awips2/cave/com.raytheon.uf.viz.derivparam.python/localization/derivedParameters/functions/TestLiftedIndex.py
root e2ecdcfe33 Initial revision of AWIPS2 11.9.0-7p5
Former-commit-id: a02aeb236c [formerly 9f19e3f712] [formerly a02aeb236c [formerly 9f19e3f712] [formerly 06a8b51d6d [formerly 64fa9254b946eae7e61bbc3f513b7c3696c4f54f]]]
Former-commit-id: 06a8b51d6d
Former-commit-id: 8e80217e59 [formerly 3360eb6c5f]
Former-commit-id: 377dcd10b9
2012-01-06 08:55:05 -06:00

64 lines
2.8 KiB
Python

##
# This software was developed and / or modified by Raytheon Company,
# pursuant to Contract DG133W-05-CQ-1067 with the US Government.
#
# U.S. EXPORT CONTROLLED TECHNICAL DATA
# This software product contains export-restricted data whose
# export/transfer/disclosure is restricted by U.S. law. Dissemination
# to non-U.S. persons whether in the United States or abroad requires
# an export license or other authorization.
#
# Contractor Name: Raytheon Company
# Contractor Address: 6825 Pine Street, Suite 340
# Mail Stop B8
# Omaha, NE 68106
# 402.291.0100
#
# See the AWIPS II Master Rights File ("Master Rights File.pdf") for
# further licensing information.
##
import unittest
import numpy as np
import LiftedIndex
class TestLiftedIndex(unittest.TestCase):
def setUp(self):
self.P = np.array([600, 700, 800, 900], dtype=np.float32)
self.T = np.array([250, 275, 290, 300], dtype=np.float32)
self.RH = np.array([30, 40, 50, 60], dtype=np.float32)
self.P_500MB = 500.0
self.T_500MB = np.array([290, 280, 270, 260], dtype=np.float32)
def testLiftedIndex(self):
"Test simple operation on 4 data points with P_500MB a scalar."
result = LiftedIndex.execute(self.P, self.T, self.RH, self.T_500MB, self.P_500MB)
correct = np.array([52.701, 27.634, 6.831, -12.093], dtype=np.float32)
if not np.allclose(result, correct, .001, .001):
self.fail("Wrong answer:"+ repr(result))
def testMaskedPValue(self):
self.P[2] = 1e37
result = LiftedIndex.execute(self.P, self.T, self.RH, self.T_500MB, self.P_500MB)
correct = np.array([52.701, 27.634, 1e37, -12.093], dtype=np.float32)
if not np.allclose(result, correct, .001, .001):
self.fail("Wrong answer:"+ repr(result))
def testBadTValue(self):
self.T[2] = 32.0
result = LiftedIndex.execute(self.P, self.T, self.RH, self.T_500MB, self.P_500MB)
correct = np.array([52.701, 27.634, 1e37, -12.093], dtype=np.float32)
if not np.allclose(result, correct, .001, .001):
self.fail("Wrong answer:"+ repr(result))
def testBlackHoleValue(self):
self.P = np.array([1008.18,1013.2], dtype=np.float32)
self.T = np.array([302.02026,299.95776], dtype=np.float32)
self.RH = np.array([88.98621,79.98621], dtype=np.float32)
self.T_500MB = np.array([284.5984,284.3484], dtype=np.float32)
self.P_500MB = 700
result = LiftedIndex.execute(self.P, self.T, self.RH, self.T_500MB, self.P_500MB)
correct = np.array([-3.70840454, 0.28149414], dtype=np.float32)
if not np.allclose(result, correct, .001, .001):
self.fail("Wrong answer:"+ repr(result))