awips2/pythonPackages/metpy
mjames-upc 0e9cf73b41 metpy 0.3.0, numpy 1.10, cartopy 0.13.0, basemap 1.0.7
Former-commit-id: 5daf25b08c4475c75347a66ce60e7b39712fd22c [formerly ff60eb3a7be83e96a595c2868243f45bfc6203f8]
Former-commit-id: 076392d3de
2016-03-13 18:05:31 -05:00
..
docs metpy 0.3.0, numpy 1.10, cartopy 0.13.0, basemap 1.0.7 2016-03-13 18:05:31 -05:00
examples metpy 0.3.0, numpy 1.10, cartopy 0.13.0, basemap 1.0.7 2016-03-13 18:05:31 -05:00
metpy metpy 0.3.0, numpy 1.10, cartopy 0.13.0, basemap 1.0.7 2016-03-13 18:05:31 -05:00
talks metpy 0.3.0, numpy 1.10, cartopy 0.13.0, basemap 1.0.7 2016-03-13 18:05:31 -05:00
testdata metpy 0.3.0, numpy 1.10, cartopy 0.13.0, basemap 1.0.7 2016-03-13 18:05:31 -05:00
.checkignore metpy 0.3.0, numpy 1.10, cartopy 0.13.0, basemap 1.0.7 2016-03-13 18:05:31 -05:00
.codeclimate.yml metpy 0.3.0, numpy 1.10, cartopy 0.13.0, basemap 1.0.7 2016-03-13 18:05:31 -05:00
.coveragerc metpy 0.3.0, numpy 1.10, cartopy 0.13.0, basemap 1.0.7 2016-03-13 18:05:31 -05:00
.gitattributes metpy 0.3.0, numpy 1.10, cartopy 0.13.0, basemap 1.0.7 2016-03-13 18:05:31 -05:00
.gitignore metpy 0.3.0, numpy 1.10, cartopy 0.13.0, basemap 1.0.7 2016-03-13 18:05:31 -05:00
.prospector.yaml metpy 0.3.0, numpy 1.10, cartopy 0.13.0, basemap 1.0.7 2016-03-13 18:05:31 -05:00
.travis.yml metpy 0.3.0, numpy 1.10, cartopy 0.13.0, basemap 1.0.7 2016-03-13 18:05:31 -05:00
CONTRIBUTING.md metpy 0.3.0, numpy 1.10, cartopy 0.13.0, basemap 1.0.7 2016-03-13 18:05:31 -05:00
environment.yml metpy 0.3.0, numpy 1.10, cartopy 0.13.0, basemap 1.0.7 2016-03-13 18:05:31 -05:00
LICENSE metpy 0.3.0, numpy 1.10, cartopy 0.13.0, basemap 1.0.7 2016-03-13 18:05:31 -05:00
MANIFEST.in metpy 0.3.0, numpy 1.10, cartopy 0.13.0, basemap 1.0.7 2016-03-13 18:05:31 -05:00
pytest.ini metpy 0.3.0, numpy 1.10, cartopy 0.13.0, basemap 1.0.7 2016-03-13 18:05:31 -05:00
README metpy 0.3.0, numpy 1.10, cartopy 0.13.0, basemap 1.0.7 2016-03-13 18:05:31 -05:00
README.rst metpy 0.3.0, numpy 1.10, cartopy 0.13.0, basemap 1.0.7 2016-03-13 18:05:31 -05:00
setup.cfg metpy 0.3.0, numpy 1.10, cartopy 0.13.0, basemap 1.0.7 2016-03-13 18:05:31 -05:00
setup.py metpy 0.3.0, numpy 1.10, cartopy 0.13.0, basemap 1.0.7 2016-03-13 18:05:31 -05:00
versioneer.py metpy 0.3.0, numpy 1.10, cartopy 0.13.0, basemap 1.0.7 2016-03-13 18:05:31 -05:00

MetPy
=====

|License| |Gitter|

|PyPI| |PyPIDownloads| |Conda| |CondaDownloads|

|Travis| |CodeCov| |Codacy| |QuantifiedCode|

|LatestDocs| |StableDocs|

.. |License| image:: https://img.shields.io/pypi/l/metpy.svg
    :target: https://pypi.python.org/pypi/MetPy/
    :alt: License

.. |PyPI| image:: https://img.shields.io/pypi/v/metpy.svg
    :target: https://pypi.python.org/pypi/MetPy/
    :alt: PyPI Package

.. |PyPIDownloads| image:: https://img.shields.io/pypi/dm/metpy.svg
    :target: https://pypi.python.org/pypi/MetPy/
    :alt: PyPI Downloads

.. |Conda| image:: https://binstar.org/unidata/metpy/badges/version.svg
    :target: https://binstar.org/unidata/metpy
    :alt: Binstar Package

.. |CondaDownloads| image:: https://binstar.org/unidata/metpy/badges/downloads.svg
    :target: https://binstar.org/unidata/metpy
    :alt: Binstar Downloads

.. |Travis| image:: https://travis-ci.org/metpy/MetPy.svg?branch=master
    :target: https://travis-ci.org/metpy/MetPy
    :alt: Travis Build Status

.. |CodeCov| image:: https://codecov.io/github/metpy/MetPy/coverage.svg?branch=master
    :target: https://codecov.io/github/metpy/MetPy?branch=master
    :alt: Code Coverage Status

.. |QuantifiedCode| image:: https://www.quantifiedcode.com/api/v1/project/1153e58350aa41e6a7970a134febeb2d/badge.svg
    :target: https://www.quantifiedcode.com/app/project/1153e58350aa41e6a7970a134febeb2d
    :alt: Code issues

.. |Codacy| image:: https://api.codacy.com/project/badge/grade/e1ea0937eb4942e79a44bc9bb2de616d
    :target: https://www.codacy.com/app/dopplershift/MetPy
    :alt: Codacy code issues

.. |LatestDocs| image:: https://readthedocs.org/projects/pip/badge/?version=latest
    :target: http://metpy.readthedocs.org/en/latest/
    :alt: Latest Doc Build Status

.. |StableDocs| image:: https://readthedocs.org/projects/pip/badge/?version=stable
    :target: http://metpy.readthedocs.org/en/stable/
    :alt: Stable Doc Build Status

.. |Gitter| image:: https://badges.gitter.im/metpy/MetPy.svg
    :target: https://gitter.im/metpy/MetPy?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge
    :alt: Gitter

MetPy is a collection of tools in Python for reading, visualizing and
performing calculations with weather data.

MetPy is still in an early stage of development, and as such
**no APIs are considered stable.** While we won't break things
just for fun, many things may still change as we work through
design issues.

We support Python 2.7 as well as Python >= 3.3.

Important Links
---------------

- Source code repository: https://github.com/MetPy/MetPy
- HTML Documentation (stable release): http://metpy.readthedocs.org/en/stable/
- HTML Documentation (development): http://metpy.readthedocs.org/en/latest/
- Issue tracker: http://github.com/Metpy/MetPy/issues
- Gitter chat room: https://gitter.im/metpy/MetPy

Dependencies
------------
Other required packages:

- Numpy
- Scipy
- Matplotlib
- Pint

Python versions older than 3.4 require the enum34 package, which is a backport
of the standard library enum module.

There is also an optional dependency on the pyproj library for geographic
projections (used with CDM interface).

Philosophy
----------
The space MetPy aims for is GEMPAK (and maybe NCL)-like functionality, in a way that plugs easily
into the existing scientific Python ecosystem (numpy, scipy, matplotlib). So, if you take the average GEMPAK script
for a weather map, you need to:

- read data
- calculate a derived field
- show on a map/skew-T

One of the benefits hoped to achieve over GEMPAK is to make it easier to use these routines for any
meteorological Python application; this means making it easy to pull out the LCL calculation and just use that,
or re-use the Skew-T with your own data code. MetPy also prides itself on being well-documented and well-tested,
so that on-going maintenance is easily manageable.

The intended audience is that of GEMPAK: researchers, educators, and any one wanting to script up weather analysis.
It doesn't even have to be scripting; all python meteorology tools are hoped to be able to benefit from MetPy.
Conversely, it's hoped to be the meteorological equivalent of the audience of scipy/scikit-learn/skimage.