P6bR6Skp6Krnv9G1V27OqGqqkLr1s5kZGT8cJw/KiElkVNRodhVaZX12PSg+dRb0JYG3nacuHcWr3Ye2fbpM2Aya1b40m3EfFp2HJDruPpGZWjfazwhQdt4cu/bd00FkhUf+4bYty/pNWaRrEMRFJJ8JWvkG7YlYZgtiYNaQkYGim1ccmwX8+whpUuXKdQxzp27hI6OKePGeVK/fm1ev77FhAlfpz7fvp05Y6FBA1tevHhVqGMYlDDi8d1rhdpXIJA2YQ3bT3Rox1JePbrGkQMrZB1KNs49JhH3KQW30YtkslYlIyODR3cuczkkkPDjfhw+4k9VS5OfHodA8E9tVnRlScdZmBqUZ87RJXxOSaCcbhlexb9mYqsR3H/ziHarenBz0pnv/t7Exn7A0tKGxMQktm3zpW3b5ojFYooXNwPg3r1z6Ot/vyDIt9x4fothfpNISUvFRLc0yzvPQU1JlSG7JnDjxW2UFBSZYTeeRhXrFWjcpKRkjIyqULmyGWFhB38oxp+tXcfBhJwMZsDk1VSt2/y72w9xqEh6WirLDtzPqiIpkK6RnaxI/BwvrF37DxjnWhOnjo4snDc23/vExLyhUqX6WV/fuROGoaF+rtuKxWJq1mzOqlULqF3busDxzfBazWKfRfjsuo6SStHrFSf4PQl92Iqg1JQkZgxsyYxZU3B2LDp9yeI/JlK/UUfauoygRkNbmcayasZfdHOxp0+31jKNQyCQdAK0fPl6PDy8KFHCgGvXTqKkpER6ejp6epUAiI6+ioaGujRPqdCCgo7j6jqQ3bvX0bx50Xntykt6egZNW3Tj1o2ruM/ZQQWLWvnaLy01haHtMoutCH/rpC8p4RPuHS3p77Ga6vVbfX8HwS9tiENFlvkuokvHlt/dNjU1FTu7bkREZE7HPnJkF3XqFDwJKwixWEyZsrWpVKMxfcYtleqxBIIvhKIjRZCikgqdB0xj4vgpnD0v/XVj+aWlqcrgoQM5d1z2JW0NSpXn7r1Hsg5DIMCqlAUnh+8ldFQg23r6UkxNGyUFJVa7eBM+OojTI/YX6G5Vv37dMTIy5NWr12zcuAMAeXl5Xr7MbAZeunR1UlNTpXIuP6pt2+aUKWNMp059SElJkXU435SckkrNOnbcuXWDiUuD8p2sASQnJWZ9fty/6DX3/d0oKinTvtd4IVn7D0hLSSE9LZU/G9f57rYzZ/pgYGBBRMRl5s+fhrq6WlaydvToKWrWbM7cuUuxsbHHxsYeXV3zrM9XrdrEnDlLsLBoiI2NPfXqtSUoKDjb+A0b2ufaZ1IkEjFtxmQunQkk7v1ryZy4QCAhQsL2k1Wp3Yx2bmNwce7N2CkrSUlNk3VIADg7NibqRgSJn+NlGoehcQWiooR1bILfj6KiIrNnTwJg/vzlpKVl/u6rqCjz+HHmVWQDA4t8V3H82S5dOgaApaWNjCPJW1z8J6pUbc7rmFdMX3OKkmXN8r1vRkYGo50zWx780bwje9bO4p3QSFeq5BUUadVpoKzDEPwED+9cRk5OHn39Yt/cTkfHFG9vXxwdbXn37i59+34tRHP6dBjjxnni57eOceOGEhISQEhIAKqqKlmf9+/vBsDAgT0JCQlg48YlDB06IWsN7t2798nIyCA8/CKfPyfkOH4ft3boGRqxYV7Bm28LBNIkJGwyUKepI+OXBBISEk7Dpq7cuCX7qTfFdTSxqvkH188dl2kchsblefpIuMMm+D3Z27fE0FCft2/fc+DA1/Lz2tpf+399WddW1CgoKHDgwBbevn2Pv3/RWsuWnp7BtFm+mFdqQEpKKjPWn0VHz6hAYwxrn/l9X7DzOm4jvQHw6NWwyCbQAsGv5MGtC6iqf7+kf2DgNh4/vsz69YuyNV4PC7vA8OGT2LlzTYF6rZmbV0RBQZ5372IB8PMLwNm5HU2bNuDQoeBc91m2fA53b4Tz4olk+sUJBJIgJGwyUly/JENnbqN6A3vatOnEnEU7ZN6XrF27NlwJle0bMUPjCrx4+kDm3wuBQBrk5eUZNWoQAHPmLMlKBmbOzOwLtnfvRgCsrZvJJL7vsbH5g9q1q9OnzwgSEhK/v4OUpaam4T52HiVLVWf54mXUberEjA1nUdf89lX8fzvqt5L0tFQmLj2IuqY2AN67MqtFxjx7IPG4BYL/mmcPb6Grl3uxkH9q0KBOtgtYAMnJKbi6DmTrVl/MzCoU6LgXL15FTk4OPb3M6rh79wbh6GhLhw527NkTmOs+LZv9QXnTSqz/X3t3HVVl1v5//H0OISCI2CihIuY4ilhgoGKC2N3i2N3dOha2M3Y7dgeoY2Bhd4sBKoqYSEqd3x9+H2b4iaPACZTrtdasZ55z33vvz3GNcK5z75jRN0VjCaFJUrDpkFKppEYjTwbP3MbmjVup6d6NgGe6mzfdskl17l8/R1Rk2Ldv1hDTLBboGxjyNOi1zjIIoUnt2jUjc2YT/P0fc+bMBd68ecvs2Yvx9GxDtWqVAAgISL9T8Q4d2gqAlVUpnWWIiIiiS4+x5M37KxvXbaCaRyfm7rhL6z5TMTQ0SnF/TrWaM2rhAazt/jk828TUnMXegeSxLqTO6EJkSCEvnmBj+/1Pxv7NwECf8uUd2LBh23e3Wbx4DVWqeDB27AxWrvy8A/aVKzfInj0bNjb5cHFx5saN23z4EJps+9Wr5hAUeJ97186kKrMQ6iYFWzpgaWPP0Nm7yFuwFFWrNmTFeh+d5MiRzYwSDuW5eV630yItre24fkvWsYmfk7GxET16dAJg2rT52NtXBD4fsP2/J203b57UVbxv+t+TNV1MFXz77iMt2g7CxtYBn/0HqN9+MHN33KGx5wj09fVT3a+ZefYkxZoQQr0+vAmmRIkiqWqrVCpZvXoBV67cZPbsxd/V5n9r2Hx8NuHsXA6AHTv24+//mF9/rYaDgythYeFJpqb/268lCuFYwYl1c4ekKrMQ6iYFWzqhp29A/XaD6DluBbNmzKVxqyG8fqv9DUA8GtTl6mlvrY/7b7mtCnLvfoBOMwihST17dkRfXw8/v4s4O5fj0qW/kzxps7JK2forbUlISEh8shYcfEtr4z4PCsG9UTfsC5XjnJ8fLXtMYs62W9Rp3jPJOhchRPoUHRlOoUIFUt3exMSYLVuWsX37Xtav//4nbf+TkJDA7t0+nD69jxs3fLlxw5e//lry1WmRAOtXz+bDm2DOpoMdtIWQ33TpTIGiDoxa6A2G5jg5N+B50Futjt+mmSsPbp7T6WLbXFZ23H8g60bEzyt79my0aNEIgDx5cmFnlz/Jk7b0Knv2z9+QP3x4nkyZMml8vHsPAqlWsx0lS1bm7p37eA5fwMyNV6jq3k7jYwsh1CdfgaIsWbwqTX1YWGRl27ZVeHn9ibd3ymYC+fldJG/e3OTNmyfxNWfncty//5Dg4OSXoljmyUGd+h5sXzYxcZdJIXRFDs5Ox3asmIwy7iNb1k7V6rjzl+5i8cIlDJ+3B+PMWbQ6NsCN80c4e3Adxw+u0PrYQmjL48eBODrWRKlUMnRob2bMWMiFC4ewty+o62jJqlChDg8ePNZKxktX79Knzxju37lJrnz5adFjIiUcXTQ6phBCc549us3vfd05fnw/pUunz51wkxMZFY2NTRncWvfDrXU/XccRPyE5OPsn4Na6P+dOHeeE322tjtu/e2PKVXRi7ZzBOvlWKY+VHc8D5Amb+LkVLGiLq2sVEhISmDFjIQ0b1k23xVq3boN58OAxe/eu12jGo74XKe3oRq0aDYmIimXonJ1MXO4rxZoQPzhruxLkzV+YXn1H6zpKipgYG9HBszMHtywiLiZG13FSLCY6Sp4O/iTkCVs6d+bQZs4f2cK5k5tRKr9ZgKtNVHQMVV3bUaJcTeq27KO1cQHi4+MY0KQYjx9fxsw05Tu+CfGjuHTpGrVqNQcgMPAKWbKYfaOF9s2du5RJk7xYsOB32rdvrpEx9vucZujQcQQHPadAUQfa9p9OPtvUbVAghNC+yJhQNlwZzouPD1AooH2ZWRjoGbHx6mjiEj6hVOhRNWs7NowZwdnzf1O0cOp2jNSF+PgErKzLULZaQ9r2nabrOCnS080WfQNDPNoNxql2c8zMs+s6kvj/yBO2n4RTrRbExMTx58p9AEREfqJLn2kMHLlIo2eVGRsZsvmvBfjuW8udK9rdsU5PT5+cljbcvvdUq+MKoW337z9M/Pd167boMEny9u07xKRJXvTp00VjxdqchRvo0NYT8xzWTFl9imFzdkmxJsQPZuuNiRTP7cKE2scY7XqQPGaF2HVrGu7F+jPa1QeP4oM4H76L3Pny06PXKF3HTRE9PSXDRg3F79AWIsOTPwYgvfqlXDVad+pKWIg/E7pWY82s/jy6fVEnu/yKtJGCLZ1TKpW06DGBOTNncebCXSq5tORJwAsOHzzI0LF/anRsu/x5WLR4Lmu8BvL2lXbPhcptZcetuzItUvzcjh49ReXKFYDPT7LCwyN0nCipDh36ULOmC5Mnj9BI/xOnLmHy+Ek07DiMAdM2kT23tUbGEUJoTlRsGA/fnKdS/lYA6CsNMTE0BxREx4Un3mNulIuWvaZw/cpFAp++1GHilBvYpy1ZslqwxmugrqOkSP7CDly7eo35XkO5fPkoFcqVYMP8YUztXZcTB9YTHRmu64jiO8mUyB/EGq8BXDntTZMuo3Gp34GP718zd3hLmrduyeTRnhode8L0tezcvoshXjsxzKSdKYq++9Zw5eQefP9eh4mx5nejE0JXEhIScHSsSUDAM6pXr8z27SszxFb1g0d4sXrZMlr0nES1+h10HUcIkUrPPtzmr6sjsTSz53noHWyylqRFqQm8iwxi4ZkOgIoEVQJDq+0ku4kVYzpXomDBAhz2Ttuukdq2Y/dRunr2ZNLKU+TI82N8uRQbE82+9bO5cHw3U2dMoW2z6iQkqNhz8BzLl2/k+qWzlK3qQRX3dlgVKKbruBnS906JlILtBxEV8ZGP79+Q2+qfBf/vXr9gzrDmdOnejZEDW2ts7IQEFY1aDSZOlYn2A71QKDS/li4hIYHlv/fAMnc2Nq6apPHxhNAlf//HVK3akOjoaHr39mTKlJG6jqRRXXtPYMemjXQcPJcKNRrrOo4QIg0C399gpm8jhrjsoEA2B7Zen4CRvilRcWHY56hAmXxuXH6+n1NPNjKgykZuXTzGnxM82b5rIzVcyuo6for8Uqo2hsZZGTZ3t66joFKpCAt9y/uQF7x7HcS7kCDevX7Bh9ef//ftqyCKlHamy/BF+N88z7q5gylT3onF80aQzeLzeuknT1+xaMl2dm3bTLZc+aji1o4yld0wMJT9A7RFCrYM4vXLp8wd3oL+QwbSv7vmPviEfoykcrUWVHZrj4t7e42N82/RkeHMHNSIjp07MHxAK62MKYSuHDt2mmbNPFGpVPz55wxat26i60ga0brDEA4d2Ee30Usp7VRb13GEEGkUGh3CTN/GTK17BgD/Nxc4fP9PHr69xByPmygUClQqFYP2/cLcBp93vf5zgif+t87x6OE5TIx/nOLg7IWbuNVpytA5uyhY1EFr40ZHRXDN7yAPb57j3esXvPu/Is0wkzE5cucjl2Ve8ubNi7V1XmxtLClgmxeLrKa4123GzE2XMTA0IjoynB0rpnDv6inmzp9B/TrlE/uPiY1j0/bjrFq1kSf+d6lYsxlV3NqS0/LH2RzmRyUFWwYS/Owh80a2ZtTY0XTr5KaxcW7eCcTdrSU9xi2nYDFHjY3zbyFBT/Aa2oxlK/6grmsZrYwphK4sXbqWESOmoFQq8fHZTPny2vtAoA31G/fg7Elf+kxeRzGHyrqOI4RQE68TzWhXZgZ5zOzYf2cun+IjuRV8lNalp1I4pxP3Qk6z89Y0RtU4AEBcXBwj2jpSyL4wvkf/0nH6lKnk0oI3b94zccUJjY6TEB/P/et+nD+2gxvnj1C8VDlca1bDrkA+7ArkpWB+SyzMM/9nH+Urt6Rem8FJft7evHCUjQtH4lq3PvNnDiSzSdJlJzduB7BoyRZ89u2kmENlPIct1Mj7E59JwZbBPH9yl4Vj2jFl2hTat3TV2Dh/bT/O2JHjGTF/H1kscmpsnH+7dfE4fy0YzpEj27HLn0crYwqhK/36jWL9+m2YmZly+vR+bGzy6TpSmsXHJ1CzbgduXrvCoJnbtPrNtBBC8559uM2GK8OJT4glR2Yb2jt68fLjA7bemECCKh4DZSZalZ6CrUXJf9o8us20fu6MmTiOQX3b6TB9yjx6EkQ5x+qfZwk411F7/0FP7nH+2E4u+u7GInsuGjVthGc7d6zypnxL/sGj/uDpqwia/jYmyevhoe/Y9Mdogp/5s3jxLKo6lfii7YtX73Eo5cL8XfdS/V7Et0nBlgEFPLjOn+M7M2eBF80aaO7b6wHDF+B39gL9p/6Fnr6Bxsb5t0Nb/uDm+UOcOPrXF98GCfEziYuLw82tDRcvXiV/fmtOntyLmZmprmOlWnx8As5VmvH44QNGzN9LvvxFdR1JCJFO7Fs/m4Nb/uDchb+xt9PuRh7XAvUIfKNEqQClQoVSCb9YxWOd/dufixs06cm1q9eYufGy2vK8fhnI/FFtSIiPp65HQzw7NKBsafs09Xns1A369h3J2MV/f3FNpVJx0XcP25dNonXHzsyY2D3J9ecv3+JU0Y1Zm6+mKYP4b3IOWwaUv3Apuo1ZysB+gznw90WNjTP79z6YZjbm8PbFGhvj/1e7RS/Mc+Sjc49JGj1/Tghd09fXZ+vW5eTNm5uAgGd06NCb+Ph4XcdKldjYOBzKuRPw5BHjlvwtxZoQIgmP9oOxtLWnnltb4uMTtDp25CeIilEQ8UlBWLSS0EglQe+/72Px2lUzifj4nuN7Vqstz5VTBzDKZIj/PV/+nDM4zcXazXuBeB8+zYvAB0SEfXl+nEKhoHz1RoxceID1K5cS+Px1kusREdEYaGlncPFtUrD9ZAqVKIfnsIX07NqXoyeva2QMPT0l3bu15+GtCxrpPzkKhYL2A724c/MG0+Zu1Nq4QuhC1qzm7N27AWNjI3x9/RgzZpquI6VKuYoNeBPyionLfWXxuhAiWQOnbyX0/Vs6dx2t1XEzJzNZJ/LT9+2CbZHVjIqVq3L6oPo+j5SpUp+PoaHEJ6S+cH3w6AVjpqykTMWmuNdrxcOANwyetZ3MZuZfbWORw5K8Nvbcvpd0Bl1EZDSGsltkuiEF20+omENl2g+cReeOPThz4a5GxihezJZXzx9rpO+vMTLOTPexy1m6aJFGnyAKkR7Y2eVn06alKBQKlixZy19/bdd1pBTZufcYT588ZNySo2TNnlvXcYQQ6VRmM3M8hy9k3+4d7PU+qbVxTTKpUCqSztiJivn+9oWLFCL843u15clpaUP23FbsO3g+Re2ePH3FpBlrKV+5JTVqNOL67QA8Ogxn2vrztOo1hUIlyn2zj9xWdty99yTJa5FRnzDMJEtQ0gsp2H5SJcu70qrXJNq27sKla/5q77+IXT5C378m5lO02vv+Lzktbeg0ZC69ewzA//FLrY4thLa5uDgzY8ZYAPr1G83Zs5d0nOj7jRo5hSKlK0mxJoT4JgfnujhWcaerZ29CP4ZrZUwjAxXK/++B2qe47z9ntmgRO6Ij1ZvVsWp9tmzz/uZ9z1+8ZdrcTThVa0vlSu6cu3SP2i36MWPDRdr2m0Exh8ro6el/97g58xbggX9AktfCw6MxzGSc0rcgNEQKtp9YmcruNPYcRfNmnblxO0CtfRsa6JPT0prXL7W/CU3xMlVxbfwbLVv3JixcuwWjENrWtWt7OnZsSUJCAs2bd+Hp0+e6jvRNh4+e49XL57TvP1PXUYQQPwjPYQsxMjaljltHrYxnYgjxKtDXU2Ggp0JfqSImBQVbqZKFiY1R72eQMlXq4+d7mKjoLx/1BYd8wGvRNqrW6kT58rXwPXmJag26Mn3DBToMms0v5aqneiO4XPkK8OTJ//+ETdawpSdSsP3kKtRoQv12g2jcuCN3HjxTa9/5bArw+sWTb9+oATWbdCNn3gI0btmfV68/6CSDENri5TWBChUciYiIpEGD9kRFpe8vKoYMmUChYmXJluvHP5JACKEdSqWSQTO28uDuLSZPW6bx8bKZqqhXKpYaxeNwKRZH1aJx1Hf4/jmRpUsVQaVSqfUpW7acebG0KcTO/Z8PIX/zLoz5S3dRo15XHBxq4HPoNBVrt2X6+ot0HraQUk61MVDDOrPcVnYEBSb9PBcVJWvY0hMp2DKASnVaUbt5Txo27MCDRy/U1m+BAvl5FaSbgk2hUNBuwCzMc+bHuVJD9vic00kOIbRBX1+fLVuWkTt3TgIDn3P0qPbWeaTU6bPXeBbwmHb9Z+g6ihDiB5Pb2o5GnYYzd9Zsbtx+qNGxFArIYvy5cMthpiKXuQrTFNQnRpkMUSiVPH+i3nPKHKt6sGjBMmo36EXJki7s2v03pas0Ztq6c3QdtZgyld0xNFLvVMWclraEvHxKTGxc4muRUZ/UUgwK9ZCCLYNwqd+Bah6d8WjQkSdPX6mlz0KF8vM6SLsbj/ybgaERzbuPp22/6QzoO4Tu/WcRGfVJZ3mE0CRz8yy0adMUgJMnz+o4zdf1HzAOW/uS5La203UUIcQPqHazHtjal6SBR3utb/WfUoaGRrwIVH/BZpYtL8XK1WXqmjP0GLeC8tUbYWSiufM4DTMZYW6Rk/uPghJfi4iMUnthKFJPCrYMxLXxbzjXaYm7R0eePX+T5v6KFs5PiI6esP1bcUcXRi86yH3/AJyrtuDydc1+KyeErlSuXB4AX18/HSdJ3rVrD3j84B7t+k/XdRQhxA+s/+8biYqMoGW7gbqO8p8ym5rx6tkjtfZpZp4dz+ELcarZDBPTr2/Hr265rQpy5+4/+xJEyRO2dEUKtgymTvNeOFZtgFuDTrwIfpemvkoWz09wOijYAEzNs9F9zDIqu3WgUcO2/D5noxywLX46ZcuWRqFQ8OhRAJGRUbqO84WefUeRL39hrAqW0HUUIcQPzMjElO5jlnH0kA+bth3W2Dg3/1zNdqd67HBy41iXAcRFf+J410FsK1ebHU5unOwzgoTY2K+2z5otG6+Dn2osnzblyleQ+w/++UwXHRUtBVs6IgVbBuTWuj8lyrri5tGZkDehqe7H1ioXMdGRREV8VGO61FMoFFSu25ohs3awdfMOanv0UMuTRCHSiyxZzLC1tSIhIYErV27oOk4STwJfcO/WDdr0/TEP+RZCpC/FHatSqU4r+vUawMtg9f8uj3gRzO2l62h0bBdNz3qjSkjg8c79FGregGYXDtHE7wBxUdHcW7f1q33kzp2b0LfBas+mC7mt7PA+cJC7/p93Io6MikJfCrZ0Qwq2DEihUNCw0zAKlXSiact+qe5HqVSQx6oAIUEB6gunBrmtCjJ09k5yWhejiksD7j8M+nYjIX4QLi7OAJw5c0HHSZI6ffYaBoaGFCzmqOsoQoifRLt+08mawxLXWq010r8qLo646GgS4uKIi4zCJE8urGtXQ6FQoFAoyOlYiogXX1/3b21jRVjoW41k0zbnWi2wK+FELdfGdOg2iWfPgjCUbf3TDSnYMiiFQoF724H437mWpn6sbPPzSocbj3yNnr4Bro1+I+ZTNNkszHQdRwi1+V/Blt52igz98BFlCg5qFUKI7zHEawchwUH81mOcWvvNnDcPJft2YXNJFzYWdcYwixlWNaokXk+IjeXhlt1Yu1b5ah+F7QsQFRGm1ly6YmhkjEeHIYxfdozoeCOO+ezByFhzG52IlJGCLQMzMjYlLi6WiMjU76xYsGCBdLHxSHIu+O6hfKUa5MyeRddRhFCbChXKAHDjxh3i4+N1nOYfYWER6Onp6TqGEOInY54tF52HzmfH1s3s9VbfF1WfPoQS6H2UlteO0ebuGeIio/Dfsifx+pkhE8jjXI48zuW+2kfJkoWJiU5/64nTwsw8O01+G8PUtWepVLeVruOI/yMFWwamUCjIbJaV4JD3qe7D3j4/r1+kvydsAOeObKVD+ya6jiGEWuXNm4ccObLx6VMMd+7c13WcRKEfw9HTM9B1DCHET8ixijtlq3rwW+devH2nnnXzQb5+mNlaYZwjO0oDA/J71CbkwhUArsxYSPSbd1ScOuq/c5UuTkJCPHFxcf9534/IzDw7mYxMdB1D/B8p2DI4M/NshLxO/cYjxYvo7vDs//Ls0W0iwkJpUK+irqMIoXYVK35eJ3b27CUdJ/lHREQEegZSsAkhNKPz0PlkzmJBzdrqWc9mamVJyKVrxEVGoVKpeHHiLFmL2HFv3VaeHz1F9RVzUSj/+2Ny9myfZ/CEfXitlkxCfI0UbBlc5iwWhLxJ/RO2EkVtefX8CSpV+tpC/9yRbdRv1AR9PflPXPx8avzfOotjx07rOMk/IiIi0dc31HUMIcRPSqlUMsRrB08DHjFgSNrPesxVtjQFGtRlV7VG7HR2R5WQQNGOLTkzaBxRr9+wt3Zzdlbx4MrMhf/Zj0KhJOzDz7HxiEi/ZIV4BmeaxYLXaSjY8uTKir6BAWEf3pDFIqcak6VeXGwMF47vYdLhbbqOIoRGVKxYFoDz5y+jUqlQKBQ6TgSRERVqoNEAABs/SURBVJEYGEjBJoTQnOy5rGjXbwbr5g2lfv0a1KxWPk39OY7sj+PI/kle6/LmXor6UCqVfJQnbELD5PFDBpfZzILXbz6kqQ9L6wLpalrkjfNHsClYmBJFbHQdRQiNKFLEDmNjIz58+MizZy90HQeAyMgo9A0z6TqGEOIn51SrOSXLu9KudVfCwiN1HQc9fX0iPqbtc5QQ3yIFWwaXOYsF796l/gkbgLVtAULS0db+545so2XrprqOIYTGKJVKHBxKAnDuXPpYxxYVFYW+gRRsQgjN6z52OYZGxtSq217XUdDTNyAiLPnPUQOaFEv891sXjzHuNxfehQSxf8NcerrZEvIiIPH60V0r6OlmS+CDGwCM7lSJ8NB3idev+R2kp5stwc8eauaNiHRNCrYMLrOZBW/fpq1gK1LYjuePb6spUdp8ePuKR3cu0bFVbV1HEUKjatasCoC39xEdJ/ksOjpaDlkVQmiFUqlk8IxtPLh7izETFuk0i4GBAREf//tz1L1rp9myeDx9J68jW658AOTLX5RLJ/Ym3nPltDeWNvZf7eOi717sSpTj0ol96gkufihSsGVwpubZeP8+bY/y27Wuy8UT+4j5FK2mVKl3/thOKteoi3kW2YpW/NwaNKgLwL59hwkKeqnjNPApOhrDTMa6jiGEyCByW9vRvPsE/lywgLMXbuosh6GhEZHhXz9qwP/WBTYsGEHviavJaWmb+Hopp9rcOPc3AK9fPsU4sxmm5tmT7SM6KoJHdy/Rvv9MLp2Ugi0jkoItg8tslpUP79P2hK14YWsKFy/FZR3/EFGpVJz7eyudO8h0SPHzs7PLT5061UlISMDL609dx+HTpxgMjaRgE0JoT3WPjhQp5UyzJh2Jiv6kkwyZjDIRFZF8wRYbG8OSSb/RY+xy8lgXSnLNyMQUi5yWBAXc59KJPThW9fjqGNfPHqKEowu5rQqS2cycpw91V6AK3ZBdIjO4+LhYlEq9NPfTpUtrZnv9iVOt5mpIlTqBD66jUqmoXd1BZxmE0KYxYwZx6NBxNmzYxsiR/cmVK4fOssTExMghq0IIres9YQ3D25Wlnrsnvkf/0vr4YaGhZM1hyZlDm9kwf/gX1yPDQ5nau+4Xr+vrG2JsZs6icR2JiY6ktHNd3r56ztUzPrx/8xJVQnzivZdO7KVGwy4AOFZtwMUTe7EpVFJzb0qkO1KwZXAB969TqnTa/9K3aOTC+NGTePrwps5+iJiYmhMZ/pHQjxFYZDXVSQYhtOmXX4ri4uLEiRNnmTdvKb//PlpnWWJjYzDMJAWbEEK79A0NGTh9M7/3dWe61ypGDPHU2tjx8Ql8/PgexyruWNuVoLRzXT6+f03Yhzd8fP+GNbMHUqNhZ84d2YGJWVaMTEwJe/+G92+DiYuLIez9P8cB+B3eAsChbUlnTIR/fM/96368CHgACsXnQk6hoInnqHRxpIvQDpkSmcEF3L9CxfK/prkfA309mrRsxSnvDWpIlTq58hWgmEMlZs7fpLMMQmjbuHFDAFi58q80r0dNC6VCSUJ8nM7GF0JkXFYFi9Ow41BmTpvBmg3aW55x9MQFFAoF1nYlgM/LTCxt7Cn8qxNlXTzQ1zegSZfRjF92DKVSSZV6bZi61g+3Vn1p0mUUi70D8Ry+kJEL9rPYOxD7khUZMW8fvSeuThzj6mlvKrg2ZepaP6auOcPv686RI7c1D29f1Nr7FLonBVsGlhAfT6D/Lao6p71gA+jbrRlXTnt/dS63NtRp2ZeNa1cR+lH3Z7MIoQ1lyvxK+fIOxMTEsmjRKp3lMDHNTNjHtzobXwiRsdVp0Qunms0Z1G8ItgUrsmTFdo2PuXv335hb5PzmfZnNstJn8jp8Ni/k+tnDSa6Vc2nwxcyk4mVcAHgV9JiLJ/ZS2qlOkuulK9Xjou+eNKYXPxKFSqX6/psVCtVi70ANxhHaFPTkHium9eTuzUNq69Oj2UDy2peleoPOauszpZb/3oPKzmWYOLKTzjIIoU1+fhdxd2+DsbER9+75kSWLWar6ubVkDffXbkWFiqIdWvBLz85Ev//AMc/+hD8NwtQmH66rF5Apq/kXbavWaMOneH0GTt+c1rcjhBCpFhkeysZFo7h62gcTUzMGDenPwL7tNDJWOadGGGbOSd/Ja9Xed083W6o39KRF9/Fq71ukHz3dbFGpVN+c2ypP2DKwJ/evUqxkKbX22b1ba055byAlXwSoW92WfVm7Yjlh4bo/ZkAIbXB2LkfJksWIiopm+fL1qerj3Z0H3F+7lYZHd9Dk1D6eHvIl9FEA1+cuJV9VZ1pcPkK+qs5cn7s02fYWFlmJ+o+trYUQQhtMTM35bcQfzN56gxJlazBl4hTyWTsyzWsV8fEJah3r+dNAijlUVmuf/3baJ+2bqKhUKuJiY4iODCf84/t0cQSTSDkp2DKwwPtXKVu2tFr7dKtZDoVCgf/Nc2rtNyWs7UpgX7IC9Rv3JOBZiM5yCKFNEyYMBWDevGWEhYWnuP2HB4/IWa40+ibGKPX1saxUjoD9h3nqcxT71o0BsG/dmMCvHNSdPbsFUZFhqX8DQgihRkYmpnQaMpe522/jUNmd2dO9KFjIOUnR5h/ymCpzPBL/sRlTmsWnVjP98AKKT66c+Prhu75f9B8eHkl0ZDiOVetrJL9DpXrExqT+qIJp/dzp6WZLL/f8DGxaghHtyjH+Nxcmdq9BdGTKf0cI3ZKCLQN7cv8alSqq9wmbUqmgZZtW+B3S7bSoTkPmYV3YEReXhmzYdkynWYTQhurVK1O4cEHCwyMoUaIK8+YtJTw84rvbWxSzJ9jvItHv3hMXGcWzv08QERRMVMgbTPLkAsAkTy6iXie/Ti1Xrhx8iv7+8YQQQhsMMxnTrt905u24Q1RkOKPHz0+8Zp+rIKcG7ePUoH34DtiNsYEx7r/UBqBnlU6J12oXq/ZFv7v2HUdf3wCLHJYayV3FLfXTOGNjonn++C7Pnt/i7dsHvH59m+CX1wl6donSZSvgvWn+tzsR6YoUbBlUVGQYr18+paJjYbX33bmtGzcuHCUmOkrtfX8vPT196rcbRNdRS5gwdjLtf5vAxzDd5RFC0xQKBatXL8TOLj9hYeFMnOhFkSJOTJu2gNDQb09VtChSiFL9u+HTuBMHm3mSrURRlPrff0ajpWVuYmWqjRAindI3NKSqe3vWrFyT7NTIE/5+5M9ug41Fvu/qz9vnOBY586o7ZqIipZwBeP74Torbvgl+Rk5LG0wzZ0KpTLo8at6MoZw9sp2XTx+oJafQDinYMqjABzfIb1+CTJkM1N63db4cFC5empsXjqq975QqVKIcoxZ6E/I2DKfKTfC7eE/XkYTQmOLFC3Px4mG2bl1B8eKFiYyMYubMhRQp4sz48TN5+/bdf7Yv0r45jU/sob73JjJZZCVLwfwY58pBZPDnqcWRwSEY58yebFtr6zzExsao/T0JIYS6NOo8kvj4OCZP/3It7s7rB2jq8M/0xuV+G6g0uz59to7gQ2ToF/ffvH4DG3vNnTurVH7+iH4qFevY3rx8iqWVTbLXrK1y0LVXb7YsHqfT/QZEykjBlkEF3L/Gr6XVOx3y3xo39eDSifSx5ayJqTmdhi6gdvPetGzekfHTkv92TYifgUKhoFYtF06f3s+ePetwcCjJp0+fWLBgOcWKVWLYsEkEBye/tvN/0x3Dn70gYP9h7JrVx6ZuDfw37QLAf9MubOq5Jtu2oI2VnMMmhEjX9PX1ca7dkmV/LkvyOSAmLgaf28do9Gs9ADyd2nB1xFFODdxLbrNcjNk/7Yu+Ql6+4JeyNTSe+ZTPxhS3ef0yEGub5As2gBED2xAZ9p5LJ7V3Zp1IGynYMqiA+1cpX05zBVv7FjW5d/0sEWFffiulCwqFggquTRg2Zw/793rj6taVwOevdR1LCI1RKBRUrerEsWM78fHZjJNTWWJj41i+fD2//FKV/v1H8+zZiyRtjnTow/aKdTncujvOs8aTKas5pQZ2J8j3DFsdaxLke4ZSA7snO16BgnlRqVTExMi0SCFE+tWs61hiPkXjNf+frfiP3DtJqXzFyWWWA4BcZjnQU+qhVCrpWKEFl5/eSNLHi+A3xMZ+orRz0vPR1G3gjC20HzArxe3eBAdSoMDXCzZDA31mzJzAzpVTZQOSH4QUbBmQSqXiyf2ruFTSXMGWzcIMh/KVuObno7ExUiOnpQ2DZm4jn11pXFwasnGHr64jCaFxFSs64u29iePHd1G9emXi4+NZt24rpUtXp1u3wTx58vl8TQ+fTTQ7d5Amp/eRz+Xz+gmjbBa47VlHi8tHcNuzDiOLrMmOYZ7FFGMTU3at/PKbaCGESC8MDDNRoUYTFs77I/G17df2J5kOGfzxn1kI+2/9TbE8Sdf7L166hUxGJhiZmGo0a+GSFXGq2SzF7d4EB2JvZ/2f99RzdaRMeWfZgOQHIQVbBvQu5DkKhYJCBTSzs9H/NGtWP91Mi/w3PX0DPNoPpsuIPxk3agIduk2SM9tEhlC69C/s3LmaM2cOUK+eKyqVim3b9uLoWIv27Xtz+fL1NK1p6NLtN04f3ERCgkw5FkKkXy17TiQqIpyFizcTGROFr/8Z6v/yz9Oy8Qdm4jzbnUqz63Pq0Tl+bzAKgMjIaOq4d2HR/PlUqttaV/G/6fWLQIrYf/0J2//IBiQ/DkVKfjkrFArVYu9ADcYR2nD51AHOHlzP6WPrNDpOeEQ0RYpWYtySI5hny63RsVIrMjyUzX+M4UXgPVYsn0vFsurfNVOI9OrhwydMmzaf3bu9SUj4/LsgX748eHq2pXXrxlhapuzvbXx8ApZ5S1GraTc82g9OfH1Ak2LM23kXgFsXj7F16UQG/L4Rv8NbOX1oE2bm2YmN+UThX51o1WsySqWStXMG43/zHMaZs6BSqWjWdQxFS38+oDYuNoadq6Zx8/wRFEolljb2tOo1WWPbawshfj6rZvbjzmVfVq5eSMVyJTHP8t9Py/7a4sOg/sMwMDSix7jlFCpRXktJUyYhPp7+TYry+PFlzEyNvnn/5FnrOXDgb/r/vgmFQvHN+4V69XSzRaVSffMPXp6wZUAFijrw5vUr2v02nsio1B/K+C2mmY1wcqnFpZP7NTZGWpmYmtN52AJqNu1B82btmTRzXeIHVyF+doUKFWDlynlcvXqM335ri6lpZoKCgpk8eTYlSlTBza01u3f7EB39fT8n9PSUtGzbhqO7ViT7lO3etdNsWTyevpPXkS3X562zXRt1YfQiH8YtOcKLgHv43zyXeH+TLqMYvciH5t3GsXHR6MTX96ydyaeocCYu92XSihOUqlibpVO6y45nQojv1qrPVPT1M9GmRWfy2zqQLXsR8uZzoEjx6lSp3op2nYYxZfpy9nmfopprG/r07E+ZKvWZuelqui3WAD68DcY0i8V3FWsAwwe0lg1IfgBSsGVA2XLmZfi8vQS9fItLzfY8CgjW2FitWtTncjqcFvlvCoWCiq5NGTZnN7t37aOWRw8+fYrVdSwhtMbGxopZsybw+PFFNm5cQvXqlVAoFJw9e4nOnftRsGBZ+vYdyZUrN75ZFM2aNpi4uFiO71mV5HX/WxfYsGAEvSeuJqel7Rft4uNiiI35hImp+RfXChYrw4e3n39OxURHcfbvbTTrNg6l3udz4pxrt0DfwJD718+k9o9ACJHBmJiYMf2vi/yx/zHzd99n0Ixt1G8/GPtfKxOTYMjFi1dZ/McSOnXoSkBAICPn76fjoNmJ2+2nV69fBpIn35c/Y79GNiD5MaTv/+qExhibmNF11BJ+KV8LV9em7Dt0QSPjNKhXkZCXT3n/5qVG+lennJa2DJ65nYiIKOYt2aHrOEJonYGBAfXqubJz5xoePDjL77+PokABG6KiotmwYTuurk359VcX5s1b+tWjAYwyGeLeoCHemxYkvhYbG8OSSb/RY+xy8lgXSnL/0d0rmdqnHsPblSNXvgJY25X4os/blz4/RQMIeRmARc68GJuYJbnH1v5XXgT6p/FPQAiRERkaGlGoRFlqNPSkXf8ZDJy+mYkrTjB7603+2PeY6RsuYlPoF13H/C6vXwZiZf3t9Wv/Vs/VEccKlWQDknRMCrYMTKlUUqdFbzoMmk2fnv0ZP22N2qcDGhrok8nIhIT4eLX2qyl6+gY06jySpYv+4GNYlK7jCKEz2bNno2fPzly5cpSTJ/fSpcvnKZPPn79k4kQvihevTJ06LWjZsiu1a7egYsW6lChRGVvbMvjs201keCgXju8GQE9fn4LFHPE7tOWLcf43JXLWxivEfIri4om9idd2rvydMZ6VWeM1gLot+3x+UaVKdp2FSqVCll8IITK6Ny+fkr/Af+8QmZy504dw9sh2XgTKBiTpkRRsguJlqjJszm527dhNo1aDCf0Yqdb+I8M/YmKaRa19alL+wqUoUNSB6XM36DqKEOlCyZLF8PL6PGXyr7+WUK3a5ymTFy5c5fBhXy5evMr9+4948eIVHz+GERv7+QBtM4vPZxopFUq6jvyTQP/r+GxZlOwYevoGFHd04eGt84mvNekyikkrTuLRYQhr5wwCIGfe/LwLCfpi6s6zh7ewtLHXxNsXQogfxpvgQKytUr4Bk7VVDrr17sOWxWNlPXA6JAWbACB7bmuGeO0kTpWJytVacPOOenYDjY2LJyY6kkzGmj2rRN082g9hw6qVvH77UddRhEg3DAwMcHNzZdeuNdy/78fixbNYutSLzZuX4eOzmTNnDnDr1kk8GjcGYMGotqybMwQVYGhkTK8Jq7l4fDdnDm3+om+VSsXjO5e/WN+mVCqp0dATVUICdy6fIJORCRVdm7J9+eTEJ/fnju4g5lMURUpV0vifgRBCpGdFSjkza9p0xk5dRVR0TIraDh/QmuiIUNmAJB2Sbf1FEiqVipPeGziwYS5LV/5BPVfHNPUX8iaU0qWrM2fbLTUl1J4N84aS3zoHi7wG6jqKED+UilXb4FSnLZdP7efm+SMAmGfLxRCvHSj19JkzrDnNu43n2aPbidv6x8fFkq9AMdoPmIVhJiPWzhlMyfI1KFPZHYArp705eWA9A6ZtIjb2EztXTOXWxeMolEryWNnRqvcUsuXMq8u3LYQQ6cKr54/ZtmwC70KeM3nKWJp6fP+XWQePXqFn936MX3pM4weDi+/f1l8KNpGsu1dOsXpWf1auWUytag6p7ufOg2c08GjPlDV+akynHe9Cgvi9rxtn/Lyxtcqp6zhC/BBOnbtNxw69mLzqFHp6+gAc37uarUsmJN7TbfQSHCrV01FCIYT4+alUKm6cP8L25ZOwsy/GXK8RFLO3+q62VWt1wrluR0o71/n2zSJN5Bw2kSbFylShw6DZdOnUk2OnbqS6n3fvw36o9Wv/li1XPirWbMrYSYt1HUWIH8aCRRtwcW+fWKwBVG/QmcXegYxc8PlMxmVTe9DTzZZNf4wmPj5OV1GFEOKnpVAoKFWxFuMW/01u21+o5dqYASMWEhYe/c22JX/9ledP7mohpfheUrCJr/qlXHXaD5hFpw7dOeF3O1V9vHsfhnEy5yr9KOq06M2xQ/u5ff+prqMIoVH+IY+pMscj8R+bMaVZfGo1Uw/OpdLs+lSZ40GTZZ14Gfrqq308f/kWvxOHqVSnVbLXbQqVZLF3IHO236Jo6cqcPLCBPh52jPWs8kMc/SGEED8aA0Mj6rXux6iF3ty8/ZAy5epx43bAf7Yp9WtRXgTc0U5A8V1kSqT4pmt+h9i4aBSbtqyiUvliKWq7dvMR1qzbRfexyzWUTvMObJxH+Jsn7No0S9dRhNCK+IR4ik+uzN/9tpPVOAtZjD6febb09FruvXrI3KaTk203bNwS7tx/RrsB3/d3RaVScWTnMnau/D3xtV4TVlGyvGva34QQQogv/L1jKQ+u+nLi7zUolcnPxLt68zEtWvzG5FWntZwu45EpkUJtSjvXoVWvSbRp5cm5Syk7n+P9h48YZ/4xp0T+j2uj37hy/nSK37sQP6oT/n7kz26DjUW+xGINICImCgXJ/1759CmW7Zv+wsWj03ePo1AoqNW0O4u9Axk6ZxcAf07wpKebLduXTfphzm8UQogfRY1GXQgNDeWPFXu/es8vxWwJ+/CWqMgwLSYT/0UKNvFdylR2p3m3CbRq2YlL1/y/u11oaBjGmc2+fWM6ZmRiSu3mvRg7YY6uowihFTuvH6CpQ/3E/z/ZZw4lplRh25W9jKrTP9k2a7ccIaelLdZ2JVI1ZsGiZVjsHYjXlhvYFS/L0d0r6e1RkISEhFT1J4QQ4kt6evq06TuN2TNmEBzyIdl7DPT1sCpQmKAn97ScTnyNFGziu5V18aCx5yiaN+vMlRuPvqtNXFwcV88cZPOfY7hwfDfvQoI0nFIzqrq15bH/PQ4evaLrKEJoVExcDD63j9Ho1392cRxbbxC3x5yieZkGLD+T/IHyq1asx8WjY5rHz2xmzhCvHQyfuwf4fA6bEEII9clfuBQOldwYMMzrq/cULlqM549Tt3+BUD/5TShSpEKNJjToOIxmTTt9c9EqwNhhHVmxahGlittw94IP0wc0YFRHJ1bN6IvvvrU8e3T7h5j2ZGBohHubAUyc5EVCwvev+xTiR3Pk3klK5StOLrMcX1xr5uDB3puHvnj95NnbhAQHUcpJfVtAXzntrba+hBBCJNWgwxDOnzmBz9HLyV4vWbIYQbJTZLohBZtIMaeazXBvO5DGjTty895/b0JjaKBPjSq/MnFkJ3x2LyTgkR97dq/DvW4l3gfdYtXMPgxuWYqLJ74+lzq9qODahNAP71n915cfWIX4WWy/tj/JdMhHrwMS//3g7aMUzlXwizYL//hyK/+0unJGCjYhhNAU48xZaNZ1HEOHjCMqOuaL646li/L8sewUmV6o77eryFAq1WlFQnw8jRt2ZO++9RQvbP1d7ZRKBSWL21KyuC39ezQB4Oip63h27EEJRxdM0vERAHp6+rQf4MWEsZ7ky5uLuq5ldB1JCLWKjInC1/9Mkl0gJ3rPwv/1E5QKJdYWeZnTdFKSNs9fvuWM7yEmrTip1ixvg59haWOv1j6FEEL8o0xlN84d2cbE6WuYPqFbkmvlHOx5EehPfHycWr+ME6mT0m39AwBbjaURQgghhBBCiIwhUKVS5f/WTSkq2IQQQgghhBBCaI+sYRNCCCGEEEKIdEoKNiGEEEIIIYRIp6RgE0IIIYQQQoh0Sgo2IYQQQgghhEinpGATQgghhBBCiHRKCjYhhBBCCCGESKekYBNCCCGEEEKIdEoKNiGEEEIIIYRIp6RgE0IIIYQQQoh06v8BC7j8bwGEX0cAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "proj = ccrs.LambertConformal(central_longitude=-95, central_latitude=35,\n", + " standard_parallels=[35])\n", + "# Change the DPI of the figure\n", + "plt.rcParams['savefig.dpi'] = 255\n", + "\n", + "\n", + "# Create the figure and an axes set to the projection\n", + "fig = plt.figure(figsize=(20, 10))\n", + "add_metpy_logo(fig, 1080, 290, size='large')\n", + "ax = fig.add_subplot(1, 1, 1, projection=proj)\n", + "# Add some various map elements to the plot to make it recognizable\n", + "ax.add_feature(cfeature.LAND)\n", + "ax.add_feature(cfeature.OCEAN)\n", + "ax.add_feature(cfeature.LAKES)\n", + "ax.add_feature(cfeature.COASTLINE)\n", + "ax.add_feature(cfeature.STATES)\n", + "ax.add_feature(cfeature.BORDERS, linewidth=2)\n", + "# Set plot bounds\n", + "ax.set_extent((-118, -73, 23, 50))\n", + "ax.set_title(str(ob.getDataTime()) + \" | METAR | \" + edexServer)\n", + "\n", + "# Just winds, temps, and dewpoint, colored, with station id\n", + "custom_layout = StationPlotLayout()\n", + "custom_layout.add_barb('eastward_wind', 'northward_wind', units='knots')\n", + "custom_layout.add_value('NW', 'air_temperature', fmt='.0f', units='degF', color='darkred')\n", + "custom_layout.add_value('SW', 'dew_point_temperature', fmt='.0f', units='degF', color='darkgreen')\n", + "custom_layout.add_value('E', 'precipitation', fmt='0.1f', units='inch', color='blue')\n", + "stationplot = StationPlot(ax, data['longitude'], data['latitude'], clip_on=True,\n", + " transform=ccrs.PlateCarree(), fontsize=10)\n", + "stationplot.plot_text((2, 0), data['stid'])\n", + "custom_layout.plot(stationplot, data)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.6" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/examples/notebooks/Surface_Obs_Plot_with_MetPy.ipynb b/examples/notebooks/Surface_Obs_Plot_with_MetPy.ipynb deleted file mode 100644 index f77d67b..0000000 --- a/examples/notebooks/Surface_Obs_Plot_with_MetPy.ipynb +++ /dev/null @@ -1,318 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Based on the MetPy example [\"Station Plot with Layout\"](http://metpy.readthedocs.org/en/latest/examples/generated/Station_Plot_with_Layout.html)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "import datetime\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import pprint\n", - "from awips.dataaccess import DataAccessLayer\n", - "from dynamicserialize.dstypes.com.raytheon.uf.common.time import TimeRange\n", - "from datetime import datetime, timedelta\n", - "from metpy.calc import get_wind_components\n", - "from metpy.cbook import get_test_data\n", - "from metpy.plots.wx_symbols import sky_cover, current_weather\n", - "from metpy.plots import StationPlot, StationPlotLayout, simple_layout\n", - "from metpy.units import units\n", - "import cartopy.crs as ccrs\n", - "import cartopy.feature as feat\n", - "from matplotlib import rcParams\n", - "\n", - "%matplotlib inline\n", - "\n", - "def get_cloud_cover(code):\n", - " if 'OVC' in code:\n", - " return 1.0\n", - " elif 'BKN' in code:\n", - " return 6.0/8.0\n", - " elif 'SCT' in code:\n", - " return 4.0/8.0\n", - " elif 'FEW' in code:\n", - " return 2.0/8.0\n", - " else:\n", - " return 0\n", - "\n", - "state_capital_wx_stations = {'Washington':'KOLM', 'Oregon':'KSLE', 'California':'KSAC',\n", - " 'Nevada':'KCXP', 'Idaho':'KBOI', 'Montana':'KHLN',\n", - " 'Utah':'KSLC', 'Arizona':'KDVT', 'New Mexico':'KSAF',\n", - " 'Colorado':'KBKF', 'Wyoming':'KCYS', 'North Dakota':'KBIS',\n", - " 'South Dakota':'KPIR', 'Nebraska':'KLNK', 'Kansas':'KTOP',\n", - " 'Oklahoma':'KPWA', 'Texas':'KATT', 'Louisiana':'KBTR',\n", - " 'Arkansas':'KLIT', 'Missouri':'KJEF', 'Iowa':'KDSM',\n", - " 'Minnesota':'KSTP', 'Wisconsin':'KMSN', 'Illinois':'KSPI',\n", - " 'Mississippi':'KHKS', 'Alabama':'KMGM', 'Nashville':'KBNA',\n", - " 'Kentucky':'KFFT', 'Indiana':'KIND', 'Michigan':'KLAN',\n", - " 'Ohio':'KCMH', 'Georgia':'KFTY', 'Florida':'KTLH',\n", - " 'South Carolina':'KCUB', 'North Carolina':'KRDU',\n", - " 'Virginia':'KRIC', 'West Virginia':'KCRW',\n", - " 'Pennsylvania':'KCXY', 'New York':'KALB', 'Vermont':'KMPV',\n", - " 'New Hampshire':'KCON', 'Maine':'KAUG', 'Massachusetts':'KBOS',\n", - " 'Rhode Island':'KPVD', 'Connecticut':'KHFD', 'New Jersey':'KTTN',\n", - " 'Delaware':'KDOV', 'Maryland':'KNAK'}\n", - "single_value_params = [\"timeObs\", \"stationName\", \"longitude\", \"latitude\", \n", - " \"temperature\", \"dewpoint\", \"windDir\",\n", - " \"windSpeed\", \"seaLevelPress\"]\n", - "multi_value_params = [\"presWeather\", \"skyCover\", \"skyLayerBase\"]\n", - "pres_weather = []\n", - "sky_cov = []\n", - "sky_layer_base = []\n", - "\n", - "all_params = single_value_params + multi_value_params\n", - "obs_dict = dict({all_params: [] for all_params in all_params})\n", - "\n", - "# Create EDEX Request\n", - "DataAccessLayer.changeEDEXHost(\"edex-cloud.unidata.ucar.edu\")\n", - "request = DataAccessLayer.newDataRequest()\n", - "request.setDatatype(\"obs\")\n", - "request.setParameters(*(all_params))\n", - "request.setLocationNames(*(state_capital_wx_stations.values()))" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "lastHourDateTime = datetime.utcnow() - timedelta(hours = 1)\n", - "start = lastHourDateTime.strftime('%Y-%m-%d %H')\n", - "beginRange = datetime.strptime( start + \":00:00\", \"%Y-%m-%d %H:%M:%S\")\n", - "endRange = datetime.strptime( start + \":59:59\", \"%Y-%m-%d %H:%M:%S\")\n", - "timerange = TimeRange(beginRange, endRange)\n", - "\n", - "response = DataAccessLayer.getGeometryData(request,timerange)\n", - "for ob in response:\n", - " avail_params = ob.getParameters()\n", - " if \"presWeather\" in avail_params:\n", - " pres_weather.append(ob.getString(\"presWeather\"))\n", - " elif \"skyCover\" in avail_params and \"skyLayerBase\" in avail_params:\n", - " sky_cov.append(ob.getString(\"skyCover\"))\n", - " sky_layer_base.append(ob.getNumber(\"skyLayerBase\"))\n", - " else:\n", - " for param in single_value_params:\n", - " if param in avail_params:\n", - " if param == 'timeObs':\n", - " obs_dict[param].append(datetime.fromtimestamp(ob.getNumber(param)/1000.0))\n", - " else:\n", - " try:\n", - " obs_dict[param].append(ob.getNumber(param))\n", - " except TypeError:\n", - " obs_dict[param].append(ob.getString(param))\n", - " else:\n", - " obs_dict[param].append(None)\n", - "\n", - " obs_dict['presWeather'].append(pres_weather);\n", - " obs_dict['skyCover'].append(sky_cov);\n", - " obs_dict['skyLayerBase'].append(sky_layer_base);\n", - " pres_weather = []\n", - " sky_cov = []\n", - " sky_layer_base = []" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "data = dict()\n", - "data['stid'] = np.array(df_recent[\"stationName\"])\n", - "data['latitude'] = np.array(df_recent['latitude'])\n", - "data['longitude'] = np.array(df_recent['longitude'])\n", - "data['air_temperature'] = np.array(df_recent['temperature'], dtype=float)* units.degC\n", - "data['dew_point'] = np.array(df_recent['dewpoint'], dtype=float)* units.degC\n", - "data['slp'] = np.array(df_recent['seaLevelPress'])* units('mbar')\n", - "u, v = get_wind_components(np.array(df_recent['windSpeed']) * units('knots'),\n", - " np.array(df_recent['windDir']) * units.degree)\n", - "data['eastward_wind'], data['northward_wind'] = u, v\n", - "data['cloud_frac'] = [int(get_cloud_cover(x)*8) for x in df_recent['skyCover']]" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "TextCollection" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Error in callback (for post_execute):\n" - ] - }, - { - "ename": "TypeError", - "evalue": "Cannot cast array data from dtype('S1') to dtype('float64') according to the rule 'safe'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/pyplot.pyc\u001b[0m in \u001b[0;36mpost_execute\u001b[0;34m()\u001b[0m\n\u001b[1;32m 147\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mpost_execute\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 148\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_interactive\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 149\u001b[0;31m \u001b[0mdraw_all\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 150\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 151\u001b[0m \u001b[0;31m# IPython >= 2\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/_pylab_helpers.pyc\u001b[0m in \u001b[0;36mdraw_all\u001b[0;34m(cls, force)\u001b[0m\n\u001b[1;32m 134\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mf_mgr\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mcls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_all_fig_managers\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 135\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mforce\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mf_mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcanvas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstale\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 136\u001b[0;31m \u001b[0mf_mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcanvas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw_idle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 137\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 138\u001b[0m \u001b[0matexit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mregister\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mGcf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdestroy_all\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/backend_bases.pyc\u001b[0m in \u001b[0;36mdraw_idle\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 2053\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_is_idle_drawing\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2054\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_idle_draw_cntx\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2055\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2056\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2057\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdraw_cursor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mevent\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/backends/backend_agg.pyc\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 431\u001b[0m \u001b[0;31m# if toolbar:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 432\u001b[0m \u001b[0;31m# toolbar.set_cursor(cursors.WAIT)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 433\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 434\u001b[0m \u001b[0;31m# A GUI class may be need to update a window using this draw, so\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 435\u001b[0m \u001b[0;31m# don't forget to call the superclass.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/artist.pyc\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 55\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 56\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/figure.pyc\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 1473\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1474\u001b[0m mimage._draw_list_compositing_images(\n\u001b[0;32m-> 1475\u001b[0;31m renderer, self, artists, self.suppressComposite)\n\u001b[0m\u001b[1;32m 1476\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1477\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose_group\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'figure'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/image.pyc\u001b[0m in \u001b[0;36m_draw_list_compositing_images\u001b[0;34m(renderer, parent, artists, suppress_composite)\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnot_composite\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhas_images\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 140\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32min\u001b[0m \u001b[0martists\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 141\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 142\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 143\u001b[0m \u001b[0;31m# Composite any adjacent images together\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/artist.pyc\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 55\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 56\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/cartopy/mpl/geoaxes.pyc\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer, inframe)\u001b[0m\n\u001b[1;32m 383\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 384\u001b[0m return matplotlib.axes.Axes.draw(self, renderer=renderer,\n\u001b[0;32m--> 385\u001b[0;31m inframe=inframe)\n\u001b[0m\u001b[1;32m 386\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 387\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__str__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/artist.pyc\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 55\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 56\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/axes/_base.pyc\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer, inframe)\u001b[0m\n\u001b[1;32m 2605\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstop_rasterizing\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2606\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2607\u001b[0;31m \u001b[0mmimage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_draw_list_compositing_images\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0martists\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2608\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2609\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose_group\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'axes'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/image.pyc\u001b[0m in \u001b[0;36m_draw_list_compositing_images\u001b[0;34m(renderer, parent, artists, suppress_composite)\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnot_composite\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhas_images\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 140\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32min\u001b[0m \u001b[0martists\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 141\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 142\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 143\u001b[0m \u001b[0;31m# Composite any adjacent images together\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/artist.pyc\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 55\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 56\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/cartopy/mpl/feature_artist.pyc\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 179\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_clip_path\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpatch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 180\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_figure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 181\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/artist.pyc\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 55\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 56\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/collections.pyc\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 909\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 910\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_sizes\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_sizes\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdpi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 911\u001b[0;31m \u001b[0mCollection\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 912\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 913\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/artist.pyc\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 55\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 56\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/collections.pyc\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 335\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_linewidths\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_linestyles\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 336\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_antialiaseds\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_urls\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 337\u001b[0;31m self._offset_position)\n\u001b[0m\u001b[1;32m 338\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 339\u001b[0m \u001b[0mgc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrestore\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/backends/backend_agg.pyc\u001b[0m in \u001b[0;36mdraw_path_collection\u001b[0;34m(self, *kl, **kw)\u001b[0m\n\u001b[1;32m 123\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 124\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdraw_path_collection\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0mkl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 125\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_renderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw_path_collection\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mkl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 126\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 127\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_update_methods\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: Cannot cast array data from dtype('S1') to dtype('float64') according to the rule 'safe'" - ] - }, - { - "ename": "TypeError", - "evalue": "Cannot cast array data from dtype('S1') to dtype('float64') according to the rule 'safe'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/IPython/core/formatters.pyc\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, obj)\u001b[0m\n\u001b[1;32m 332\u001b[0m \u001b[0;32mpass\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 333\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 334\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mprinter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 335\u001b[0m \u001b[0;31m# Finally look for special method names\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 336\u001b[0m \u001b[0mmethod\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_real_method\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprint_method\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/IPython/core/pylabtools.pyc\u001b[0m in \u001b[0;36m\u001b[0;34m(fig)\u001b[0m\n\u001b[1;32m 239\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 240\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'png'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mformats\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 241\u001b[0;31m \u001b[0mpng_formatter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfor_type\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mFigure\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mlambda\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mprint_figure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'png'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 242\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'retina'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mformats\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;34m'png2x'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mformats\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 243\u001b[0m \u001b[0mpng_formatter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfor_type\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mFigure\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mlambda\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mretina_figure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/IPython/core/pylabtools.pyc\u001b[0m in \u001b[0;36mprint_figure\u001b[0;34m(fig, fmt, bbox_inches, **kwargs)\u001b[0m\n\u001b[1;32m 123\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 124\u001b[0m \u001b[0mbytes_io\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mBytesIO\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 125\u001b[0;31m \u001b[0mfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcanvas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprint_figure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbytes_io\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 126\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbytes_io\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetvalue\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 127\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfmt\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'svg'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/backend_bases.pyc\u001b[0m in \u001b[0;36mprint_figure\u001b[0;34m(self, filename, dpi, facecolor, edgecolor, orientation, format, **kwargs)\u001b[0m\n\u001b[1;32m 2210\u001b[0m \u001b[0morientation\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0morientation\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2211\u001b[0m \u001b[0mdryrun\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2212\u001b[0;31m **kwargs)\n\u001b[0m\u001b[1;32m 2213\u001b[0m \u001b[0mrenderer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_cachedRenderer\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2214\u001b[0m \u001b[0mbbox_inches\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_tightbbox\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/backends/backend_agg.pyc\u001b[0m in \u001b[0;36mprint_png\u001b[0;34m(self, filename_or_obj, *args, **kwargs)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mprint_png\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfilename_or_obj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0mFigureCanvasAgg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0mrenderer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_renderer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0moriginal_dpi\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdpi\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/backends/backend_agg.pyc\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 431\u001b[0m \u001b[0;31m# if toolbar:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 432\u001b[0m \u001b[0;31m# toolbar.set_cursor(cursors.WAIT)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 433\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 434\u001b[0m \u001b[0;31m# A GUI class may be need to update a window using this draw, so\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 435\u001b[0m \u001b[0;31m# don't forget to call the superclass.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/artist.pyc\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 55\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 56\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/figure.pyc\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 1473\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1474\u001b[0m mimage._draw_list_compositing_images(\n\u001b[0;32m-> 1475\u001b[0;31m renderer, self, artists, self.suppressComposite)\n\u001b[0m\u001b[1;32m 1476\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1477\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose_group\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'figure'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/image.pyc\u001b[0m in \u001b[0;36m_draw_list_compositing_images\u001b[0;34m(renderer, parent, artists, suppress_composite)\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnot_composite\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhas_images\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 140\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32min\u001b[0m \u001b[0martists\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 141\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 142\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 143\u001b[0m \u001b[0;31m# Composite any adjacent images together\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/artist.pyc\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 55\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 56\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/cartopy/mpl/geoaxes.pyc\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer, inframe)\u001b[0m\n\u001b[1;32m 383\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 384\u001b[0m return matplotlib.axes.Axes.draw(self, renderer=renderer,\n\u001b[0;32m--> 385\u001b[0;31m inframe=inframe)\n\u001b[0m\u001b[1;32m 386\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 387\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__str__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/artist.pyc\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 55\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 56\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/axes/_base.pyc\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer, inframe)\u001b[0m\n\u001b[1;32m 2605\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstop_rasterizing\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2606\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2607\u001b[0;31m \u001b[0mmimage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_draw_list_compositing_images\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0martists\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2608\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2609\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose_group\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'axes'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/image.pyc\u001b[0m in \u001b[0;36m_draw_list_compositing_images\u001b[0;34m(renderer, parent, artists, suppress_composite)\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnot_composite\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhas_images\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 140\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32min\u001b[0m \u001b[0martists\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 141\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 142\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 143\u001b[0m \u001b[0;31m# Composite any adjacent images together\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/artist.pyc\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 55\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 56\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/cartopy/mpl/feature_artist.pyc\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 179\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_clip_path\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpatch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 180\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_figure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 181\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/artist.pyc\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 55\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 56\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/collections.pyc\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 909\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 910\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_sizes\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_sizes\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdpi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 911\u001b[0;31m \u001b[0mCollection\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 912\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 913\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/artist.pyc\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 55\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 56\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/collections.pyc\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 335\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_linewidths\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_linestyles\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 336\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_antialiaseds\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_urls\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 337\u001b[0;31m self._offset_position)\n\u001b[0m\u001b[1;32m 338\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 339\u001b[0m \u001b[0mgc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrestore\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/mjames/miniconda2/envs/python-awips/lib/python2.7/site-packages/matplotlib/backends/backend_agg.pyc\u001b[0m in \u001b[0;36mdraw_path_collection\u001b[0;34m(self, *kl, **kw)\u001b[0m\n\u001b[1;32m 123\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 124\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdraw_path_collection\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0mkl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 125\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_renderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw_path_collection\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mkl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 126\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 127\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_update_methods\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: Cannot cast array data from dtype('S1') to dtype('float64') according to the rule 'safe'" - ] - }, - { - "data": { - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "rcParams['savefig.dpi'] = 100\n", - "proj = ccrs.LambertConformal(central_longitude=-95, central_latitude=35,\n", - " standard_parallels=[35])\n", - "state_boundaries = feat.NaturalEarthFeature(category='cultural',\n", - " name='admin_1_states_provinces_lines',\n", - " scale='110m', facecolor='none')\n", - "# Create the figure\n", - "fig = plt.figure(figsize=(20, 15))\n", - "ax = fig.add_subplot(1, 1, 1, projection=proj)\n", - "\n", - "# Add map elements \n", - "ax.add_feature(feat.LAND, zorder=-1)\n", - "ax.add_feature(feat.OCEAN, zorder=-1)\n", - "ax.add_feature(feat.LAKES, zorder=-1)\n", - "ax.coastlines(resolution='110m', zorder=2, color='black')\n", - "ax.add_feature(state_boundaries)\n", - "ax.add_feature(feat.BORDERS, linewidth='2', edgecolor='black')\n", - "ax.set_extent((-120, -70, 20, 50))\n", - "\n", - "# Start the station plot by specifying the axes to draw on, as well as the\n", - "# lon/lat of the stations (with transform). We also set the fontsize to 12 pt.\n", - "stationplot = StationPlot(ax, data['longitude'], data['latitude'],\n", - " transform=ccrs.PlateCarree(), fontsize=12)\n", - "\n", - "# The layout knows where everything should go, and things are standardized using\n", - "# the names of variables. So the layout pulls arrays out of `data` and plots them\n", - "# using `stationplot`.\n", - "simple_layout.plot(stationplot, data)\n", - "\n", - "# Plot the temperature and dew point to the upper and lower left, respectively, of\n", - "# the center point. Each one uses a different color.\n", - "stationplot.plot_parameter('NW', np.array(data['air_temperature']), color='red')\n", - "stationplot.plot_parameter('SW', np.array(data['dew_point']), color='darkgreen')\n", - "\n", - "# A more complex example uses a custom formatter to control how the sea-level pressure\n", - "# values are plotted. This uses the standard trailing 3-digits of the pressure value\n", - "# in tenths of millibars.\n", - "stationplot.plot_parameter('NE', np.array(data['slp']),\n", - " formatter=lambda v: format(10 * v, '.0f')[-3:])\n", - "\n", - "# Plot the cloud cover symbols in the center location. This uses the codes made above and\n", - "# uses the `sky_cover` mapper to convert these values to font codes for the\n", - "# weather symbol font.\n", - "stationplot.plot_symbol('C', data['cloud_frac'], sky_cover)\n", - "\n", - "# Also plot the actual text of the station id. Instead of cardinal directions,\n", - "# plot further out by specifying a location of 2 increments in x and 0 in y.\n", - "stationplot.plot_text((2, 0), np.array(obs_dict[\"stationName\"]))\n", - "\n", - "plt.title(\"Most Recent Observations for State Capitals\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.6" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -}