awips2/cave/com.raytheon.uf.viz.derivparam.python/localization/derivedParameters/functions/PotVortK.py
root e2ecdcfe33 Initial revision of AWIPS2 11.9.0-7p5
Former-commit-id: a02aeb236c [formerly 9f19e3f712] [formerly a02aeb236c [formerly 9f19e3f712] [formerly 06a8b51d6d [formerly 64fa9254b946eae7e61bbc3f513b7c3696c4f54f]]]
Former-commit-id: 06a8b51d6d
Former-commit-id: 8e80217e59 [formerly 3360eb6c5f]
Former-commit-id: 377dcd10b9
2012-01-06 08:55:05 -06:00

69 lines
No EOL
2.5 KiB
Python

##
# This software was developed and / or modified by Raytheon Company,
# pursuant to Contract DG133W-05-CQ-1067 with the US Government.
#
# U.S. EXPORT CONTROLLED TECHNICAL DATA
# This software product contains export-restricted data whose
# export/transfer/disclosure is restricted by U.S. law. Dissemination
# to non-U.S. persons whether in the United States or abroad requires
# an export license or other authorization.
#
# Contractor Name: Raytheon Company
# Contractor Address: 6825 Pine Street, Suite 340
# Mail Stop B8
# Omaha, NE 68106
# 402.291.0100
#
# See the AWIPS II Master Rights File ("Master Rights File.pdf") for
# further licensing information.
###
import IsenStability
import Vorticity
##
# Calculate the isentropic potential vorticity through a layer.
#
# @change: Adapted from calcpv.f 2008-18-06
# User Notes:
#
# 1. Stability is defined as -dP/d(theta). We calculate this through
# the layer from the isentropic surface 'n' to the surface above it,
# 'n+1'.
#
# 2. Since we are dealing with a layer, we calculate a mean absolute
# vorticity using the winds at the upper and lower layers.
#
# 3. The PV is then [mean abs. vort.]/[stability]
#
# @param p_up: Pressure on upper isentrope (mb)
# @param p_lo: Pressure on lower isentrope (mb)
# @param o_up: Upper isentrope (K) (usually scalar)
# @param o_lo: This (lower) isentrope (K) (usually scalar)
# @param Wind_up: tuple(U,V) of winds on upper isentrope (m/s)
# @param Wind_lo: tuple(U,V) of winds on lower isentrope (m/s)
# @param dx: Spacing between data points in X direction (m)
# @param dy: Spacing between data points in Y direction (m)
# @param coriolis: Coriolis parameters (/s)
# @return: isentropic potential vorticity array
#
def execute(p_up, p_lo, o_up, o_lo, vector_up, vector_lo, dx, dy, coriolis):
"Calculate the isentropic potential vorticity through a layer."
u_up, v_up = vector_up[2], vector_up[3]
u_lo, v_lo = vector_lo[2], vector_lo[3]
# Calculate the absolute vorticity at each isentropic surface.
avort1 = Vorticity.execute(u_up, v_up, coriolis, dx, dy)
avort2 = Vorticity.execute(u_lo, v_lo, coriolis, dx, dy)
# Calculate the isentropic stability through the layer.
pvort = IsenStability.execute(p_up, p_lo, o_up, o_lo)
# Calculate isentropic potential vorticity
result = avort1 + avort2
result *= 0.5
result /= pvort
return result