awips2/cave/com.raytheon.uf.viz.derivparam.python/localization/derivedParameters/functions/ThetaE.py
root e2ecdcfe33 Initial revision of AWIPS2 11.9.0-7p5
Former-commit-id: a02aeb236c [formerly 9f19e3f712] [formerly a02aeb236c [formerly 9f19e3f712] [formerly 06a8b51d6d [formerly 64fa9254b946eae7e61bbc3f513b7c3696c4f54f]]]
Former-commit-id: 06a8b51d6d
Former-commit-id: 8e80217e59 [formerly 3360eb6c5f]
Former-commit-id: 377dcd10b9
2012-01-06 08:55:05 -06:00

82 lines
2.3 KiB
Python

##
# This software was developed and / or modified by Raytheon Company,
# pursuant to Contract DG133W-05-CQ-1067 with the US Government.
#
# U.S. EXPORT CONTROLLED TECHNICAL DATA
# This software product contains export-restricted data whose
# export/transfer/disclosure is restricted by U.S. law. Dissemination
# to non-U.S. persons whether in the United States or abroad requires
# an export license or other authorization.
#
# Contractor Name: Raytheon Company
# Contractor Address: 6825 Pine Street, Suite 340
# Mail Stop B8
# Omaha, NE 68106
# 402.291.0100
#
# See the AWIPS II Master Rights File ("Master Rights File.pdf") for
# further licensing information.
###
## @file ThetaE.py
#
# Calculate equivalent potential temperature (Theta E), EPT.
#
# ----------------------------------------------------------------
import gridslice
from numpy import clip
from numpy import exp
from numpy import log
from numpy import sqrt
from numpy import power
from numpy import zeros
from numpy import where
##
# Calculate equivalent potential temperature (Theta E) from
# pressure(mb), Temperature(degrees K) and Relative Humdity(0 to 100).
# This function accepts numpy arrays of the appropriate values.
#
# @param P: Pressure in millibars
# @param T: Temperature in degrees K
# @param RH: Relative humidity from 0 to 100
# @return: Equivalent potential temperature in degrees K
# @rtype: numpy array or Python float
#
def execute(P,T,RH):
"Calculate equivalent potential temperature (Theta E) from \
presssure(mb), Temperature(degrees K) and RH(0 to 100)."
# symbolic constants
epsilon = 0.622
L_cp = 2540
# 0 to 100 is valid for RH, but we can't take log(0), so fudge value slightly
rhqc = clip(RH,0.01,100.0)
# do the math
powval = -0.0091379024 * T
powval += 22.05565
powval -= 6106.396/T
eee = rhqc * exp(powval)
b = 26.66082 - log(eee)
val = b*b
val -= 223.1986
val = sqrt(val)
tdp = (b - val)
tdp /= 0.0182758048
val = tdp * 0.0015945203
val += 41.178204/T
val -= 0.37329638
val *= T-tdp
tc = tdp - val
w = eee/(P - eee)
w *= epsilon
powval = w * L_cp
powval /= tc
EPT = T * exp(powval)
EPT *= power(1000/P, 0.286)
return EPT