awips2/pythonPackages/scientific/Scientific/Functions/Polynomial.py
root e2ecdcfe33 Initial revision of AWIPS2 11.9.0-7p5
Former-commit-id: a02aeb236c [formerly 9f19e3f712] [formerly a02aeb236c [formerly 9f19e3f712] [formerly 06a8b51d6d [formerly 64fa9254b946eae7e61bbc3f513b7c3696c4f54f]]]
Former-commit-id: 06a8b51d6d
Former-commit-id: 8e80217e59 [formerly 3360eb6c5f]
Former-commit-id: 377dcd10b9
2012-01-06 08:55:05 -06:00

227 lines
7.6 KiB
Python
Executable file

# This module defines a multivariate polynomial class
#
# Written by Konrad Hinsen <hinsen@cnrs-orleans.fr>
# last revision: 2006-11-24
#
"""
Polynomials in any number of variables
"""
from Scientific import N, LA; Numeric = N; LinearAlgebra = LA
from Scientific.indexing import index_expression
# Class definition
class Polynomial:
"""X{Multivariate} X{polynomial}
Instances of this class represent polynomials of any order and
in any number of variables. The coefficients and thus the values
can be real or complex. Polynomials can be evaluated like functions.
"""
def __init__(self, coefficients):
"""
@param coefficients: an M{N}-dimnesional array for a polynomial
in M{N} variables. C{coeffcients[i, j, ...]} is the coefficient
of M{x_1^i x_2^j ...}
@type coefficients: C{Numeric.array} or nested list of numbers
"""
self.coeff = Numeric.array(coefficients)
self.dim = len(self.coeff.shape)
is_polynomial = 1
def __call__(self, *args):
"""
@param args: tuple of values, one for each variable of the
polynomial
@type args: C{tuple} of numbers
@returns: the value of the polynomial at the given point
@rtype: number
@raise TypeError: if the number of arguments is not equal
to the number of variable of the polynomial
"""
if len(args) != self.dim:
raise TypeError('Wrong number of arguments')
p = _powers(args, self.coeff.shape)
return Numeric.add.reduce(Numeric.ravel(p*self.coeff))
def __repr__(self):
if self.dim == 1:
return "Polynomial(%s)" % repr(list(self.coeff))
else:
return "Polynomial(%s)" % repr(self.coeff)
def __coerce__(self, other):
if hasattr(other, 'is_polynomial'):
return (self, other)
elif hasattr(other, 'is_rational_function'):
return None
else:
return (self, Polynomial([other]))
def __add__(self, other):
dim = max(self.dim, other.dim)
shape = Numeric.zeros((dim,), Numeric.Int)
shape[:self.dim] = self.coeff.shape
shape[:other.dim] = Numeric.maximum(shape[:other.dim],
other.coeff.shape)
coeff1 = Numeric.zeros_st(shape, self.coeff)
index = tuple(map(lambda d: slice(0, d), self.coeff.shape) + \
(dim-self.dim)*[0])
coeff1[index] = self.coeff
coeff2 = Numeric.zeros_st(shape, other.coeff)
index = tuple(map(lambda d: slice(0, d), other.coeff.shape) + \
(dim-other.dim)*[0])
coeff2[index] = other.coeff
return Polynomial(coeff1+coeff2)
def __mul__(self, other):
if self.dim != 1 or other.dim != 1:
raise ValueError("not implemented")
c = Numeric.multiply.outer(self.coeff, other.coeff)
temp = Numeric.concatenate((c, Numeric.zeros(2*(c.shape[0],))), 1)
temp = Numeric.ravel(temp)[:-c.shape[0]]
temp.shape = (c.shape[0], c.shape[0]+c.shape[1]-1)
return Polynomial(Numeric.sum(temp))
def __div__(self, other):
if self.dim != 1 or other.dim != 1:
raise ValueError("not implemented")
if len(other.coeff) == 1:
return Polynomial(self.coeff/other.coeff[0])
from Rational import RationalFunction
return RationalFunction(self, other)
def __rdiv__(self, other):
from Rational import RationalFunction
return RationalFunction(other, self)
def derivative(self, variable=0):
"""
@param variable: the index of the variable with respect to which
the X{derivative} is taken
@type variable: C{int}
@returns: a polynomial of reduced order in one variable
@rtype: L{Polynomial}
"""
n = self.coeff.shape[variable]
if n == 1:
return Polynomial(apply(Numeric.zeros, self.dim*(1,)))
index = variable*index_expression[::] + \
index_expression[1::] + index_expression[...]
factor = Numeric.arange(1.,n)
factor = factor[index_expression[::] +
(self.dim-variable-1) * \
index_expression[Numeric.NewAxis]]
return Polynomial(factor*self.coeff[index])
def integral(self, variable=0):
"""
@param variable: the index of the variable with respect to which
the X{integral} is computed
@type variable: C{int}
@returns: a polynomial of higher order in one variable
@rtype: L{Polynomial}
"""
n = self.coeff.shape[variable]
factor = 1./Numeric.arange(1.,n+1)
factor = factor[index_expression[::] +
(self.dim-variable-1) * \
index_expression[Numeric.NewAxis]]
s = map(None, self.coeff.shape)
s[variable] = 1
z = apply(Numeric.zeros, tuple(s))
intcoeff = Numeric.concatenate((z, factor*self.coeff), variable)
return Polynomial(intcoeff)
def zeros(self):
"""
Find the X{zeros} (X{roots}) of the polynomial by diagonalization
of the associated Frobenius matrix.
@returns: an array containing the zeros
@rtype: C{Numeric.array}
@note: this is defined only for polynomials in one variable
@raise ValueError: is the polynomial has more than one variable
"""
if self.dim != 1:
raise ValueError("not implemented")
n = len(self.coeff)-1
if n == 0:
return Numeric.array([])
a = Numeric.zeros_st((n, n), self.coeff)
if n > 1:
a[1:, :-1] = Numeric.identity(n-1)
a[:, -1] = -self.coeff[:-1]/self.coeff[-1]
from Scientific.LA import eigenvalues
return eigenvalues(a)
# Polynomial fit constructor for use in module Interpolation
def _fitPolynomial(order, points, values):
if len(points) != len(values):
raise ValueError('Inconsistent arguments')
if type(order) != type(()):
order = (order,)
order = tuple(map(lambda n: n+1, order))
if not _isSequence(points[0]):
points = map(lambda p: (p,), points)
if len(order) != len(points[0]):
raise ValueError('Inconsistent arguments')
if Numeric.multiply.reduce(order) > len(points):
raise ValueError('Not enough points')
matrix = []
for p in points:
matrix.append(Numeric.ravel(_powers(p, order)))
matrix = Numeric.array(matrix)
values = Numeric.array(values)
inv = LinearAlgebra.generalized_inverse(matrix)
coeff = Numeric.dot(inv, values)
#coeff = LinearAlgebra.linear_least_squares(matrix, values)[0]
coeff = Numeric.reshape(coeff, order)
return Polynomial(coeff)
# Helper functions
def _powers(x, n):
p = 1.
index = index_expression[::] + \
(len(x)-1)*index_expression[Numeric.NewAxis]
for i in range(len(x)):
pi = Numeric.multiply.accumulate(Numeric.array([1.]+(n[i]-1)*[x[i]]))
p = p*pi[index]
index = index[-1:] + index[:-1]
return p
def _isSequence(object):
n = -1
try: n = len(object)
except: pass
return n >= 0
# Clean up module (mostly for epydoc)
del index_expression
# Test code
if __name__ == '__main__':
p1 = Polynomial([1.,0.3,1.,-0.4])
x = -1.9
print p1(x), ((-0.4*x+1.)*x+0.3)*x+1.
zeros = p1.zeros()
for z in zeros:
print z, p1(z)
p2 = Polynomial([[1.,0.3],[-0.2,0.5]])
y = 0.3
print p2(x,y), 1. + 0.3*y - 0.2*x + 0.5*x*y
fit = fitPolynomial(2, [1.,2.,3.,4.], [2.,4.,8.,14.])
print fit.coeff