Former-commit-id:06a8b51d6d
[formerlya02aeb236c
[formerly9f19e3f712
] [formerly06a8b51d6d
[formerly 64fa9254b946eae7e61bbc3f513b7c3696c4f54f]]] Former-commit-id:a02aeb236c
[formerly9f19e3f712
] Former-commit-id:a02aeb236c
Former-commit-id:133dc97f67
189 lines
5.1 KiB
Python
Executable file
189 lines
5.1 KiB
Python
Executable file
# This module defines a class representing quaternions.
|
|
# It contains just what is needed for using quaternions as representations
|
|
# of rotations in 3d space.
|
|
#
|
|
# Written by Konrad Hinsen <hinsen@cnrs-orleans.fr>
|
|
# last revision: 2006-11-23
|
|
#
|
|
|
|
"""
|
|
Quaternions as representations of rotations in 3D space
|
|
"""
|
|
|
|
from Scientific import N; Numeric = N
|
|
from Scientific.Geometry import Transformation
|
|
|
|
class Quaternion:
|
|
|
|
"""
|
|
Quaternion (hypercomplex number)
|
|
|
|
This implementation of quaternions is not complete; only the features
|
|
needed for representing rotation matrices by quaternions are
|
|
implemented.
|
|
|
|
Quaternions support addition, subtraction, and multiplication,
|
|
as well as multiplication and division by scalars. Division
|
|
by quaternions is not provided, because quaternion multiplication
|
|
is not associative. Use multiplication by the inverse instead.
|
|
|
|
The four components can be extracted by indexing.
|
|
"""
|
|
|
|
def __init__(self, *data):
|
|
"""
|
|
There are two calling patterns:
|
|
|
|
- Quaternion(q0, q1, q2, q3) (from four real components)
|
|
|
|
- Quaternion(q) (from a sequence containing the four components)
|
|
"""
|
|
if len(data) == 1:
|
|
self.array = Numeric.array(data[0])
|
|
elif len(data) == 4:
|
|
self.array = Numeric.array(data)
|
|
|
|
is_quaternion = 1
|
|
|
|
def __getitem__(self, item):
|
|
return self.array[item]
|
|
|
|
def __add__(self, other):
|
|
return Quaternion(self.array+other.array)
|
|
|
|
def __sub__(self, other):
|
|
return Quaternion(self.array-other.array)
|
|
|
|
def __mul__(self, other):
|
|
if isQuaternion(other):
|
|
return Quaternion(Numeric.dot(self.asMatrix(),
|
|
other.asMatrix())[:, 0])
|
|
else:
|
|
return Quaternion(self.array*other)
|
|
|
|
def __rmul__(self, other):
|
|
if isQuaternion(other):
|
|
raise ValueError('Not yet implemented')
|
|
return Quaternion(self.array*other)
|
|
|
|
def __div__(self, other):
|
|
if isQuaternion(other):
|
|
raise ValueError('Division by quaternions is not allowed.')
|
|
return Quaternion(self.array/other)
|
|
|
|
def __rdiv__(self, other):
|
|
raise ValueError('Division by quaternions is not allowed.')
|
|
|
|
def __repr__(self):
|
|
return 'Quaternion(' + str(list(self.array)) + ')'
|
|
|
|
def dot(self, other):
|
|
return Numeric.add.reduce(self.array*other.array)
|
|
|
|
def norm(self):
|
|
"""
|
|
@returns: the norm
|
|
@rtype: C{float}
|
|
"""
|
|
return Numeric.sqrt(self.dot(self))
|
|
|
|
def normalized(self):
|
|
"""
|
|
@returns: the quaternion scaled such that its norm is 1
|
|
@rtype: L{Quaternion}
|
|
"""
|
|
return self/self.norm()
|
|
|
|
def inverse(self):
|
|
"""
|
|
@returns: the inverse
|
|
@rtype: L{Quaternion}
|
|
"""
|
|
import Scientific.LA
|
|
inverse = Scientific.LA.inverse(self.asMatrix())
|
|
return Quaternion(inverse[:, 0])
|
|
|
|
def asMatrix(self):
|
|
"""
|
|
@returns: a 4x4 matrix representation
|
|
@rtype: C{Numeric.array}
|
|
"""
|
|
return Numeric.dot(self._matrix, self.array)
|
|
_matrix = Numeric.zeros((4,4,4))
|
|
_matrix[0,0,0] = 1
|
|
_matrix[0,1,1] = -1
|
|
_matrix[0,2,2] = -1
|
|
_matrix[0,3,3] = -1
|
|
_matrix[1,0,1] = 1
|
|
_matrix[1,1,0] = 1
|
|
_matrix[1,2,3] = -1
|
|
_matrix[1,3,2] = 1
|
|
_matrix[2,0,2] = 1
|
|
_matrix[2,1,3] = 1
|
|
_matrix[2,2,0] = 1
|
|
_matrix[2,3,1] = -1
|
|
_matrix[3,0,3] = 1
|
|
_matrix[3,1,2] = -1
|
|
_matrix[3,2,1] = 1
|
|
_matrix[3,3,0] = 1
|
|
|
|
def asRotation(self):
|
|
"""
|
|
@returns: the corresponding rotation matrix
|
|
@rtype: L{Scientific.Geometry.Transformation.Rotation}
|
|
@raises ValueError: if the quaternion is not normalized
|
|
"""
|
|
if Numeric.fabs(self.norm()-1.) > 1.e-5:
|
|
raise ValueError('Quaternion not normalized')
|
|
d = Numeric.dot(Numeric.dot(self._rot, self.array), self.array)
|
|
return Transformation.Rotation(d)
|
|
|
|
_rot = Numeric.zeros((3,3,4,4))
|
|
_rot[0,0, 0,0] = 1
|
|
_rot[0,0, 1,1] = 1
|
|
_rot[0,0, 2,2] = -1
|
|
_rot[0,0, 3,3] = -1
|
|
_rot[1,1, 0,0] = 1
|
|
_rot[1,1, 1,1] = -1
|
|
_rot[1,1, 2,2] = 1
|
|
_rot[1,1, 3,3] = -1
|
|
_rot[2,2, 0,0] = 1
|
|
_rot[2,2, 1,1] = -1
|
|
_rot[2,2, 2,2] = -1
|
|
_rot[2,2, 3,3] = 1
|
|
_rot[0,1, 1,2] = 2
|
|
_rot[0,1, 0,3] = -2
|
|
_rot[0,2, 0,2] = 2
|
|
_rot[0,2, 1,3] = 2
|
|
_rot[1,0, 0,3] = 2
|
|
_rot[1,0, 1,2] = 2
|
|
_rot[1,2, 0,1] = -2
|
|
_rot[1,2, 2,3] = 2
|
|
_rot[2,0, 0,2] = -2
|
|
_rot[2,0, 1,3] = 2
|
|
_rot[2,1, 0,1] = 2
|
|
_rot[2,1, 2,3] = 2
|
|
|
|
|
|
# Type check
|
|
def isQuaternion(x):
|
|
"""
|
|
@param x: any object
|
|
@type x: any
|
|
@returns: C{True} if x is a quaternion
|
|
"""
|
|
return hasattr(x,'is_quaternion')
|
|
|
|
# Test data
|
|
|
|
if __name__ == '__main__':
|
|
|
|
from Scientific.Geometry import Vector
|
|
axis = Vector(1., -2., 1.).normal()
|
|
phi = 0.2
|
|
sin_phi_2 = Numeric.sin(0.5*phi)
|
|
cos_phi_2 = Numeric.cos(0.5*phi)
|
|
quat = Quaternion(cos_phi_2, sin_phi_2*axis[0],
|
|
sin_phi_2*axis[1], sin_phi_2*axis[2])
|
|
rot = quat.asRotation()
|
|
print rot.axisAndAngle()
|