556 lines
20 KiB
HTML
Executable file
556 lines
20 KiB
HTML
Executable file
<?xml version="1.0" encoding="ascii"?>
|
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
|
|
"DTD/xhtml1-transitional.dtd">
|
|
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
|
|
<head>
|
|
<title>Scientific.Signals.Models.AutoRegressiveModel</title>
|
|
<link rel="stylesheet" href="epydoc.css" type="text/css" />
|
|
<script type="text/javascript" src="epydoc.js"></script>
|
|
</head>
|
|
|
|
<body bgcolor="white" text="black" link="blue" vlink="#204080"
|
|
alink="#204080">
|
|
<!-- ==================== NAVIGATION BAR ==================== -->
|
|
<table class="navbar" border="0" width="100%" cellpadding="0"
|
|
bgcolor="#a0c0ff" cellspacing="0">
|
|
<tr valign="middle">
|
|
<!-- Home link -->
|
|
<th> <a
|
|
href="Scientific-module.html">Home</a> </th>
|
|
|
|
<!-- Tree link -->
|
|
<th> <a
|
|
href="module-tree.html">Trees</a> </th>
|
|
|
|
<!-- Index link -->
|
|
<th> <a
|
|
href="identifier-index.html">Indices</a> </th>
|
|
|
|
<!-- Help link -->
|
|
<th> <a
|
|
href="help.html">Help</a> </th>
|
|
|
|
<!-- Project homepage -->
|
|
<th class="navbar" align="right" width="100%">
|
|
<table border="0" cellpadding="0" cellspacing="0">
|
|
<tr><th class="navbar" align="center"
|
|
><a class="navbar" target="_top" href="http://dirac.cnrs-orleans.fr/ScientificPython/">Scientific Python</a></th>
|
|
</tr></table></th>
|
|
</tr>
|
|
</table>
|
|
<table width="100%" cellpadding="0" cellspacing="0">
|
|
<tr valign="top">
|
|
<td width="100%">
|
|
<span class="breadcrumbs">
|
|
<a href="Scientific-module.html">Package Scientific</a> ::
|
|
<a href="Scientific.Signals-module.html">Package Signals</a> ::
|
|
<a href="Scientific.Signals.Models-module.html">Module Models</a> ::
|
|
Class AutoRegressiveModel
|
|
</span>
|
|
</td>
|
|
<td>
|
|
<table cellpadding="0" cellspacing="0">
|
|
<!-- hide/show private -->
|
|
<tr><td align="right"><span class="options"
|
|
>[<a href="frames.html" target="_top">frames</a
|
|
>] | <a href="Scientific.Signals.Models.AutoRegressiveModel-class.html"
|
|
target="_top">no frames</a>]</span></td></tr>
|
|
</table>
|
|
</td>
|
|
</tr>
|
|
</table>
|
|
<!-- ==================== CLASS DESCRIPTION ==================== -->
|
|
<h1 class="epydoc">Class AutoRegressiveModel</h1><p class="nomargin-top"></p>
|
|
<dl><dt>Known Subclasses:</dt>
|
|
<dd>
|
|
<ul class="subclass-list">
|
|
<li><a href="Scientific.Signals.Models.AveragedAutoRegressiveModel-class.html">AveragedAutoRegressiveModel</a></li> </ul>
|
|
</dd></dl>
|
|
|
|
<hr />
|
|
<p>Auto-regressive model for stochastic process</p>
|
|
<p>This implementation uses the Burg algorithm to obtain the coefficients
|
|
of the AR model.</p>
|
|
|
|
<!-- ==================== INSTANCE METHODS ==================== -->
|
|
<a name="section-InstanceMethods"></a>
|
|
<table class="summary" border="1" cellpadding="3"
|
|
cellspacing="0" width="100%" bgcolor="white">
|
|
<tr bgcolor="#70b0f0" class="table-header">
|
|
<td align="left" colspan="2" class="table-header">
|
|
<span class="table-header">Instance Methods</span></td>
|
|
</tr>
|
|
<tr>
|
|
<td width="15%" align="right" valign="top" class="summary">
|
|
<span class="summary-type"> </span>
|
|
</td><td class="summary">
|
|
<table width="100%" cellpadding="0" cellspacing="0" border="0">
|
|
<tr>
|
|
<td><span class="summary-sig"><a href="Scientific.Signals.Models.AutoRegressiveModel-class.html#__init__" class="summary-sig-name">__init__</a>(<span class="summary-sig-arg">self</span>,
|
|
<span class="summary-sig-arg">order</span>,
|
|
<span class="summary-sig-arg">data</span>,
|
|
<span class="summary-sig-arg">delta_t</span>=<span class="summary-sig-default">1</span>)</span></td>
|
|
<td align="right" valign="top">
|
|
|
|
|
|
</td>
|
|
</tr>
|
|
</table>
|
|
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td width="15%" align="right" valign="top" class="summary">
|
|
<span class="summary-type"><a
|
|
href="Scientific.Functions.Interpolation.InterpolatingFunction-class.html"
|
|
|
|
class="link">Scientific.Functions.Interpolation.InterpolatingFunction</a></span>
|
|
</td><td class="summary">
|
|
<table width="100%" cellpadding="0" cellspacing="0" border="0">
|
|
<tr>
|
|
<td><span class="summary-sig"><a href="Scientific.Signals.Models.AutoRegressiveModel-class.html#correlation" class="summary-sig-name">correlation</a>(<span class="summary-sig-arg">self</span>,
|
|
<span class="summary-sig-arg">nsteps</span>)</span><br />
|
|
Returns:
|
|
the autocorrelation function of the process as estimated from the AR
|
|
model</td>
|
|
<td align="right" valign="top">
|
|
|
|
|
|
</td>
|
|
</tr>
|
|
</table>
|
|
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td width="15%" align="right" valign="top" class="summary">
|
|
<span class="summary-type"> </span>
|
|
</td><td class="summary">
|
|
<table width="100%" cellpadding="0" cellspacing="0" border="0">
|
|
<tr>
|
|
<td><span class="summary-sig"><a href="Scientific.Signals.Models.AutoRegressiveModel-class.html#frictionConstant" class="summary-sig-name">frictionConstant</a>(<span class="summary-sig-arg">self</span>)</span><br />
|
|
Returns:
|
|
the friction constant of the process, i.e.</td>
|
|
<td align="right" valign="top">
|
|
|
|
|
|
</td>
|
|
</tr>
|
|
</table>
|
|
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td width="15%" align="right" valign="top" class="summary">
|
|
<span class="summary-type"><a
|
|
href="Scientific.Functions.Interpolation.InterpolatingFunction-class.html"
|
|
|
|
class="link">Scientific.Functions.Interpolation.InterpolatingFunction</a></span>
|
|
</td><td class="summary">
|
|
<table width="100%" cellpadding="0" cellspacing="0" border="0">
|
|
<tr>
|
|
<td><span class="summary-sig"><a href="Scientific.Signals.Models.AutoRegressiveModel-class.html#memoryFunction" class="summary-sig-name">memoryFunction</a>(<span class="summary-sig-arg">self</span>,
|
|
<span class="summary-sig-arg">nsteps</span>)</span><br />
|
|
Returns:
|
|
the memory function of the process as estimated from the AR model</td>
|
|
<td align="right" valign="top">
|
|
|
|
|
|
</td>
|
|
</tr>
|
|
</table>
|
|
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td width="15%" align="right" valign="top" class="summary">
|
|
<span class="summary-type"><a href="Scientific.Functions.Rational.RationalFunction-class.html"
|
|
class="link">Scientific.Function.Rational.RationalFunction</a></span>
|
|
</td><td class="summary">
|
|
<table width="100%" cellpadding="0" cellspacing="0" border="0">
|
|
<tr>
|
|
<td><span class="summary-sig"><a href="Scientific.Signals.Models.AutoRegressiveModel-class.html#memoryFunctionZ" class="summary-sig-name">memoryFunctionZ</a>(<span class="summary-sig-arg">self</span>)</span><br />
|
|
Returns:
|
|
the <i class="math">z</i>-transform of the process' memory function</td>
|
|
<td align="right" valign="top">
|
|
|
|
|
|
</td>
|
|
</tr>
|
|
</table>
|
|
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td width="15%" align="right" valign="top" class="summary">
|
|
<span class="summary-type"><a href="Scientific.Functions.Rational.RationalFunction-class.html"
|
|
class="link">Scientific.Function.Rational.RationalFunction</a></span>
|
|
</td><td class="summary">
|
|
<table width="100%" cellpadding="0" cellspacing="0" border="0">
|
|
<tr>
|
|
<td><span class="summary-sig"><a href="Scientific.Signals.Models.AutoRegressiveModel-class.html#memoryFunctionZapprox" class="summary-sig-name">memoryFunctionZapprox</a>(<span class="summary-sig-arg">self</span>,
|
|
<span class="summary-sig-arg">den_order</span>)</span><br />
|
|
Returns:
|
|
an approximation to the <i class="math">z</i>-transform of the
|
|
process' memory function that correponds to an expansion of the
|
|
denominator up to order den_order</td>
|
|
<td align="right" valign="top">
|
|
|
|
|
|
</td>
|
|
</tr>
|
|
</table>
|
|
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td width="15%" align="right" valign="top" class="summary">
|
|
<span class="summary-type"><code>Numeric.array</code> of <code>complex</code></span>
|
|
</td><td class="summary">
|
|
<table width="100%" cellpadding="0" cellspacing="0" border="0">
|
|
<tr>
|
|
<td><span class="summary-sig"><a href="Scientific.Signals.Models.AutoRegressiveModel-class.html#poles" class="summary-sig-name">poles</a>(<span class="summary-sig-arg">self</span>)</span><br />
|
|
Returns:
|
|
the poles of the model in the complex <i class="math">z</i>-plane</td>
|
|
<td align="right" valign="top">
|
|
|
|
|
|
</td>
|
|
</tr>
|
|
</table>
|
|
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td width="15%" align="right" valign="top" class="summary">
|
|
<span class="summary-type"><code>float</code> or <code>complex</code></span>
|
|
</td><td class="summary">
|
|
<table width="100%" cellpadding="0" cellspacing="0" border="0">
|
|
<tr>
|
|
<td><span class="summary-sig"><a href="Scientific.Signals.Models.AutoRegressiveModel-class.html#predictStep" class="summary-sig-name">predictStep</a>(<span class="summary-sig-arg">self</span>)</span><br />
|
|
Calculates the linear prediction of the next step in the series.</td>
|
|
<td align="right" valign="top">
|
|
|
|
|
|
</td>
|
|
</tr>
|
|
</table>
|
|
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td width="15%" align="right" valign="top" class="summary">
|
|
<span class="summary-type"><code>Numeric.array</code> of <code>float</code></span>
|
|
</td><td class="summary">
|
|
<table width="100%" cellpadding="0" cellspacing="0" border="0">
|
|
<tr>
|
|
<td><span class="summary-sig"><a href="Scientific.Signals.Models.AutoRegressiveModel-class.html#spectrum" class="summary-sig-name">spectrum</a>(<span class="summary-sig-arg">self</span>,
|
|
<span class="summary-sig-arg">omega</span>)</span><br />
|
|
Returns:
|
|
the frequency spectrum of the process</td>
|
|
<td align="right" valign="top">
|
|
|
|
|
|
</td>
|
|
</tr>
|
|
</table>
|
|
|
|
</td>
|
|
</tr>
|
|
</table>
|
|
<!-- ==================== METHOD DETAILS ==================== -->
|
|
<a name="section-MethodDetails"></a>
|
|
<table class="details" border="1" cellpadding="3"
|
|
cellspacing="0" width="100%" bgcolor="white">
|
|
<tr bgcolor="#70b0f0" class="table-header">
|
|
<td align="left" colspan="2" class="table-header">
|
|
<span class="table-header">Method Details</span></td>
|
|
</tr>
|
|
</table>
|
|
<a name="__init__"></a>
|
|
<div>
|
|
<table class="details" border="1" cellpadding="3"
|
|
cellspacing="0" width="100%" bgcolor="white">
|
|
<tr><td>
|
|
<table width="100%" cellpadding="0" cellspacing="0" border="0">
|
|
<tr valign="top"><td>
|
|
<h3 class="epydoc"><span class="sig"><span class="sig-name">__init__</span>(<span class="sig-arg">self</span>,
|
|
<span class="sig-arg">order</span>,
|
|
<span class="sig-arg">data</span>,
|
|
<span class="sig-arg">delta_t</span>=<span class="sig-default">1</span>)</span>
|
|
<br /><em class="fname">(Constructor)</em>
|
|
</h3>
|
|
</td><td align="right" valign="top"
|
|
>
|
|
</td>
|
|
</tr></table>
|
|
|
|
|
|
<dl class="fields">
|
|
<dt>Parameters:</dt>
|
|
<dd><ul class="nomargin-top">
|
|
<li><strong class="pname"><code>order</code></strong> (<code>int</code>) - the order of the model</li>
|
|
<li><strong class="pname"><code>data</code></strong> (sequence of <code>float</code> or <code>complex</code>) - the time series</li>
|
|
<li><strong class="pname"><code>delta_t</code></strong> (<code>float</code>) - the sampling interval for the time series</li>
|
|
</ul></dd>
|
|
</dl>
|
|
</td></tr></table>
|
|
</div>
|
|
<a name="correlation"></a>
|
|
<div>
|
|
<table class="details" border="1" cellpadding="3"
|
|
cellspacing="0" width="100%" bgcolor="white">
|
|
<tr><td>
|
|
<table width="100%" cellpadding="0" cellspacing="0" border="0">
|
|
<tr valign="top"><td>
|
|
<h3 class="epydoc"><span class="sig"><span class="sig-name">correlation</span>(<span class="sig-arg">self</span>,
|
|
<span class="sig-arg">nsteps</span>)</span>
|
|
</h3>
|
|
</td><td align="right" valign="top"
|
|
>
|
|
</td>
|
|
</tr></table>
|
|
|
|
|
|
<dl class="fields">
|
|
<dt>Parameters:</dt>
|
|
<dd><ul class="nomargin-top">
|
|
<li><strong class="pname"><code>nsteps</code></strong> (<code>int</code>) - the number of time steps for which the autocorrelation function
|
|
is to be evaluated</li>
|
|
</ul></dd>
|
|
<dt>Returns: <a
|
|
href="Scientific.Functions.Interpolation.InterpolatingFunction-class.html"
|
|
|
|
class="link">Scientific.Functions.Interpolation.InterpolatingFunction</a></dt>
|
|
<dd>the autocorrelation function of the process as estimated from the
|
|
AR model</dd>
|
|
</dl>
|
|
</td></tr></table>
|
|
</div>
|
|
<a name="frictionConstant"></a>
|
|
<div>
|
|
<table class="details" border="1" cellpadding="3"
|
|
cellspacing="0" width="100%" bgcolor="white">
|
|
<tr><td>
|
|
<table width="100%" cellpadding="0" cellspacing="0" border="0">
|
|
<tr valign="top"><td>
|
|
<h3 class="epydoc"><span class="sig"><span class="sig-name">frictionConstant</span>(<span class="sig-arg">self</span>)</span>
|
|
</h3>
|
|
</td><td align="right" valign="top"
|
|
>
|
|
</td>
|
|
</tr></table>
|
|
|
|
|
|
<dl class="fields">
|
|
<dt>Returns:</dt>
|
|
<dd>the friction constant of the process, i.e. the integral over the
|
|
memory function</dd>
|
|
</dl>
|
|
</td></tr></table>
|
|
</div>
|
|
<a name="memoryFunction"></a>
|
|
<div>
|
|
<table class="details" border="1" cellpadding="3"
|
|
cellspacing="0" width="100%" bgcolor="white">
|
|
<tr><td>
|
|
<table width="100%" cellpadding="0" cellspacing="0" border="0">
|
|
<tr valign="top"><td>
|
|
<h3 class="epydoc"><span class="sig"><span class="sig-name">memoryFunction</span>(<span class="sig-arg">self</span>,
|
|
<span class="sig-arg">nsteps</span>)</span>
|
|
</h3>
|
|
</td><td align="right" valign="top"
|
|
>
|
|
</td>
|
|
</tr></table>
|
|
|
|
|
|
<dl class="fields">
|
|
<dt>Parameters:</dt>
|
|
<dd><ul class="nomargin-top">
|
|
<li><strong class="pname"><code>nsteps</code></strong> (<code>int</code>) - the number of time steps for which the memory function is to be
|
|
evaluated</li>
|
|
</ul></dd>
|
|
<dt>Returns: <a
|
|
href="Scientific.Functions.Interpolation.InterpolatingFunction-class.html"
|
|
|
|
class="link">Scientific.Functions.Interpolation.InterpolatingFunction</a></dt>
|
|
<dd>the memory function of the process as estimated from the AR model</dd>
|
|
</dl>
|
|
</td></tr></table>
|
|
</div>
|
|
<a name="memoryFunctionZ"></a>
|
|
<div>
|
|
<table class="details" border="1" cellpadding="3"
|
|
cellspacing="0" width="100%" bgcolor="white">
|
|
<tr><td>
|
|
<table width="100%" cellpadding="0" cellspacing="0" border="0">
|
|
<tr valign="top"><td>
|
|
<h3 class="epydoc"><span class="sig"><span class="sig-name">memoryFunctionZ</span>(<span class="sig-arg">self</span>)</span>
|
|
</h3>
|
|
</td><td align="right" valign="top"
|
|
>
|
|
</td>
|
|
</tr></table>
|
|
|
|
|
|
<dl class="fields">
|
|
<dt>Returns: <a href="Scientific.Functions.Rational.RationalFunction-class.html"
|
|
class="link">Scientific.Function.Rational.RationalFunction</a></dt>
|
|
<dd>the <i class="math">z</i>-transform of the process' memory
|
|
function</dd>
|
|
</dl>
|
|
</td></tr></table>
|
|
</div>
|
|
<a name="memoryFunctionZapprox"></a>
|
|
<div>
|
|
<table class="details" border="1" cellpadding="3"
|
|
cellspacing="0" width="100%" bgcolor="white">
|
|
<tr><td>
|
|
<table width="100%" cellpadding="0" cellspacing="0" border="0">
|
|
<tr valign="top"><td>
|
|
<h3 class="epydoc"><span class="sig"><span class="sig-name">memoryFunctionZapprox</span>(<span class="sig-arg">self</span>,
|
|
<span class="sig-arg">den_order</span>)</span>
|
|
</h3>
|
|
</td><td align="right" valign="top"
|
|
>
|
|
</td>
|
|
</tr></table>
|
|
|
|
|
|
<dl class="fields">
|
|
<dt>Parameters:</dt>
|
|
<dd><ul class="nomargin-top">
|
|
<li><strong class="pname"><code>den_order</code></strong> (<code>int</code>)</li>
|
|
</ul></dd>
|
|
<dt>Returns: <a href="Scientific.Functions.Rational.RationalFunction-class.html"
|
|
class="link">Scientific.Function.Rational.RationalFunction</a></dt>
|
|
<dd>an approximation to the <i class="math">z</i>-transform of the
|
|
process' memory function that correponds to an expansion of the
|
|
denominator up to order den_order</dd>
|
|
</dl>
|
|
</td></tr></table>
|
|
</div>
|
|
<a name="poles"></a>
|
|
<div>
|
|
<table class="details" border="1" cellpadding="3"
|
|
cellspacing="0" width="100%" bgcolor="white">
|
|
<tr><td>
|
|
<table width="100%" cellpadding="0" cellspacing="0" border="0">
|
|
<tr valign="top"><td>
|
|
<h3 class="epydoc"><span class="sig"><span class="sig-name">poles</span>(<span class="sig-arg">self</span>)</span>
|
|
</h3>
|
|
</td><td align="right" valign="top"
|
|
>
|
|
</td>
|
|
</tr></table>
|
|
|
|
|
|
<dl class="fields">
|
|
<dt>Returns: <code>Numeric.array</code> of <code>complex</code></dt>
|
|
<dd>the poles of the model in the complex <i class="math">z</i>-plane</dd>
|
|
</dl>
|
|
</td></tr></table>
|
|
</div>
|
|
<a name="predictStep"></a>
|
|
<div>
|
|
<table class="details" border="1" cellpadding="3"
|
|
cellspacing="0" width="100%" bgcolor="white">
|
|
<tr><td>
|
|
<table width="100%" cellpadding="0" cellspacing="0" border="0">
|
|
<tr valign="top"><td>
|
|
<h3 class="epydoc"><span class="sig"><span class="sig-name">predictStep</span>(<span class="sig-arg">self</span>)</span>
|
|
</h3>
|
|
</td><td align="right" valign="top"
|
|
>
|
|
</td>
|
|
</tr></table>
|
|
|
|
<p>Calculates the linear prediction of the next step in the series. This
|
|
step is appended internally to the current trajectory, making it
|
|
possible to call this method repeatedly in order to obtain a sequence of
|
|
predicted steps.</p>
|
|
<dl class="fields">
|
|
<dt>Returns: <code>float</code> or <code>complex</code></dt>
|
|
<dd>the predicted step</dd>
|
|
</dl>
|
|
</td></tr></table>
|
|
</div>
|
|
<a name="spectrum"></a>
|
|
<div>
|
|
<table class="details" border="1" cellpadding="3"
|
|
cellspacing="0" width="100%" bgcolor="white">
|
|
<tr><td>
|
|
<table width="100%" cellpadding="0" cellspacing="0" border="0">
|
|
<tr valign="top"><td>
|
|
<h3 class="epydoc"><span class="sig"><span class="sig-name">spectrum</span>(<span class="sig-arg">self</span>,
|
|
<span class="sig-arg">omega</span>)</span>
|
|
</h3>
|
|
</td><td align="right" valign="top"
|
|
>
|
|
</td>
|
|
</tr></table>
|
|
|
|
|
|
<dl class="fields">
|
|
<dt>Parameters:</dt>
|
|
<dd><ul class="nomargin-top">
|
|
<li><strong class="pname"><code>omega</code></strong> (<code>Numeric.array</code> of <code>float</code>) - the angular frequencies at which the spectrum is to be evaluated</li>
|
|
</ul></dd>
|
|
<dt>Returns: <code>Numeric.array</code> of <code>float</code></dt>
|
|
<dd>the frequency spectrum of the process</dd>
|
|
</dl>
|
|
</td></tr></table>
|
|
</div>
|
|
<br />
|
|
<!-- ==================== NAVIGATION BAR ==================== -->
|
|
<table class="navbar" border="0" width="100%" cellpadding="0"
|
|
bgcolor="#a0c0ff" cellspacing="0">
|
|
<tr valign="middle">
|
|
<!-- Home link -->
|
|
<th> <a
|
|
href="Scientific-module.html">Home</a> </th>
|
|
|
|
<!-- Tree link -->
|
|
<th> <a
|
|
href="module-tree.html">Trees</a> </th>
|
|
|
|
<!-- Index link -->
|
|
<th> <a
|
|
href="identifier-index.html">Indices</a> </th>
|
|
|
|
<!-- Help link -->
|
|
<th> <a
|
|
href="help.html">Help</a> </th>
|
|
|
|
<!-- Project homepage -->
|
|
<th class="navbar" align="right" width="100%">
|
|
<table border="0" cellpadding="0" cellspacing="0">
|
|
<tr><th class="navbar" align="center"
|
|
><a class="navbar" target="_top" href="http://dirac.cnrs-orleans.fr/ScientificPython/">Scientific Python</a></th>
|
|
</tr></table></th>
|
|
</tr>
|
|
</table>
|
|
<table border="0" cellpadding="0" cellspacing="0" width="100%%">
|
|
<tr>
|
|
<td align="left" class="footer">
|
|
Generated by Epydoc 3.0 on Tue Oct 28 14:16:07 2008
|
|
</td>
|
|
<td align="right" class="footer">
|
|
<a target="mainFrame" href="http://epydoc.sourceforge.net"
|
|
>http://epydoc.sourceforge.net</a>
|
|
</td>
|
|
</tr>
|
|
</table>
|
|
|
|
<script type="text/javascript">
|
|
<!--
|
|
// Private objects are initially displayed (because if
|
|
// javascript is turned off then we want them to be
|
|
// visible); but by default, we want to hide them. So hide
|
|
// them unless we have a cookie that says to show them.
|
|
checkCookie();
|
|
// -->
|
|
</script>
|
|
</body>
|
|
</html>
|