awips2/pythonPackages/numpy
Steve Harris 401ee156b8 14.1.1-11 baseline
Former-commit-id: 71ae71c850 [formerly 70a6f1936e [formerly c32b2b2037c84cc074e7dc5a5a13b93223640d7d]]
Former-commit-id: 70a6f1936e
Former-commit-id: 337b138200
2013-12-02 17:10:10 -05:00
..
doc Initial revision of AWIPS2 11.9.0-7p5 2012-01-06 08:55:05 -06:00
numpy 14.1.1-11 baseline 2013-12-02 17:10:10 -05:00
COMPATIBILITY Initial revision of AWIPS2 11.9.0-7p5 2012-01-06 08:55:05 -06:00
DEV_README.txt Initial revision of AWIPS2 11.9.0-7p5 2012-01-06 08:55:05 -06:00
INSTALL.txt Initial revision of AWIPS2 11.9.0-7p5 2012-01-06 08:55:05 -06:00
LICENSE.txt Initial revision of AWIPS2 11.9.0-7p5 2012-01-06 08:55:05 -06:00
MANIFEST.in Initial revision of AWIPS2 11.9.0-7p5 2012-01-06 08:55:05 -06:00
numpy-1.5.0.tar.gz Initial revision of AWIPS2 11.9.0-7p5 2012-01-06 08:55:05 -06:00
PKG-INFO Initial revision of AWIPS2 11.9.0-7p5 2012-01-06 08:55:05 -06:00
README.txt Initial revision of AWIPS2 11.9.0-7p5 2012-01-06 08:55:05 -06:00
setup.py Initial revision of AWIPS2 11.9.0-7p5 2012-01-06 08:55:05 -06:00
setupegg.py Initial revision of AWIPS2 11.9.0-7p5 2012-01-06 08:55:05 -06:00
setupscons.py Initial revision of AWIPS2 11.9.0-7p5 2012-01-06 08:55:05 -06:00
setupsconsegg.py Initial revision of AWIPS2 11.9.0-7p5 2012-01-06 08:55:05 -06:00
site.cfg.example Initial revision of AWIPS2 11.9.0-7p5 2012-01-06 08:55:05 -06:00
THANKS.txt Initial revision of AWIPS2 11.9.0-7p5 2012-01-06 08:55:05 -06:00

NumPy is the fundamental package needed for scientific computing with Python. 
This package contains:

    * a powerful N-dimensional array object
    * sophisticated (broadcasting) functions
    * tools for integrating C/C++ and Fortran code
    * useful linear algebra, Fourier transform, and random number capabilities. 

It derives from the old Numeric code base and can be used as a replacement for Numeric. It also adds the features introduced by numarray and can be used to replace numarray.

More information can be found at the website:

http://scipy.org/NumPy

After installation, tests can be run with:

python -c 'import numpy; numpy.test()'

The most current development version is always available from our
subversion repository:

http://svn.scipy.org/svn/numpy/trunk