awips2/pythonPackages/matplotlib/lib/dateutil/easter.py
root e2ecdcfe33 Initial revision of AWIPS2 11.9.0-7p5
Former-commit-id: a02aeb236c [formerly 9f19e3f712] [formerly a02aeb236c [formerly 9f19e3f712] [formerly 06a8b51d6d [formerly 64fa9254b946eae7e61bbc3f513b7c3696c4f54f]]]
Former-commit-id: 06a8b51d6d
Former-commit-id: 8e80217e59 [formerly 3360eb6c5f]
Former-commit-id: 377dcd10b9
2012-01-06 08:55:05 -06:00

92 lines
2.5 KiB
Python
Executable file

"""
Copyright (c) 2003-2005 Gustavo Niemeyer <gustavo@niemeyer.net>
This module offers extensions to the standard python 2.3+
datetime module.
"""
__author__ = "Gustavo Niemeyer <gustavo@niemeyer.net>"
__license__ = "PSF License"
import datetime
__all__ = ["easter", "EASTER_JULIAN", "EASTER_ORTHODOX", "EASTER_WESTERN"]
EASTER_JULIAN = 1
EASTER_ORTHODOX = 2
EASTER_WESTERN = 3
def easter(year, method=EASTER_WESTERN):
"""
This method was ported from the work done by GM Arts,
on top of the algorithm by Claus Tondering, which was
based in part on the algorithm of Ouding (1940), as
quoted in "Explanatory Supplement to the Astronomical
Almanac", P. Kenneth Seidelmann, editor.
This algorithm implements three different easter
calculation methods:
1 - Original calculation in Julian calendar, valid in
dates after 326 AD
2 - Original method, with date converted to Gregorian
calendar, valid in years 1583 to 4099
3 - Revised method, in Gregorian calendar, valid in
years 1583 to 4099 as well
These methods are represented by the constants:
EASTER_JULIAN = 1
EASTER_ORTHODOX = 2
EASTER_WESTERN = 3
The default method is method 3.
More about the algorithm may be found at:
http://users.chariot.net.au/~gmarts/eastalg.htm
and
http://www.tondering.dk/claus/calendar.html
"""
if not (1 <= method <= 3):
raise ValueError, "invalid method"
# g - Golden year - 1
# c - Century
# h - (23 - Epact) mod 30
# i - Number of days from March 21 to Paschal Full Moon
# j - Weekday for PFM (0=Sunday, etc)
# p - Number of days from March 21 to Sunday on or before PFM
# (-6 to 28 methods 1 & 3, to 56 for method 2)
# e - Extra days to add for method 2 (converting Julian
# date to Gregorian date)
y = year
g = y % 19
e = 0
if method < 3:
# Old method
i = (19*g+15)%30
j = (y+y/4+i)%7
if method == 2:
# Extra dates to convert Julian to Gregorian date
e = 10
if y > 1600:
e = e+y/100-16-(y/100-16)/4
else:
# New method
c = y/100
h = (c-c/4-(8*c+13)/25+19*g+15)%30
i = h-(h/28)*(1-(h/28)*(29/(h+1))*((21-g)/11))
j = (y+y/4+i+2-c+c/4)%7
# p can be from -6 to 56 corresponding to dates 22 March to 23 May
# (later dates apply to method 2, although 23 May never actually occurs)
p = i-j+e
d = 1+(p+27+(p+6)/40)%31
m = 3+(p+26)/30
return datetime.date(y,m,d)