awips2/nativeLib/rary.cots.g2clib/misspack.c
Bryan Kowal 9a472e1bbe Issue #2396 - updated grib2.so to use a newer version of g2clib
Former-commit-id: 6730ef07554b6e335427bcf08dded302fcc4a398
2013-10-16 12:54:58 -05:00

532 lines
19 KiB
C
Executable file

#include <stdlib.h>
#include <math.h>
#include "grib2.h"
void misspack(g2float *fld,g2int ndpts,g2int idrsnum,g2int *idrstmpl,
unsigned char *cpack, g2int *lcpack)
//$$$ SUBPROGRAM DOCUMENTATION BLOCK
// . . . .
// SUBPROGRAM: misspack
// PRGMMR: Gilbert ORG: W/NP11 DATE: 2000-06-21
//
// ABSTRACT: This subroutine packs up a data field using a complex
// packing algorithm as defined in the GRIB2 documention. It
// supports GRIB2 complex packing templates with or without
// spatial differences (i.e. DRTs 5.2 and 5.3).
// It also fills in GRIB2 Data Representation Template 5.2 or 5.3
// with the appropriate values.
// This version assumes that Missing Value Management is being used and that
// 1 or 2 missing values appear in the data.
//
// PROGRAM HISTORY LOG:
// 2000-06-21 Gilbert
//
// USAGE: misspack(g2float *fld,g2int ndpts,g2int idrsnum,g2int *idrstmpl,
// unsigned char *cpack, g2int *lcpack)
// INPUT ARGUMENT LIST:
// fld[] - Contains the data values to pack
// ndpts - The number of data values in array fld[]
// idrsnum - Data Representation Template number 5.N
// Must equal 2 or 3.
// idrstmpl - Contains the array of values for Data Representation
// Template 5.2 or 5.3
// [0] = Reference value - ignored on input
// [1] = Binary Scale Factor
// [2] = Decimal Scale Factor
// .
// .
// [6] = Missing value management
// [7] = Primary missing value
// [8] = Secondary missing value
// .
// .
// [16] = Order of Spatial Differencing ( 1 or 2 )
// .
// .
//
// OUTPUT ARGUMENT LIST:
// idrstmpl - Contains the array of values for Data Representation
// Template 5.3
// [0] = Reference value - set by misspack routine.
// [1] = Binary Scale Factor - unchanged from input
// [2] = Decimal Scale Factor - unchanged from input
// .
// .
// cpack - The packed data field (character*1 array)
// *lcpack - length of packed field cpack().
//
// REMARKS: None
//
// ATTRIBUTES:
// LANGUAGE: C
// MACHINE:
//
//$$$
{
g2int *ifld, *ifldmiss, *jfld;
g2int *jmin, *jmax, *lbit;
static g2int zero=0;
g2int *gref, *gwidth, *glen;
g2int glength, grpwidth;
g2int i, n, iofst, imin, ival1, ival2, isd, minsd, nbitsd;
g2int nbitsgref, left, iwmax, ngwidthref, nbitsgwidth, ilmax;
g2int nglenref, nglenlast, nbitsglen, ij;
g2int j, missopt, nonmiss, itemp, maxorig, nbitorig, miss1, miss2;
g2int ngroups, ng, num0, num1, num2;
g2int imax, lg, mtemp, ier, igmax;
g2int kfildo, minpk, inc, maxgrps, ibit, jbit, kbit, novref, lbitref;
g2float rmissp, rmisss, bscale, dscale, rmin, temp;
static g2int simple_alg = 0;
static g2float alog2=0.69314718; // ln(2.0)
static g2int one=1;
bscale=int_power(2.0,-idrstmpl[1]);
dscale=int_power(10.0,idrstmpl[2]);
missopt=idrstmpl[6];
if ( missopt != 1 && missopt != 2 ) {
printf("misspack: Unrecognized option.\n");
*lcpack=-1;
return;
}
else { // Get missing values
rdieee(idrstmpl+7,&rmissp,1);
if (missopt == 2) rdieee(idrstmpl+8,&rmisss,1);
}
//
// Find min value of non-missing values in the data,
// AND set up missing value mapping of the field.
//
ifldmiss = calloc(ndpts,sizeof(g2int));
rmin=1E+37;
if ( missopt == 1 ) { // Primary missing value only
for ( j=0; j<ndpts; j++) {
if (fld[j] == rmissp) {
ifldmiss[j]=1;
}
else {
ifldmiss[j]=0;
if (fld[j] < rmin) rmin=fld[j];
}
}
}
if ( missopt == 2 ) { // Primary and secondary missing values
for ( j=0; j<ndpts; j++ ) {
if (fld[j] == rmissp) {
ifldmiss[j]=1;
}
else if (fld[j] == rmisss) {
ifldmiss[j]=2;
}
else {
ifldmiss[j]=0;
if (fld[j] < rmin) rmin=fld[j];
}
}
}
//
// Allocate work arrays:
// Note: -ifldmiss[j],j=0,ndpts-1 is a map of original field indicating
// which of the original data values
// are primary missing (1), sencondary missing (2) or non-missing (0).
// -jfld[j],j=0,nonmiss-1 is a subarray of just the non-missing values
// from the original field.
//
//if (rmin != rmax) {
iofst=0;
ifld = calloc(ndpts,sizeof(g2int));
jfld = calloc(ndpts,sizeof(g2int));
gref = calloc(ndpts,sizeof(g2int));
gwidth = calloc(ndpts,sizeof(g2int));
glen = calloc(ndpts,sizeof(g2int));
//
// Scale original data
//
nonmiss=0;
if (idrstmpl[1] == 0) { // No binary scaling
imin=(g2int)rint(rmin*dscale);
//imax=(g2int)rint(rmax*dscale);
rmin=(g2float)imin;
for ( j=0; j<ndpts; j++) {
if (ifldmiss[j] == 0) {
jfld[nonmiss]=(g2int)rint(fld[j]*dscale)-imin;
nonmiss++;
}
}
}
else { // Use binary scaling factor
rmin=rmin*dscale;
//rmax=rmax*dscale;
for ( j=0; j<ndpts; j++ ) {
if (ifldmiss[j] == 0) {
jfld[nonmiss]=(g2int)rint(((fld[j]*dscale)-rmin)*bscale);
nonmiss++;
}
}
}
//
// Calculate Spatial differences, if using DRS Template 5.3
//
if (idrsnum == 3) { // spatial differences
if (idrstmpl[16]!=1 && idrstmpl[16]!=2) idrstmpl[16]=2;
if (idrstmpl[16] == 1) { // first order
ival1=jfld[0];
for ( j=nonmiss-1; j>0; j--)
jfld[j]=jfld[j]-jfld[j-1];
jfld[0]=0;
}
else if (idrstmpl[16] == 2) { // second order
ival1=jfld[0];
ival2=jfld[1];
for ( j=nonmiss-1; j>1; j--)
jfld[j]=jfld[j]-(2*jfld[j-1])+jfld[j-2];
jfld[0]=0;
jfld[1]=0;
}
//
// subtract min value from spatial diff field
//
isd=idrstmpl[16];
minsd=jfld[isd];
for ( j=isd; j<nonmiss; j++ ) if ( jfld[j] < minsd ) minsd=jfld[j];
for ( j=isd; j<nonmiss; j++ ) jfld[j]=jfld[j]-minsd;
//
// find num of bits need to store minsd and add 1 extra bit
// to indicate sign
//
temp=log((double)(abs(minsd)+1))/alog2;
nbitsd=(g2int)ceil(temp)+1;
//
// find num of bits need to store ifld[0] ( and ifld[1]
// if using 2nd order differencing )
//
maxorig=ival1;
if (idrstmpl[16]==2 && ival2>ival1) maxorig=ival2;
temp=log((double)(maxorig+1))/alog2;
nbitorig=(g2int)ceil(temp)+1;
if (nbitorig > nbitsd) nbitsd=nbitorig;
// increase number of bits to even multiple of 8 ( octet )
if ( (nbitsd%8) != 0) nbitsd=nbitsd+(8-(nbitsd%8));
//
// Store extra spatial differencing info into the packed
// data section.
//
if (nbitsd != 0) {
// pack first original value
if (ival1 >= 0) {
sbit(cpack,&ival1,iofst,nbitsd);
iofst=iofst+nbitsd;
}
else {
sbit(cpack,&one,iofst,1);
iofst=iofst+1;
itemp=abs(ival1);
sbit(cpack,&itemp,iofst,nbitsd-1);
iofst=iofst+nbitsd-1;
}
if (idrstmpl[16] == 2) {
// pack second original value
if (ival2 >= 0) {
sbit(cpack,&ival2,iofst,nbitsd);
iofst=iofst+nbitsd;
}
else {
sbit(cpack,&one,iofst,1);
iofst=iofst+1;
itemp=abs(ival2);
sbit(cpack,&itemp,iofst,nbitsd-1);
iofst=iofst+nbitsd-1;
}
}
// pack overall min of spatial differences
if (minsd >= 0) {
sbit(cpack,&minsd,iofst,nbitsd);
iofst=iofst+nbitsd;
}
else {
sbit(cpack,&one,iofst,1);
iofst=iofst+1;
itemp=abs(minsd);
sbit(cpack,&itemp,iofst,nbitsd-1);
iofst=iofst+nbitsd-1;
}
}
//print *,'SDp ',ival1,ival2,minsd,nbitsd
} // end of spatial diff section
//
// Expand non-missing data values to original grid.
//
miss1=jfld[0];
for ( j=0; j<nonmiss; j++) if (jfld[j] < miss1) miss1 = jfld[j];
miss1--;
miss2=miss1-1;
n=0;
for ( j=0; j<ndpts; j++) {
if ( ifldmiss[j] == 0 ) {
ifld[j]=jfld[n];
n++;
}
else if ( ifldmiss[j] == 1 ) {
ifld[j]=miss1;
}
else if ( ifldmiss[j] == 2 ) {
ifld[j]=miss2;
}
}
//
// Determine Groups to be used.
//
if ( simple_alg == 1 ) {
// set group length to 10 : calculate number of groups
// and length of last group
ngroups=ndpts/10;
for (j=0;j<ngroups;j++) glen[j]=10;
itemp=ndpts%10;
if (itemp != 0) {
ngroups++;
glen[ngroups-1]=itemp;
}
}
else {
// Use Dr. Glahn's algorithm for determining grouping.
//
kfildo=6;
minpk=10;
inc=1;
maxgrps=(ndpts/minpk)+1;
jmin = calloc(maxgrps,sizeof(g2int));
jmax = calloc(maxgrps,sizeof(g2int));
lbit = calloc(maxgrps,sizeof(g2int));
pack_gp(&kfildo,ifld,&ndpts,&missopt,&minpk,&inc,&miss1,&miss2,
jmin,jmax,lbit,glen,&maxgrps,&ngroups,&ibit,&jbit,
&kbit,&novref,&lbitref,&ier);
//printf("SAGier = %d %d %d %d %d %d\n",ier,ibit,jbit,kbit,novref,lbitref);
for ( ng=0; ng<ngroups; ng++) glen[ng]=glen[ng]+novref;
free(jmin);
free(jmax);
free(lbit);
}
//
// For each group, find the group's reference value (min)
// and the number of bits needed to hold the remaining values
//
n=0;
for ( ng=0; ng<ngroups; ng++) {
// how many of each type?
num0=num1=num2=0;
for (j=n; j<n+glen[ng]; j++) {
if (ifldmiss[j] == 0 ) num0++;
if (ifldmiss[j] == 1 ) num1++;
if (ifldmiss[j] == 2 ) num2++;
}
if ( num0 == 0 ) { // all missing values
if ( num1 == 0 ) { // all secondary missing
gref[ng]=-2;
gwidth[ng]=0;
}
else if ( num2 == 0 ) { // all primary missing
gref[ng]=-1;
gwidth[ng]=0;
}
else { // both primary and secondary
gref[ng]=0;
gwidth[ng]=1;
}
}
else { // contains some non-missing data
// find max and min values of group
gref[ng]=2147483647;
imax=-2147483647;
j=n;
for ( lg=0; lg<glen[ng]; lg++ ) {
if ( ifldmiss[j] == 0 ) {
if (ifld[j] < gref[ng]) gref[ng]=ifld[j];
if (ifld[j] > imax) imax=ifld[j];
}
j++;
}
if (missopt == 1) imax=imax+1;
if (missopt == 2) imax=imax+2;
// calc num of bits needed to hold data
if ( gref[ng] != imax ) {
temp=log((double)(imax-gref[ng]+1))/alog2;
gwidth[ng]=(g2int)ceil(temp);
}
else {
gwidth[ng]=0;
}
}
// Subtract min from data
j=n;
mtemp=(g2int)int_power(2.,gwidth[ng]);
for ( lg=0; lg<glen[ng]; lg++ ) {
if (ifldmiss[j] == 0) // non-missing
ifld[j]=ifld[j]-gref[ng];
else if (ifldmiss[j] == 1) // primary missing
ifld[j]=mtemp-1;
else if (ifldmiss[j] == 2) // secondary missing
ifld[j]=mtemp-2;
j++;
}
// increment fld array counter
n=n+glen[ng];
}
//
// Find max of the group references and calc num of bits needed
// to pack each groups reference value, then
// pack up group reference values
//
//printf(" GREFS: ");
//for (j=0;j<ngroups;j++) printf(" %d",gref[j]); printf("\n");
igmax=gref[0];
for (j=1;j<ngroups;j++) if (gref[j] > igmax) igmax=gref[j];
if (missopt == 1) igmax=igmax+1;
if (missopt == 2) igmax=igmax+2;
if (igmax != 0) {
temp=log((double)(igmax+1))/alog2;
nbitsgref=(g2int)ceil(temp);
// reset the ref values of any "missing only" groups.
mtemp=(g2int)int_power(2.,nbitsgref);
for ( j=0; j<ngroups; j++ ) {
if (gref[j] == -1) gref[j]=mtemp-1;
if (gref[j] == -2) gref[j]=mtemp-2;
}
sbits(cpack,gref,iofst,nbitsgref,0,ngroups);
itemp=nbitsgref*ngroups;
iofst=iofst+itemp;
// Pad last octet with Zeros, if necessary,
if ( (itemp%8) != 0) {
left=8-(itemp%8);
sbit(cpack,&zero,iofst,left);
iofst=iofst+left;
}
}
else {
nbitsgref=0;
}
//
// Find max/min of the group widths and calc num of bits needed
// to pack each groups width value, then
// pack up group width values
//
//write(77,*)'GWIDTHS: ',(gwidth(j),j=1,ngroups)
iwmax=gwidth[0];
ngwidthref=gwidth[0];
for (j=1;j<ngroups;j++) {
if (gwidth[j] > iwmax) iwmax=gwidth[j];
if (gwidth[j] < ngwidthref) ngwidthref=gwidth[j];
}
if (iwmax != ngwidthref) {
temp=log((double)(iwmax-ngwidthref+1))/alog2;
nbitsgwidth=(g2int)ceil(temp);
for ( i=0; i<ngroups; i++) gwidth[i]=gwidth[i]-ngwidthref;
sbits(cpack,gwidth,iofst,nbitsgwidth,0,ngroups);
itemp=nbitsgwidth*ngroups;
iofst=iofst+itemp;
// Pad last octet with Zeros, if necessary,
if ( (itemp%8) != 0) {
left=8-(itemp%8);
sbit(cpack,&zero,iofst,left);
iofst=iofst+left;
}
}
else {
nbitsgwidth=0;
for (i=0;i<ngroups;i++) gwidth[i]=0;
}
//
// Find max/min of the group lengths and calc num of bits needed
// to pack each groups length value, then
// pack up group length values
//
//printf(" GLENS: ");
//for (j=0;j<ngroups;j++) printf(" %d",glen[j]); printf("\n");
ilmax=glen[0];
nglenref=glen[0];
for (j=1;j<ngroups-1;j++) {
if (glen[j] > ilmax) ilmax=glen[j];
if (glen[j] < nglenref) nglenref=glen[j];
}
nglenlast=glen[ngroups-1];
if (ilmax != nglenref) {
temp=log((double)(ilmax-nglenref+1))/alog2;
nbitsglen=(g2int)ceil(temp);
for ( i=0; i<ngroups-1; i++) glen[i]=glen[i]-nglenref;
sbits(cpack,glen,iofst,nbitsglen,0,ngroups);
itemp=nbitsglen*ngroups;
iofst=iofst+itemp;
// Pad last octet with Zeros, if necessary,
if ( (itemp%8) != 0) {
left=8-(itemp%8);
sbit(cpack,&zero,iofst,left);
iofst=iofst+left;
}
}
else {
nbitsglen=0;
for (i=0;i<ngroups;i++) glen[i]=0;
}
//
// For each group, pack data values
//
//write(77,*)'IFLDS: ',(ifld(j),j=1,ndpts)
n=0;
ij=0;
for ( ng=0; ng<ngroups; ng++) {
glength=glen[ng]+nglenref;
if (ng == (ngroups-1) ) glength=nglenlast;
grpwidth=gwidth[ng]+ngwidthref;
//write(77,*)'NGP ',ng,grpwidth,glength,gref(ng)
if ( grpwidth != 0 ) {
sbits(cpack,ifld+n,iofst,grpwidth,0,glength);
iofst=iofst+(grpwidth*glength);
}
// do kk=1,glength
// ij=ij+1
//write(77,*)'SAG ',ij,fld(ij),ifld(ij),gref(ng),bscale,rmin,dscale
// enddo
n=n+glength;
}
// Pad last octet with Zeros, if necessary,
if ( (iofst%8) != 0) {
left=8-(iofst%8);
sbit(cpack,&zero,iofst,left);
iofst=iofst+left;
}
*lcpack=iofst/8;
//
if ( ifld != 0 ) free(ifld);
if ( jfld != 0 ) free(jfld);
if ( ifldmiss != 0 ) free(ifldmiss);
if ( gref != 0 ) free(gref);
if ( gwidth != 0 ) free(gwidth);
if ( glen != 0 ) free(glen);
//}
//else { // Constant field ( max = min )
// nbits=0;
// *lcpack=0;
// nbitsgref=0;
// ngroups=0;
//}
//
// Fill in ref value and number of bits in Template 5.2
//
mkieee(&rmin,idrstmpl+0,1); // ensure reference value is IEEE format
idrstmpl[3]=nbitsgref;
idrstmpl[4]=0; // original data were reals
idrstmpl[5]=1; // general group splitting
idrstmpl[9]=ngroups; // Number of groups
idrstmpl[10]=ngwidthref; // reference for group widths
idrstmpl[11]=nbitsgwidth; // num bits used for group widths
idrstmpl[12]=nglenref; // Reference for group lengths
idrstmpl[13]=1; // length increment for group lengths
idrstmpl[14]=nglenlast; // True length of last group
idrstmpl[15]=nbitsglen; // num bits used for group lengths
if (idrsnum == 3) {
idrstmpl[17]=nbitsd/8; // num bits used for extra spatial
// differencing values
}
}