awips2/edexOsgi/com.raytheon.edex.plugin.grib/GribDecoder.py
Ben Steffensmeier b04bca36d4 Issue #189 fix several Unknown Models
Former-commit-id: 365a2274dd [formerly 56d97231ac950ad0db6a1063beb5f42483b7d137]
Former-commit-id: 579d2e5ba6
2012-11-02 16:19:46 -05:00

1278 lines
51 KiB
Python

##
# This software was developed and / or modified by Raytheon Company,
# pursuant to Contract DG133W-05-CQ-1067 with the US Government.
#
# U.S. EXPORT CONTROLLED TECHNICAL DATA
# This software product contains export-restricted data whose
# export/transfer/disclosure is restricted by U.S. law. Dissemination
# to non-U.S. persons whether in the United States or abroad requires
# an export license or other authorization.
#
# Contractor Name: Raytheon Company
# Contractor Address: 6825 Pine Street, Suite 340
# Mail Stop B8
# Omaha, NE 68106
# 402.291.0100
#
# See the AWIPS II Master Rights File ("Master Rights File.pdf") for
# further licensing information.
##
import grib2
import numpy
from math import pow
import time, os, sys, math
import LogStream
import tempfile
from matplotlib.mlab import griddata
from java.lang import Float
from java.lang import Double
from java.lang import Integer
from java.util import Calendar
from java.util import Date
from java.util import GregorianCalendar
from javax.measure.unit import SI
from javax.measure.unit import NonSI
from javax.measure.unit import Unit
from com.raytheon.uf.common.time import DataTime
from com.raytheon.uf.common.time import TimeRange
from com.raytheon.uf.common.geospatial import MapUtil
from com.raytheon.uf.common.serialization import SerializationUtil
from com.raytheon.uf.common.dataplugin.grid import GridRecord
from com.raytheon.uf.common.gridcoverage import LambertConformalGridCoverage
from com.raytheon.uf.common.gridcoverage import LatLonGridCoverage
from com.raytheon.uf.common.gridcoverage import MercatorGridCoverage
from com.raytheon.uf.common.gridcoverage import PolarStereoGridCoverage
from com.raytheon.uf.common.gridcoverage.lookup import GridCoverageLookup
from com.raytheon.uf.common.gridcoverage import Corner
from com.raytheon.edex.plugin.grib.util import GribModelLookup
from com.raytheon.uf.common.dataplugin.level import Level
from com.raytheon.uf.common.dataplugin.level import LevelFactory
from com.raytheon.edex.plugin.grib.spatial import GribSpatialCache
from com.raytheon.edex.util.grib import GribTableLookup
from com.raytheon.edex.util import Util
from com.raytheon.edex.plugin.grib import Grib1Decoder
from com.raytheon.edex.util.grib import GribParamTranslator
from com.raytheon.uf.common.parameter import Parameter;
from com.raytheon.uf.common.parameter.mapping import ParameterMapper;
PLUGIN_NAME = "grid"
# Static values for accessing parameter lookup tables
PARAMETER_TABLE = "4.2"
GENPROCESS_TABLE = "A"
LEVELS_TABLE = "4.5"
DOT = "."
DASH = "-"
SPACE = " "
MISSING = "Missing"
# Static values for converting forecast times to seconds
SECONDS_PER_MINUTE = 60
SECONDS_PER_HOUR = 3600
SECONDS_PER_DAY = 86400
# Assumes 31 days in 1 month
SECONDS_PER_MONTH = 2678400
#Assumes 365 days in 1 year
SECONDS_PER_YEAR = 977616000
# Default values for earth shape
MAJOR_AXIS_DEFAULT = 6378160
MINOR_AXIS_DEFAULT = 6356775
# Default values for dx/dy spacing of grids
DEFAULT_SPACING_UNIT = "km"
DEFAULT_SPACING_UNIT2 = "degree"
# Quasi-regular values (grids 37-44)
THINNED_GRID_PTS = 73
THINNED_GRID_MIDPOINT = 37
THINNED_GRID_SPACING = 1.25
THINNED_GRID_SIZE = 3447
THINNED_GRID_REMAPPED_SIZE = 5329
THINNED_XI_LINSPACE = numpy.linspace(0, THINNED_GRID_PTS - 1, THINNED_GRID_PTS)
THINNED_YI_LINSPACE = numpy.linspace(0, THINNED_GRID_PTS - 1, THINNED_GRID_PTS)
# Map of latitudes (north and south) to number of points on a quasi-regular (thinned) grid
THINNED_GRID_PT_MAP = {0:73, 1.25:73, 2.50:73, 3.75:73, 5.0:73, 6.25:73, 7.50:73, 8.75:73, 10.0:72, 11.25:72, 12.50:72,
13.75:71, 15.0:71, 16.25:71, 17.50:70, 18.75:70, 20.0:69, 21.25:69, 22.50: 68, 23.75:67, 25.00:67,
26.25:66, 27.50:65, 28.75:65, 30.0:64, 31.25:63, 32.50:62, 33.75:61, 35.00:60, 36.25:60, 37.50:59,
38.75:58, 40.00:57, 41.25:56, 42.5:55, 43.75:54, 45.00:52, 46.25:51, 47.50:50, 48.75:49, 50.00:48,
51.25:47, 52.50:45, 53.75:44, 55.00:43, 56.25:42, 57.50:40, 58.75:39, 60.00:38, 61.25:36, 62.50:35,
63.75:33, 65.00:32, 66.25:30, 67.50:29, 68.75:28, 70.00:26, 71.25:25, 72.50:23, 73.75:22, 75.00:20,
76.25:19, 77.50:17, 78.75:16, 80.00:14, 81.25:12, 82.50:11, 83.75:9, 85.00:8, 86.25:6, 87.50:5,
88.75:3, 90.00:2}
THINNED_GRID_VALUES = THINNED_GRID_PT_MAP.values()
#
# Python implementation of the grib decoder. This decoder uses the python ctypes
# library to access the NCEP grib decoder for extracting data
#
#
# SOFTWARE HISTORY
#
# Date Ticket# Engineer Description
# ------------ ---------- ----------- --------------------------
# 04/7/09 #1994 bphillip Initial Creation.
#
class GribDecoder():
##
# Initializes the grib decoder
#
# @param text: Unused
# @param filePath: The file to decode
##
def __init__(self, text=None, filePath=None):
# Assign public file name
self.fileName = filePath
##
# Decodes the grib file
#
# @return: List of decoded GribRecords
# @rtype: List
##
def decode(self):
# The GribRecords to be returned back to Java
records = []
#tokens = self.fileName.rsplit("/")
#if tokens[len(tokens) - 1].startswith("H"):
# return records
filePointer = 0;
version = -1;
if os.path.exists(self.fileName):
try:
version = grib2.checkVersion(self.fileName)
except:
LogStream.logProblem("Error opening file [", self.fileName, "]: ", sys.exc_info()[1])
return records
else:
LogStream.logProblem("The file does not exist: [", self.fileName, "]")
return records
decodeFile = None
if version == 1:
grib1Decoder = Grib1Decoder()
return grib1Decoder.decode(self.fileName)
else:
decodeFile = self.fileName
if decodeFile == None:
LogStream.logProblem("Could not get final filename to decode: [", self.fileName, "]")
return records
gribFile = open(decodeFile, "rb")
# Define some basic navigation variable for extracting grib records
recordIndex = 0
fieldIndex = 0
numFields = 1
try:
# Iterate over and decode each record in the file
while numFields != -1:
while fieldIndex < numFields:
# Extract the metadata to the metadata array
metadataResults = grib2.getMetadata(gribFile, recordIndex, fieldIndex + 1, 0)
numFields = metadataResults['numFields']
fieldIndex = fieldIndex + 1
if numFields != -1:
metadata = metadataResults['metadata']
record = self._getData(gribFile, metadata, recordIndex, fieldIndex)
if record != None:
records.append(record)
recordIndex = recordIndex + 1
fieldIndex = 0
except:
LogStream.logProblem("Error processing file [", self.fileName, "]: ", LogStream.exc())
finally:
gribFile.close()
return records
##
# Decodes a single record contained in the grib file
#
# @param fptr: The C file pointer to the file
# @param metadata: The extracted metadata
# @param recordIndex: The index of the record being decoded in the file
# @param fieldIndex: The index of the field of the record in the file
# @return: Decoded GribRecord object
# @rtype: GribRecord
##
def _getData(self, fptr, metadata, recordIndex, fieldIndex):
# Extracts data from grib record via C call to getData
dataResults = grib2.getData(fptr, recordIndex, fieldIndex)
data = dataResults['data']
localSectionValues = None
bitMap = None
# Extracts data from the ID section
idSectionValues = self._decodeIdSection(dataResults['idSection'])
self.id = dataResults['idSection']
# Extracts data from the Local section
if 'localSection' in dataResults:
localSectionValues = self._decodeLocalSection(dataResults['localSection'])
# Extracts data from the gds template
gdsSectionValues = self._decodeGdsSection(metadata, dataResults['gdsTemplate'])
self.gds = dataResults['gdsTemplate']
# Extracts data from the pds template
pdsSectionValues = self._decodePdsSection(metadata, dataResults['idSection'], dataResults['pdsTemplate'])
self.pds = dataResults['pdsTemplate']
if 'bitmap' in dataResults:
bitMap = dataResults['bitmap']
# Construct the DataTime object
if pdsSectionValues['endTime'] is None:
dataTime = DataTime(idSectionValues['refTime'], pdsSectionValues['forecastTime'])
else:
# endTime defines forecast time based on the difference to refTime since forecastTime is the start of the valid period
timeRange = TimeRange(idSectionValues['refTime'].getTimeInMillis() + (pdsSectionValues['forecastTime'] * 1000), pdsSectionValues['endTime'].getTimeInMillis())
forecastTime = int(float(pdsSectionValues['endTime'].getTimeInMillis() - idSectionValues['refTime'].getTimeInMillis()) / 1000)
dataTime = DataTime(idSectionValues['refTime'], forecastTime, timeRange)
hybridCoordList = None
if 'coordList' in dataResults:
hybridCoordList = numpy.resize(coordList, (1, coordList.size))
numpyDataArray = None
thinnedPts = None
thinnedGrid = gdsSectionValues['thinned']
# Special case for thinned grids.
# Map the thinned grid on to a square lat/lon grid
if thinnedGrid:
optValues = dataResults['listOps']
optList = numpy.zeros(len(optValues), numpy.int32)
for i in range(0, len(optValues)):
optList[i] = optValues[i]
dataArray = numpy.zeros(len(data), numpy.float32)
for i in range(0, len(data)):
dataArray[i] = data[i]
# Temporary place holder pending Numpy update
numpyDataArray = numpy.zeros((THINNED_GRID_PTS, THINNED_GRID_PTS), numpy.float32)
# The list of points per parallel for thinned grids
thinnedPts = numpy.resize(numpy.frombuffer(optList, numpy.int32)[::-1], (1, len(optList)))
# Temporary arrays to hold the (grid, not lat/lon) coordinates of the data
x = numpy.zeros(THINNED_GRID_SIZE)
y = numpy.zeros(THINNED_GRID_SIZE)
# The index in the original data
dataIndex = 0
for row in range(THINNED_GRID_PTS):
pts = optList[row]
rowSpace = numpy.linspace(0, THINNED_GRID_PTS, pts)
for curridx in range(pts):
x[dataIndex] = rowSpace[curridx]
y[dataIndex] = row
dataIndex = dataIndex + 1
# grid the data.
numpyDataArray = griddata(x, y, dataArray, THINNED_XI_LINSPACE, THINNED_YI_LINSPACE).astype(numpy.float32)
# Apply the bitmap if one is provided and set masked values to missing value
if metadata[18] == 0:
data = numpy.where(bitMap == 0, -999999, data)
# Check for fill value provided if complex packing is used
drs = dataResults['drsTemplate']
if metadata[14] == 2 or metadata[14] == 3:
primaryFill = Float.intBitsToFloat(drs[7])
secondaryFill = Float.intBitsToFloat(drs[8])
if drs[6] == 1:
data = numpy.where(data == primaryFill, -999999, data)
elif drs[6] == 2:
data = numpy.where(data == primaryFill, -999999, data)
data = numpy.where(data == secondaryFill, -999999, data)
nx = gdsSectionValues['coverage'].getNx().intValue()
ny = gdsSectionValues['coverage'].getNy().intValue()
# Correct the data according to the scan mode found in the gds section.
scanMode = gdsSectionValues['scanMode']
if scanMode is not None:
if not thinnedGrid:
numpyDataArray = numpy.resize(data, (ny, nx))
# Check y direction scan mode
if scanMode & 64 == 64:
numpyDataArray = numpy.flipud(numpyDataArray)
# Check x direction scan mode
if scanMode & 128 == 128:
numpyDataArray = numpy.fliplr(numpyDataArray)
# Check if rows are scanned in opposite direction. If so, we need to flip them around
if scanMode & 16 == 16:
# Check if x or y points are scanned consecutively
if scanMode & 32 == 32:
# y points are scanned consecutively
i = 0
while i < numpyDataArray.shape[1]:
theColumn = numpy.zeros(numpyDataArray.shape[0])
for j in range(0, numpyDataArray.shape[0]):
theColumn[j] = numpyDataArray[j][i]
for j in range(0, numpyDataArray.shape[0]):
numpyDataArray[j][i] = theColumn[numpyDataArray.shape[0] - j - 1]
i = i + 2
else:
# x points are scanned consecutively
i = 1
while i < numpyDataArray.shape[0]:
theRow = numpy.array(numpyDataArray[i], copy=True)
numpyDataArray[i] = theRow[::-1]
i = i + 2
else:
if not thinnedGrid:
numpyDataArray = data
origCoverage = gdsSectionValues['coverage']
# check sub gridding
modelName = self._createModelName(pdsSectionValues, origCoverage)
spatialCache = GribSpatialCache.getInstance()
gridCoverage = gdsSectionValues['coverage']
subCoverage = spatialCache.getSubGridCoverage(modelName, gridCoverage)
if subCoverage is not None:
subGrid = spatialCache.getSubGrid(modelName, gridCoverage)
# resize the data array
numpyDataArray = numpy.resize(numpyDataArray, (ny, nx))
startx = subGrid.getUpperLeftX()
starty = subGrid.getUpperLeftY()
subnx = subGrid.getNX()
subny = subGrid.getNY()
endY = starty + subny
endX = startx + subnx
# handle world wide grid wrap
if (endX > nx):
subGridDataArray = numpy.zeros((subny, subnx), numpy.float32)
midx = nx - startx
subGridDataArray[0:subny, 0:midx] = numpyDataArray[starty:endY, startx:nx]
subGridDataArray[0:subny, midx:subnx] = Util.GRID_FILL_VALUE
numpyDataArray = subGridDataArray
else:
numpyDataArray = numpyDataArray[starty:endY, startx:endX]
# update the number of points
nx = subnx
ny = subny
metadata[4] = nx * ny
# set the new coverage
gdsSectionValues['coverage'] = subCoverage
numpyDataArray = numpy.resize(numpyDataArray, (1, metadata[4]))
newAbbr = GribParamTranslator.getInstance().translateParameter(2, pdsSectionValues['parameterAbbreviation'], pdsSectionValues['centerid'], pdsSectionValues['subcenterid'], pdsSectionValues['genprocess'], dataTime, gridCoverage)
if newAbbr is None:
if pdsSectionValues['parameterName'] != MISSING and dataTime.getValidPeriod().getDuration() > 0:
pdsSectionValues['parameterAbbreviation'] = pdsSectionValues['parameterAbbreviation'] + str(dataTime.getValidPeriod().getDuration() / 3600000) + "hr"
else:
pdsSectionValues['parameterAbbreviation'] = newAbbr
pdsSectionValues['parameterAbbreviation'] = pdsSectionValues['parameterAbbreviation'].replace('_', '-')
# Construct the GribRecord
record = GridRecord()
record.setPluginName(PLUGIN_NAME)
record.setDataTime(dataTime)
record.setMessageData(numpyDataArray)
record.setLocation(gdsSectionValues['coverage'])
record.setLevel(pdsSectionValues['level'])
record.setDatasetId(modelName)
record.addExtraAttribute("centerid", Integer(pdsSectionValues['centerid']))
record.addExtraAttribute("subcenterid", Integer(pdsSectionValues['subcenterid']))
record.addExtraAttribute("genprocess", Integer(pdsSectionValues['genprocess']))
record.addExtraAttribute("backGenprocess", Integer(pdsSectionValues['backGenprocess']))
record.addExtraAttribute("pdsTemplate", Integer(pdsSectionValues['pdsTemplateNumber']))
record.addExtraAttribute("gridid", origCoverage.getName())
if "numForecasts" in pdsSectionValues:
record.addExtraAttribute("numForecasts", pdsSectionValues['numForecasts'])
record.setEnsembleId(pdsSectionValues['ensembleId'])
param = Parameter(pdsSectionValues['parameterAbbreviation'], pdsSectionValues['parameterName'], pdsSectionValues['parameterUnit'])
GribParamTranslator.getInstance().getParameterNameAlias(modelName, param)
record.setParameter(param) # record.setResCompFlags(Integer(gdsSectionValues['resCompFlags']))
#check if forecast used flag needs to be removed
self._checkForecastFlag(pdsSectionValues, origCoverage, record.getDataTime())
return record
##
# Decodes the values from the id section into a dictionary
# @param idSectionData: The values of the ID section of the grib file
# @return: A dictionary containing the values of the ID section
# @rtype: dictionary
##
def _decodeIdSection(self, idSectionData):
# Map to hold the values
idSection = {}
# GRIB master tables version number (currently 2) (see table 1.0)
idSection['masterTableVersion'] = idSectionData[2]
# Version number of GRIB local tables used to augment Master Table (see Table 1.1)
idSection['localTableVersion'] = idSectionData[3]
# Significance of reference time (See table 1.2)
idSection['sigRefTime'] = idSectionData[4]
# The reference time as a java.util.GregorianCalendar object
idSection['refTime'] = GregorianCalendar(idSectionData[5], idSectionData[6] - 1, idSectionData[7], idSectionData[8], idSectionData[9], idSectionData[10])
# Production Status of Processed Data in the GRIB message (see table 1.3)
idSection['productionStatus'] = idSectionData[11]
# Type of processed data in this GRIB message (See table 1.4)
idSection['typeProcessedData'] = idSectionData[12]
return idSection
##
# Extracts the local section into a numpy array
# @param localSectionData: the values of the local section of the grib file
# @return: The local section as a numpy array if present, else None is returned
# @rtype: numpy array else None if local section not present
##
def _decodeLocalSection(self, localSectionData):
# Extract the local section and resize into a numpy array
if len(localSectionData) > 0:
localData = numpy.zeros(len(localSectionData),numpy.int32)
for i in range(0,len(localSectionData)):
localData[i] = localSectionData[i]
return localData
# Return None if local section is not present
return None
##
# Decodes the values in the PDS template
#
# @param metadata: The metadata information
# @param idSection: The ID section values
# @param pdsTemplate: The PDS template values
# @return: Dictionary of PDS information
# @rtype: Dictionary
##
def _decodePdsSection(self, metadata, idSection, pdsTemplate):
# Dictionary to hold information extracted from PDS template
pdsFields = {}
endTime = None
forecastTime = 0
duration = 0
centerID = idSection[0]
subcenterID = idSection[1]
pdsTemplateNumber = metadata[10]
# Default to null
pdsFields['ensembleId'] = None
pdsFields['pdsTemplateNumber'] = pdsTemplateNumber
# default to UNKNOWN
pdsFields['level'] = LevelFactory.getInstance().getLevel(LevelFactory.UNKNOWN_LEVEL, float(0));
# Templates 0-11 are ordered the same for the most part and can therefore be processed the same
# Exception cases are handled accordingly
if pdsTemplateNumber <= 12:
# Get the basic level and parameter information
if (pdsTemplate[0] == 255):
parameterName = MISSING
parameterAbbreviation = MISSING
parameterUnit = MISSING
else:
metadata19 = metadata[19]
pds0 = pdsTemplate[0]
tableName = PARAMETER_TABLE + DOT + str(metadata19) + DOT + str(pds0)
parameter = GribTableLookup.getInstance().getTableValue(centerID, subcenterID, tableName, pdsTemplate[1])
if parameter is not None:
parameterName = parameter.getName()
if parameter.getD2dAbbrev() is not None:
parameterAbbreviation = parameter.getD2dAbbrev()
else:
parameterAbbreviation = parameter.getAbbreviation()
baseParameter = ParameterMapper.getInstance().lookupParameter("grib", parameterAbbreviation)
if baseParameter != None:
parameterAbbreviation = baseParameter.getAbbreviation();
parameterUnit = parameter.getUnit()
else:
LogStream.logEvent("No parameter information for center[" + str(centerID) + "], subcenter[" +
str(subcenterID) + "], tableName[" + tableName +
"], parameter value[" + str(pdsTemplate[1]) + "]");
parameterName = MISSING
parameterAbbreviation = MISSING
parameterUnit = MISSING
genprocess = GribTableLookup.getInstance().getTableValue(centerID, subcenterID, GENPROCESS_TABLE+"center"+str(centerID), pdsTemplate[4])
levelName = None;
levelUnit = None;
gribLevel = GribTableLookup.getInstance().getTableValue(centerID, subcenterID, LEVELS_TABLE, pdsTemplate[9])
if gribLevel is not None:
levelName = gribLevel.getAbbreviation();
levelUnit = gribLevel.getUnit()
else:
LogStream.logEvent("No level information for center[" + str(centerID) + "], subcenter[" +
str(subcenterID) + "], tableName[" + LEVELS_TABLE + "], level value[" +
str(pdsTemplate[9]) + "]");
if levelName is None or len(levelName) == 0:
levelName = LevelFactory.UNKNOWN_LEVEL
# Convert the forecast time to seconds
forecastTime = self._convertToSeconds(pdsTemplate[8], pdsTemplate[7])
# Scale the level one value if necessary
if pdsTemplate[10] == 0 or pdsTemplate[11] == 0:
levelOneValue = float(pdsTemplate[11])
else:
levelOneValue = float(pdsTemplate[11] * pow(10, pdsTemplate[10] * - 1))
levelTwoValue = levelOneValue
# If second level is present, scale if necessary
if pdsTemplate[12] == 255:
levelTwoValue = Level.getInvalidLevelValue()
elif pdsTemplate[12] == 1:
levelTwoValue = Level.getInvalidLevelValue()
else:
if pdsTemplate[13] == 0 or pdsTemplate[14] == 0:
levelTwoValue = float(pdsTemplate[14])
else:
levelTwoValue = float(pdsTemplate[14] * pow(10, pdsTemplate[13] * - 1))
if levelName=='SFC' and levelOneValue != float(0):
levelOneValue=float(0)
if levelName=='EATM':
levelOneValue=float(0)
levelTwoValue=float(Level.getInvalidLevelValue())
# Special case handling for specific PDS Templates
if pdsTemplateNumber == 1 or pdsTemplateNumber == 11:
typeEnsemble = Integer(pdsTemplate[15])
perturbationNumber = Integer(pdsTemplate[16])
pdsFields['numForecasts'] = Integer(pdsTemplate[17])
if(typeEnsemble == 0):
pdsFields['ensembleId'] = "ctlh" + perturbationNumber;
elif(typeEnsemble == 1):
pdsFields['ensembleId'] = "ctll" + perturbationNumber;
elif(typeEnsemble == 2):
pdsFields['ensembleId'] = "n" + perturbationNumber;
elif(typeEnsemble == 3):
pdsFields['ensembleId'] = "p" + perturbationNumber;
else:
pdsFields['ensembleId'] = typeEnsemble + "." + perturbationNumber;
if pdsTemplateNumber == 11:
endTime = GregorianCalendar(pdsTemplate[18], pdsTemplate[19] - 1, pdsTemplate[20], pdsTemplate[21], pdsTemplate[22], pdsTemplate[23])
numTimeRanges = pdsTemplate[24]
numMissingValues = pdsTemplate[25]
statisticalProcess = pdsTemplate[26]
elif pdsTemplateNumber == 2 or pdsTemplateNumber == 12:
derivedForecast = pdsTemplate[15]
if (derivedForecast == 1):
parameterAbbreviation= parameterAbbreviation+"mean"
elif (derivedForecast == 2):
parameterAbbreviation= parameterAbbreviation+"sprd"
pdsFields['typeEnsemble'] = Integer(pdsTemplate[15])
pdsFields['numForecasts'] = Integer(pdsTemplate[16])
if(pdsTemplateNumber == 12):
endTime = GregorianCalendar(pdsTemplate[17], pdsTemplate[18] - 1, pdsTemplate[19], pdsTemplate[20], pdsTemplate[21], pdsTemplate[22])
numTimeRanges = pdsTemplate[23]
numMissingValues = pdsTemplate[24]
statisticalProcess = pdsTemplate[25]
elif pdsTemplateNumber == 5 or pdsTemplateNumber == 9:
parameterUnit = "%"
probabilityNumber = pdsTemplate[15]
forecastProbabilities = pdsTemplate[16]
probabilityType = pdsTemplate[17]
scaleFactorLL = pdsTemplate[18]
scaledValueLL = pdsTemplate[19]
scaleFactorUL = pdsTemplate[20]
scaledValueUL = pdsTemplate[21]
if(pdsTemplateNumber == 9):
endTime = GregorianCalendar(pdsTemplate[22], pdsTemplate[23] - 1, pdsTemplate[24], pdsTemplate[25], pdsTemplate[26], pdsTemplate[27])
numTimeRanges = pdsTemplate[28]
numMissingValues = pdsTemplate[29]
statisticalProcess = pdsTemplate[30]
if(probabilityType == 1 or probabilityType ==2):
if(scaleFactorUL == 0):
parameterAbbreviation = parameterAbbreviation+"_"+str(scaledValueUL)
else:
parameterAbbreviation = parameterAbbreviation+"_"+str(scaledValueUL)+"E"+str(scaleFactorUL)
elif(probabilityType == 0):
if(scaleFactorLL == 0):
parameterAbbreviation = parameterAbbreviation+"_"+str(scaledValueLL)
else:
parameterAbbreviation = parameterAbbreviation+"_"+str(scaledValueLL)+"E"+str(scaleFactorLL)
elif pdsTemplateNumber == 8:
endTime = GregorianCalendar(pdsTemplate[15], pdsTemplate[16] - 1, pdsTemplate[17], pdsTemplate[18], pdsTemplate[19], pdsTemplate[20])
numTimeRanges = pdsTemplate[21]
numMissingValues = pdsTemplate[22]
statisticalProcess = pdsTemplate[23]
elif pdsTemplateNumber == 10:
endTime = GregorianCalendar(pdsTemplate[16], pdsTemplate[17] - 1, pdsTemplate[18], pdsTemplate[19], pdsTemplate[20], pdsTemplate[21])
numTimeRanges = pdsTemplate[22]
numMissingValues = pdsTemplate[23]
statisticalProcess = pdsTemplate[24]
if(pdsTemplate[2] == 6 or pdsTemplate[2] == 7):
parameterAbbreviation = parameterAbbreviation+"erranl"
# Constructing the GribModel object
pdsFields['centerid'] = centerID
pdsFields['subcenterid'] = subcenterID
pdsFields['backGenprocess'] = pdsTemplate[3]
pdsFields['genprocess'] = pdsTemplate[4]
pdsFields['parameterName'] = parameterName
pdsFields['parameterAbbreviation'] = parameterAbbreviation
pdsFields['parameterUnit'] = parameterUnit
# Constructing the Level object
level = LevelFactory.getInstance().getLevel(levelName, levelOneValue, levelTwoValue, levelUnit)
pdsFields['level'] = level
# Derived forecasts based on all ensemble members at a horizontal
# level or in a horizontal layer, in a continuous or non-continuous
# time interval.
#elif pdsTemplateNumber == 12:
# pass
# Derived forecasts based on a cluster of ensemble members over a
# rectangular area at a horizontal level or in a horizontal layer,
# in a continuous or non-continuous time interval.
elif pdsTemplateNumber == 13:
pass
# Derived forecasts based on a cluster of ensemble members over a
# circular area at a horizontal level or in a horizontal layer, in
# a continuous or non-continuous time interval.
elif pdsTemplateNumber == 14:
pass
# Radar Product
elif pdsTemplateNumber == 20:
pass
# Satellite Product Template
# NOTE:This template is deprecated. Template 31 should be used instead.
elif pdsTemplateNumber == 30:
pass
# Satellite Product Template
elif pdsTemplateNumber == 31:
pass
# CCITT IA5 character string
elif pdsTemplateNumber == 254:
pass
# Cross-section of analysis and forecast at a point in time.
elif pdsTemplateNumber == 1000:
pass
# Cross-section of averaged or otherwise statistically processed analysis or forecast over a range of time.
elif pdsTemplateNumber == 1001:
pass
# Cross-section of analysis and forecast, averaged or otherwise statistically-processed over latitude or longitude.
elif pdsTemplateNumber == 1002:
pass
# Hovmoller-type grid with no averaging or other statistical processing
elif pdsTemplateNumber == 1100:
pass
# Reserved or Missing
else:
pass
#Temporary fix to prevent invalid values getting persisted
#to the database until the grib decoder is fully implemented
if pdsTemplateNumber >= 13:
pdsFields['parameterName'] ="Unknown"
pdsFields['parameterAbbreviation'] ="Unknown"
pdsFields['parameterUnit'] ="Unknown"
# endtime needs to be used to calculate forecastTime and forecastTime should be used for startTime of interval
pdsFields['forecastTime'] = forecastTime
pdsFields['endTime'] = endTime
return pdsFields
##
# Decodes spatial information from the GDS template
# @param metadata: The metadata information
# @param gdsTemplate: The GDS Template values
# @return: Dictionary of GDS information
# @rtype: Dictionary
##
def _decodeGdsSection(self, metadata, gdsTemplate):
# Dictionary to hold information extracted from PDS template
gdsFields = {}
coverage = None
scanMode = None
resCompFlags = None
thinned = False
gdsTemplateNumber = metadata[7]
# Latitude/Longitude projection
if gdsTemplateNumber == 0:
coverage = LatLonGridCoverage()
majorAxis, minorAxis = self._getEarthShape(gdsTemplate)
# la1 = self._correctLat(self._divideBy10e6(gdsTemplate[11]))
# lo1 = self._correctLon(self._divideBy10e6(gdsTemplate[12]))
# la2 = self._correctLat(self._divideBy10e6(gdsTemplate[14]))
# lo2 = self._correctLon(self._divideBy10e6(gdsTemplate[15]))
la1 = self._divideBy10e6(gdsTemplate[11])
lo1 = self._divideBy10e6(gdsTemplate[12])
la2 = self._divideBy10e6(gdsTemplate[14])
lo2 = self._divideBy10e6(gdsTemplate[15])
scanMode = gdsTemplate[18]
resCompFlags = gdsTemplate[13]
# Check for quasi-regular grid
if metadata[5] > 0:
# Quasi-regular grid detected
thinned = True
nx = THINNED_GRID_PTS
ny = THINNED_GRID_PTS
dx = THINNED_GRID_SPACING
dy = THINNED_GRID_SPACING
metadata[4] = THINNED_GRID_REMAPPED_SIZE
else:
# Not a quasi-regular grid
nx = gdsTemplate[7]
ny = gdsTemplate[8]
dx = self._divideBy10e6(gdsTemplate[16])
dy = self._divideBy10e6(gdsTemplate[17])
if dx == 65.535:
dx = abs(lo1-lo2)/nx
if dy == 65.535:
dy = abs(la1-la2)/ny
coverage.setSpacingUnit(DEFAULT_SPACING_UNIT2)
coverage.setNx(Integer(nx))
coverage.setNy(Integer(ny))
coverage.setLa1(la1)
coverage.setLo1(lo1)
coverage.setDx(dx)
coverage.setDy(dy)
corner = GribSpatialCache.determineFirstGridPointCorner(scanMode)
coverage.setFirstGridPointCorner(corner)
coverage = self._getGrid(coverage)
# Rotated Latitude/Longitude projection
elif gdsTemplateNumber == 1:
pass
# Stretched Latitude/Longitude projection
elif gdsTemplateNumber == 2:
pass
# Rotated and Stretched Latitude/Longitude projection
elif gdsTemplateNumber == 3:
pass
# Mercator projection
elif gdsTemplateNumber == 10:
coverage = MercatorGridCoverage()
majorAxis, minorAxis = self._getEarthShape(gdsTemplate)
nx = gdsTemplate[7]
ny = gdsTemplate[8]
la1 = self._correctLat(self._divideBy10e6(gdsTemplate[9]))
lo1 = self._correctLon(self._divideBy10e6(gdsTemplate[10]))
latin = self._correctLat(self._divideBy10e6(gdsTemplate[12]))
la2 = self._correctLat(self._divideBy10e6(gdsTemplate[13]))
lo2 = self._correctLon(self._divideBy10e6(gdsTemplate[14]))
dx = self._divideBy10e6(gdsTemplate[17])
dy = self._divideBy10e6(gdsTemplate[18])
scanMode = gdsTemplate[15]
resCompFlags = gdsTemplate[11]
coverage.setSpacingUnit(DEFAULT_SPACING_UNIT)
coverage.setMajorAxis(majorAxis)
coverage.setMinorAxis(minorAxis)
coverage.setNx(Integer(nx))
coverage.setNy(Integer(ny))
coverage.setLatin(latin)
coverage.setLa1(la1)
coverage.setLo1(lo1)
coverage.setDx(dx)
coverage.setDy(dy)
corner = GribSpatialCache.determineFirstGridPointCorner(scanMode)
coverage.setFirstGridPointCorner(corner)
coverage = self._getGrid(coverage)
# Polar Stereographic projection
elif gdsTemplateNumber == 20:
coverage = PolarStereoGridCoverage()
majorAxis, minorAxis = self._getEarthShape(gdsTemplate)
nx = gdsTemplate[7]
ny = gdsTemplate[8]
la1 = self._correctLat(self._divideBy10e6(gdsTemplate[9]))
lo1 = self._correctLon(self._divideBy10e6(gdsTemplate[10]))
lov = self._correctLon(self._divideBy10e6(gdsTemplate[13]))
lad = self._correctLat(self._divideBy10e6(gdsTemplate[12]))
dx = self._divideBy10e6(gdsTemplate[14])
dy = self._divideBy10e6(gdsTemplate[15])
scanMode = gdsTemplate[17]
resCompFlags = gdsTemplate[11]
coverage.setSpacingUnit(DEFAULT_SPACING_UNIT)
coverage.setMajorAxis(majorAxis)
coverage.setMinorAxis(minorAxis)
coverage.setNx(Integer(nx))
coverage.setNy(Integer(ny))
coverage.setLov(lov)
coverage.setLad(lad)
coverage.setLa1(la1)
coverage.setLo1(lo1)
coverage.setDx(dx)
coverage.setDy(dy)
corner = GribSpatialCache.determineFirstGridPointCorner(scanMode)
coverage.setFirstGridPointCorner(corner)
coverage = self._getGrid(coverage)
# Lambert Conformal projection
elif gdsTemplateNumber == 30:
coverage = LambertConformalGridCoverage()
majorAxis, minorAxis = self._getEarthShape(gdsTemplate)
nx = gdsTemplate[7]
ny = gdsTemplate[8]
la1 = self._correctLat(self._divideBy10e6(gdsTemplate[9]))
lo1 = self._correctLon(self._divideBy10e6(gdsTemplate[10]))
lov = self._correctLon(self._divideBy10e6(gdsTemplate[13]))
dx = self._divideBy10e6(gdsTemplate[14])
dy = self._divideBy10e6(gdsTemplate[15])
latin1 = self._correctLat(self._divideBy10e6(gdsTemplate[18]))
latin2 = self._correctLat(self._divideBy10e6(gdsTemplate[19]))
scanMode = gdsTemplate[17]
resCompFlags = gdsTemplate[11]
coverage.setSpacingUnit(DEFAULT_SPACING_UNIT)
coverage.setMajorAxis(majorAxis)
coverage.setMinorAxis(minorAxis)
coverage.setNx(Integer(nx))
coverage.setNy(Integer(ny))
coverage.setLov(lov)
coverage.setLa1(la1)
coverage.setLo1(lo1)
coverage.setDx(dx)
coverage.setDy(dy)
coverage.setLatin1(latin1)
coverage.setLatin2(latin2)
corner = GribSpatialCache.determineFirstGridPointCorner(scanMode)
coverage.setFirstGridPointCorner(corner)
coverage = self._getGrid(coverage)
# Albers Equal Area projection
elif gdsTemplate == 31:
pass
# Gaussian Latitude/Longitude projection
elif gdsTemplate == 40:
pass
# Rotated Gaussian Latitude/Longitude projection
elif gdsTemplate == 41:
pass
# Stretched Gaussian Latitude/Longitude projection
elif gdsTemplate == 42:
pass
# Rotated and Stretched Gaussian Latitude/Longitude projection
elif gdsTemplate == 43:
pass
# Spherical Harmonic Coefficients
elif gdsTemplate == 50:
pass
# Rotated Spherical Harmonic Coefficients
elif gdsTemplate == 51:
pass
# Stretched Spherical Harmonic Coefficients
elif gdsTemplate == 52:
pass
# Rotated and Stretched Spherical Harmonic Coefficients
elif gdsTemplate == 53:
pass
# Space View Perspective or Orthographic
elif gdsTemplate == 90:
pass
# Triangular Grid based on Icosahedron
elif gdsTemplate == 100:
pass
# Equatorial Azimuthal Equidistance projection
elif gdsTemplate == 110:
pass
# Azimuth-Range projection
elif gdsTemplate == 120:
pass
# Curvilinear Orthogonal projection
elif gdsTemplate == 204:
pass
# Cross Section Grid with Points Equally spaced on the horizontal
elif gdsTemplate == 1000:
pass
# Hovmoller Diagram with Points Equally spaced on the horizontal
elif gdsTemplate == 1100:
pass
# Time Section grid
elif gdsTemplate == 1200:
pass
# Rotated Latitude/Longitude (Arakawa Staggered E-Grid)
elif gdsTemplate == 32768:
pass
# Missing
elif gdsTemplate == 65535:
pass
gdsFields['scanMode'] = scanMode
gdsFields['coverage'] = coverage
gdsFields['thinned'] = thinned
gdsFields['resCompFlags'] = resCompFlags
return gdsFields
##
# Gets a grid from the cache. If not found, one is created and stored to the cache
#
# @param temp: A GridCoverage object withough geometry or crs information populated
# @return: A GribCoverage object
# @rtype: GribCoverage
##
def _getGrid(self, temp):
# Check the cache first
grid = GribSpatialCache.getInstance().getGrid(temp)
# If not found, create a new GribCoverage and store in the cache
if grid is None:
grid = GridCoverageLookup.getInstance().getCoverage(temp, True)
return grid
##
# Divides a number by 1000
#
# @param number: A number to be divided by 1000
# @return: The provided number divided by 1000
# @rtype: float
##
def _divideBy10e3(self, number):
return float(float(number) / 1000)
##
# Divides a number by 1000000
#
# @param number: A number to be divided by 1000000
# @return: The provided number divided by 1000000
# @rtype: float
##
def _divideBy10e6(self, number):
return float(float(number) / 1000000)
##
# Convert a scaledValue and scaleFactor to the unscaled value
#
# @param scaledValue: The scaled value
# @param scaleFactor: The scale factor
# @return: The unscaled value
# @rtype: float
##
def _convertScaledValue(self, scaledValue, scaleFactor):
return float(scaledValue) / 10**scaleFactor
##
# Corrects a longitude to fall within the geotools required bounds of -180 and 180
#
# @param lon: The longitude to be corrected
# @return: The corrected longitude
# @rtype: float
##
def _correctLon(self, lon):
if lon < 0:
lon = lon % 360
else:
lon = lon % 360
if lon > 180:
lon = (180 - lon % 180) * - 1
elif lon < - 180:
lon = (180 - (- lon % 180))
return lon
##
# Corrects a latitude to fall within the geotools required bounds of -90 and 90
#
# @param lat: The latitude to be corrected
# @return: The corrected latitude
# @rtype: float
##
def _correctLat(self, lat):
if lat < 0:
lat = lat % -180
else:
lat = lat % 180
if lat > 90:
lat = 90 - lat % 90
elif lat < - 90:
lat = (90 - (- lat % 90)) * - 1
return lat
##
# Gets the shape of the earth based on Table 3.2
#
# @param gdsTemplate:The gdsTemplate values
# @return: The minor and major axis sizes of the earth
# @rtype: long, long
##
def _getEarthShape(self, gdsTemplate):
# Shape of the earth which keys into Table 3.2
number = gdsTemplate[0]
#
# Determine the shape of Earth based on Table 3.2
#
# Earth assumed spherical with radius = 6,367,470.0 m
if number == 0:
minorAxis = 6367470.0
majorAxis = 6367470.0
# Earth assumed spherical with radius specified (in m) by data producer
elif number == 1:
minorAxis = self._convertScaledValue(gdsTemplate[2], gdsTemplate[1])
majorAxis = minorAxis
if majorAxis < 6000000.0 or minorAxis < 6000000.0:
LogStream.logEvent("Invalid earth shape majorAxis,minorAxis = " + str(majorAxis) + "," + str(minorAxis) + " defaulting to 6367470.0,6367470.0")
minorAxis = majorAxis = 6367470.0
# Earth assumed oblate spheriod with size as determined by IAU in 1965
# (major axis = 6,378,160.0 m, minor axis = 6,356,775.0 m, f = 1/297.0)
elif number == 2:
minorAxis = 6356775.0
majorAxis = 6378160.0
# Earth assumed oblate spheriod with major and minor axes specified (in km) by data producer
elif number == 3:
minorAxis = self._convertScaledValue(gdsTemplate[4], gdsTemplate[3]) * 1000
if minorAxis < 6000000.0:
LogStream.logEvent("Invalid earth shape minorAxis = " + str(minorAxis) + " defaulting to " + MINOR_AXIS_DEFAULT)
minorAxis = MINOR_AXIS_DEFAULT
majorAxis = self._convertScaledValue(gdsTemplate[6], gdsTemplate[5]) * 1000
if majorAxis < 6000000.0:
LogStream.logEvent("Invalid earth shape majorAxis = " + str(majorAxis) + " defaulting to " + MAJOR_AXIS_DEFAULT)
majorAxis = MAJOR_AXIS_DEFAULT
# Earth assumed oblate spheriod as defined in IAG-GRS80 model
# (major axis = 6,378,137.0 m, minor axis = 6,356,752.314 m, f = 1/298.257222101)
elif number == 4:
minorAxis = 6356752.314
majorAxis = 6378137.0
# Earth assumed represented by WGS84 (as used by ICAO since 1998)
elif number == 5:
minorAxis = 6356752.314245
majorAxis = 6378137.0
# Earth assumed spherical with radius = 6,371,229.0 m
elif number == 6:
minorAxis = 6371229.0
majorAxis = 6371229.0
# Earth assumed oblate spheroid with major and minor axes specified (in m) by data producer
elif number == 7:
minorAxis = self._convertScaledValue(gdsTemplate[4], gdsTemplate[3])
if minorAxis < 6000000.0:
LogStream.logEvent("Invalid earth shape minorAxis = " + str(minorAxis) + " defaulting to " + MINOR_AXIS_DEFAULT)
minorAxis = MINOR_AXIS_DEFAULT
majorAxis = self._convertScaledValue(gdsTemplate[6], gdsTemplate[5])
if majorAxis < 6000000.0:
LogStream.logEvent("Invalid earth shape majorAxis = " + str(majorAxis) + " defaulting to " + MAJOR_AXIS_DEFAULT)
majorAxis = MAJOR_AXIS_DEFAULT
# Earth model assumed spherical with radius 6,371,200 m,
# but the horizontal datum of the resulting Latitude/Longitude field is
# the WGS84 reference frame
elif number == 8:
minorAxis = 6371200.0
majorAxis = 6371200.0
else:
minorAxis = MINOR_AXIS_DEFAULT
majorAxis = MAJOR_AXIS_DEFAULT
return float(majorAxis), float(minorAxis)
##
# Converts a value in the specified unit (according to table 4.4) to seconds
#
# @param value: The value to convert to seconds
# @param fromUnit: The value from Table 4.4 to convert from
# @return: The number of seconds of the provided value
# @rtype: long
##
def _convertToSeconds(self, value, fromUnit):
retVal = value
# Convert from minutes
if fromUnit == 0:
retVal = value * SECONDS_PER_MINUTE
# Convert from hours
elif fromUnit == 1:
retVal = value * SECONDS_PER_HOUR
# Convert from days
elif fromUnit == 2:
retVal = value * SECONDS_PER_DAY
# Convert from months
elif fromUnit == 3:
retVal = value * SECONDS_PER_MONTH
# Convert from years
elif fromUnit == 4:
retVal = value * SECONDS_PER_YEAR
# Convert from decades
elif fromUnit == 5:
retVal = value * 10 * SECONDS_PER_YEAR
# Convert from Normal (30 years)
elif fromUnit == 6:
retVal = value * 30 * SECONDS_PER_YEAR
# Convert from centuries
elif fromUnit == 7:
retVal = value * 100 * SECONDS_PER_YEAR
# Convert from 3 hours
elif fromUnit == 10:
retVal = value * 3 * SECONDS_PER_HOUR
# Convert from 6 hours
elif fromUnit == 11:
retVal = value * 6 * SECONDS_PER_HOUR
# Convert from 12 horus
elif fromUnit == 12:
retVal = value * 12 * SECONDS_PER_HOUR
return retVal
def _getGridModel(self, pdsSectionValues, grid):
center = pdsSectionValues['centerid']
subcenter = pdsSectionValues['subcenterid']
process = pdsSectionValues['genprocess']
gridModel = GribModelLookup.getInstance().getModel(center, subcenter, grid, process)
return gridModel
def _createModelName(self, pdsSectionValues, grid):
gridModel = self._getGridModel(pdsSectionValues, grid)
if gridModel is None:
name = "UnknownModel:" + str(pdsSectionValues['centerid']) + ":" + str(pdsSectionValues['subcenterid']) + ":" + str(pdsSectionValues['genprocess']) + ":" + str(grid.getId())
else:
name = gridModel.getName()
return name
def _checkForecastFlag(self, pdsSectionValues, grid, dataTime):
gridModel = self._getGridModel(pdsSectionValues, grid)
if gridModel is None:
return
else:
if gridModel.getAnalysisOnly():
dataTime.getUtilityFlags().remove(FLAG.FCST_USED)