awips2/pythonPackages/matplotlib/examples/pylab_examples/image_clip_path.py
root 57877615f5 Initial revision of AWIPS2 11.9.0-7p5
Former-commit-id: 2b462d8665 [formerly 133dc97f67] [formerly a02aeb236c] [formerly a02aeb236c [formerly 9f19e3f712]] [formerly 2b462d8665 [formerly 133dc97f67] [formerly a02aeb236c] [formerly a02aeb236c [formerly 9f19e3f712]] [formerly 06a8b51d6d [formerly a02aeb236c [formerly 9f19e3f712] [formerly 06a8b51d6d [formerly 64fa9254b946eae7e61bbc3f513b7c3696c4f54f]]]]]
Former-commit-id: 06a8b51d6d
Former-commit-id: 2c3569dd39 [formerly 9bb8decbcf] [formerly 8e80217e59] [formerly e2ecdcfe33 [formerly 377dcd10b9] [formerly 8e80217e59 [formerly 3360eb6c5f]]]
Former-commit-id: e2ecdcfe33 [formerly 377dcd10b9]
Former-commit-id: e2ecdcfe33
Former-commit-id: 7dbd17a5aa
2012-01-06 08:55:05 -06:00

26 lines
742 B
Python
Executable file

#!/usr/bin/env python
import numpy as np
import matplotlib.cm as cm
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
from matplotlib.path import Path
from matplotlib.patches import PathPatch
delta = 0.025
x = y = np.arange(-3.0, 3.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
Z = Z2-Z1 # difference of Gaussians
path = Path([[0, 1], [1, 0], [0, -1], [-1, 0], [0, 1]])
patch = PathPatch(path, facecolor='none')
plt.gca().add_patch(patch)
im = plt.imshow(Z, interpolation='bilinear', cmap=cm.gray,
origin='lower', extent=[-3,3,-3,3],
clip_path=patch, clip_on=True)
im.set_clip_path(patch)
plt.show()