awips2/pythonPackages/numpy/doc/source/reference/maskedarray.baseclass.rst
root a02aeb236c Initial revision of AWIPS2 11.9.0-7p5
Former-commit-id: 06a8b51d6d [formerly 64fa9254b946eae7e61bbc3f513b7c3696c4f54f]
Former-commit-id: 9f19e3f712
2012-01-06 08:55:05 -06:00

462 lines
10 KiB
ReStructuredText
Executable file

.. currentmodule:: numpy.ma
.. _numpy.ma.constants:
Constants of the :mod:`numpy.ma` module
=======================================
In addition to the :class:`MaskedArray` class, the :mod:`numpy.ma` module
defines several constants.
.. data:: masked
The :attr:`masked` constant is a special case of :class:`MaskedArray`,
with a float datatype and a null shape. It is used to test whether a
specific entry of a masked array is masked, or to mask one or several
entries of a masked array::
>>> x = ma.array([1, 2, 3], mask=[0, 1, 0])
>>> x[1] is ma.masked
True
>>> x[-1] = ma.masked
>>> x
masked_array(data = [1 -- --],
mask = [False True True],
fill_value = 999999)
.. data:: nomask
Value indicating that a masked array has no invalid entry.
:attr:`nomask` is used internally to speed up computations when the mask
is not needed.
.. data:: masked_print_options
String used in lieu of missing data when a masked array is printed.
By default, this string is ``'--'``.
.. _maskedarray.baseclass:
The :class:`MaskedArray` class
==============================
.. class:: MaskedArray
A subclass of :class:`~numpy.ndarray` designed to manipulate numerical arrays with missing data.
An instance of :class:`MaskedArray` can be thought as the combination of several elements:
* The :attr:`~MaskedArray.data`, as a regular :class:`numpy.ndarray` of any shape or datatype (the data).
* A boolean :attr:`~numpy.ma.MaskedArray.mask` with the same shape as the data, where a ``True`` value indicates that the corresponding element of the data is invalid.
The special value :const:`nomask` is also acceptable for arrays without named fields, and indicates that no data is invalid.
* A :attr:`~numpy.ma.MaskedArray.fill_value`, a value that may be used to replace the invalid entries in order to return a standard :class:`numpy.ndarray`.
Attributes and properties of masked arrays
------------------------------------------
.. seealso:: :ref:`Array Attributes <arrays.ndarray.attributes>`
.. attribute:: MaskedArray.data
Returns the underlying data, as a view of the masked array.
If the underlying data is a subclass of :class:`numpy.ndarray`, it is
returned as such.
>>> x = ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
>>> x.data
matrix([[1, 2],
[3, 4]])
The type of the data can be accessed through the :attr:`baseclass`
attribute.
.. attribute:: MaskedArray.mask
Returns the underlying mask, as an array with the same shape and structure
as the data, but where all fields are atomically booleans.
A value of ``True`` indicates an invalid entry.
.. attribute:: MaskedArray.recordmask
Returns the mask of the array if it has no named fields. For structured
arrays, returns a ndarray of booleans where entries are ``True`` if **all**
the fields are masked, ``False`` otherwise::
>>> x = ma.array([(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)],
... mask=[(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)],
... dtype=[('a', int), ('b', int)])
>>> x.recordmask
array([False, False, True, False, False], dtype=bool)
.. attribute:: MaskedArray.fill_value
Returns the value used to fill the invalid entries of a masked array.
The value is either a scalar (if the masked array has no named fields),
or a 0-D ndarray with the same :attr:`dtype` as the masked array if it has
named fields.
The default filling value depends on the datatype of the array:
======== ========
datatype default
======== ========
bool True
int 999999
float 1.e20
complex 1.e20+0j
object '?'
string 'N/A'
======== ========
.. attribute:: MaskedArray.baseclass
Returns the class of the underlying data.
>>> x = ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 0], [1, 0]])
>>> x.baseclass
<class 'numpy.matrixlib.defmatrix.matrix'>
.. attribute:: MaskedArray.sharedmask
Returns whether the mask of the array is shared between several masked arrays.
If this is the case, any modification to the mask of one array will be
propagated to the others.
.. attribute:: MaskedArray.hardmask
Returns whether the mask is hard (``True``) or soft (``False``).
When the mask is hard, masked entries cannot be unmasked.
As :class:`MaskedArray` is a subclass of :class:`~numpy.ndarray`, a masked array also inherits all the attributes and properties of a :class:`~numpy.ndarray` instance.
.. autosummary::
:toctree: generated/
MaskedArray.base
MaskedArray.ctypes
MaskedArray.dtype
MaskedArray.flags
MaskedArray.itemsize
MaskedArray.nbytes
MaskedArray.ndim
MaskedArray.shape
MaskedArray.size
MaskedArray.strides
MaskedArray.imag
MaskedArray.real
MaskedArray.flat
MaskedArray.__array_priority__
:class:`MaskedArray` methods
============================
.. seealso:: :ref:`Array methods <array.ndarray.methods>`
Conversion
----------
.. autosummary::
:toctree: generated/
MaskedArray.__float__
MaskedArray.__hex__
MaskedArray.__int__
MaskedArray.__long__
MaskedArray.__oct__
MaskedArray.view
MaskedArray.astype
MaskedArray.byteswap
MaskedArray.compressed
MaskedArray.filled
MaskedArray.tofile
MaskedArray.toflex
MaskedArray.tolist
MaskedArray.torecords
MaskedArray.tostring
Shape manipulation
------------------
For reshape, resize, and transpose, the single tuple argument may be
replaced with ``n`` integers which will be interpreted as an n-tuple.
.. autosummary::
:toctree: generated/
MaskedArray.flatten
MaskedArray.ravel
MaskedArray.reshape
MaskedArray.resize
MaskedArray.squeeze
MaskedArray.swapaxes
MaskedArray.transpose
MaskedArray.T
Item selection and manipulation
-------------------------------
For array methods that take an *axis* keyword, it defaults to `None`.
If axis is *None*, then the array is treated as a 1-D array.
Any other value for *axis* represents the dimension along which
the operation should proceed.
.. autosummary::
:toctree: generated/
MaskedArray.argmax
MaskedArray.argmin
MaskedArray.argsort
MaskedArray.choose
MaskedArray.compress
MaskedArray.diagonal
MaskedArray.fill
MaskedArray.item
MaskedArray.nonzero
MaskedArray.put
MaskedArray.repeat
MaskedArray.searchsorted
MaskedArray.sort
MaskedArray.take
Pickling and copy
-----------------
.. autosummary::
:toctree: generated/
MaskedArray.copy
MaskedArray.dump
MaskedArray.dumps
Calculations
------------
.. autosummary::
:toctree: generated/
MaskedArray.all
MaskedArray.anom
MaskedArray.any
MaskedArray.clip
MaskedArray.conj
MaskedArray.conjugate
MaskedArray.cumprod
MaskedArray.cumsum
MaskedArray.max
MaskedArray.mean
MaskedArray.min
MaskedArray.prod
MaskedArray.product
MaskedArray.ptp
MaskedArray.round
MaskedArray.std
MaskedArray.sum
MaskedArray.trace
MaskedArray.var
Arithmetic and comparison operations
------------------------------------
.. index:: comparison, arithmetic, operation, operator
Comparison operators:
~~~~~~~~~~~~~~~~~~~~~
.. autosummary::
:toctree: generated/
MaskedArray.__lt__
MaskedArray.__le__
MaskedArray.__gt__
MaskedArray.__ge__
MaskedArray.__eq__
MaskedArray.__ne__
Truth value of an array (:func:`bool()`):
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autosummary::
:toctree: generated/
MaskedArray.__nonzero__
Arithmetic:
~~~~~~~~~~~
.. autosummary::
:toctree: generated/
MaskedArray.__abs__
MaskedArray.__add__
MaskedArray.__radd__
MaskedArray.__sub__
MaskedArray.__rsub__
MaskedArray.__mul__
MaskedArray.__rmul__
MaskedArray.__div__
MaskedArray.__rdiv__
MaskedArray.__truediv__
MaskedArray.__rtruediv__
MaskedArray.__floordiv__
MaskedArray.__rfloordiv__
MaskedArray.__mod__
MaskedArray.__rmod__
MaskedArray.__divmod__
MaskedArray.__rdivmod__
MaskedArray.__pow__
MaskedArray.__rpow__
MaskedArray.__lshift__
MaskedArray.__rlshift__
MaskedArray.__rshift__
MaskedArray.__rrshift__
MaskedArray.__and__
MaskedArray.__rand__
MaskedArray.__or__
MaskedArray.__ror__
MaskedArray.__xor__
MaskedArray.__rxor__
Arithmetic, in-place:
~~~~~~~~~~~~~~~~~~~~~
.. autosummary::
:toctree: generated/
MaskedArray.__iadd__
MaskedArray.__isub__
MaskedArray.__imul__
MaskedArray.__idiv__
MaskedArray.__itruediv__
MaskedArray.__ifloordiv__
MaskedArray.__imod__
MaskedArray.__ipow__
MaskedArray.__ilshift__
MaskedArray.__irshift__
MaskedArray.__iand__
MaskedArray.__ior__
MaskedArray.__ixor__
Representation
--------------
.. autosummary::
:toctree: generated/
MaskedArray.__repr__
MaskedArray.__str__
MaskedArray.ids
MaskedArray.iscontiguous
Special methods
---------------
For standard library functions:
.. autosummary::
:toctree: generated/
MaskedArray.__copy__
MaskedArray.__deepcopy__
MaskedArray.__getstate__
MaskedArray.__reduce__
MaskedArray.__setstate__
Basic customization:
.. autosummary::
:toctree: generated/
MaskedArray.__new__
MaskedArray.__array__
MaskedArray.__array_wrap__
Container customization: (see :ref:`Indexing <arrays.indexing>`)
.. autosummary::
:toctree: generated/
MaskedArray.__len__
MaskedArray.__getitem__
MaskedArray.__setitem__
MaskedArray.__delitem__
MaskedArray.__getslice__
MaskedArray.__setslice__
MaskedArray.__contains__
Specific methods
----------------
Handling the mask
~~~~~~~~~~~~~~~~~
The following methods can be used to access information about the mask or to
manipulate the mask.
.. autosummary::
:toctree: generated/
MaskedArray.__setmask__
MaskedArray.harden_mask
MaskedArray.soften_mask
MaskedArray.unshare_mask
MaskedArray.shrink_mask
Handling the `fill_value`
~~~~~~~~~~~~~~~~~~~~~~~~~
.. autosummary::
:toctree: generated/
MaskedArray.get_fill_value
MaskedArray.set_fill_value
Counting the missing elements
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autosummary::
:toctree: generated/
MaskedArray.count