awips2/pythonPackages/scientific/Scientific/Threading/TaskManager.py
root e2ecdcfe33 Initial revision of AWIPS2 11.9.0-7p5
Former-commit-id: a02aeb236c [formerly 9f19e3f712] [formerly a02aeb236c [formerly 9f19e3f712] [formerly 06a8b51d6d [formerly 64fa9254b946eae7e61bbc3f513b7c3696c4f54f]]]
Former-commit-id: 06a8b51d6d
Former-commit-id: 8e80217e59 [formerly 3360eb6c5f]
Former-commit-id: 377dcd10b9
2012-01-06 08:55:05 -06:00

158 lines
4.9 KiB
Python
Executable file

# This module provides a simple task manager for running parallel
# calculations on shared-memory machines.
#
# Written by Konrad Hinsen <hinsen@cnrs-orleans.fr>
# last revision: 2006-6-12
#
"""
Parallel task manager for shared-memory multiprocessor machines
@undocumented: Task
"""
import threading
class TaskManager:
"""
Parallel task manager for shared-memory multiprocessor machines
This class provides a rather simple way to profit from
shared-memory multiprocessor machines by running several tasks
in parallel. The calling program decides how many execution threads
should run at any given time, and then feeds compute tasks to
the task manager, who runs them as soon as possible without exceeding
the maximum number of threads.
The major limitation of this approach lies in Python's Global
Interpreter Lock. This effectively means that no more than one
Python thread can run at the same time. Consequently, parallelization
can only be achieved if the tasks to be parallelized spend
significant time in C extension modules that release the Global
Interpreter Lock.
"""
def __init__(self, nthreads):
"""
@param nthreads: the maximum number of compute threads that should
run in parallel. Note: This does not include the
main thread which generated and feeds the task
manager!
@type nthreads: C{int}
"""
self.nthreads = nthreads
self.waiting_tasks = []
self.running_tasks = []
self.lock = threading.Lock()
self.data_lock = threading.Lock()
self.can_run = threading.Condition(self.lock)
self.can_submit = threading.Condition(self.lock)
self.task_available = threading.Condition(self.lock)
self.scheduler = threading.Thread(target=self._scheduler)
self.scheduler.start()
def runTask(self, function, args):
"""
Run a task as soon as processing capacity becomes available
@param function: the function that will be executed as the body of
the task
@type function: callable
@param args: the arguments that will be passed to function when it
is called. An additional argument will be added at the
end: a lock object that the task can use to get
temporarily exclusive access to data shared with other
tasks.
@type args: C{tuple}
"""
self.can_submit.acquire()
if len(self.waiting_tasks) >= self.nthreads:
self.can_submit.wait()
self.can_submit.release()
task = Task(self, function, args + (self.data_lock,))
self.task_available.acquire()
self.waiting_tasks.append(task)
self.task_available.notify()
self.task_available.release()
def terminate(self):
"""
Wait until all tasks have finished
"""
self.task_available.acquire()
self.waiting_tasks.append(None)
self.task_available.notify()
self.task_available.release()
self.scheduler.join()
done = 0
while not done:
self.can_run.acquire()
if self.running_tasks:
self.can_run.wait()
done = len(self.running_tasks) == 0
self.can_run.release()
def _removeTask(self, task):
self.can_run.acquire()
self.running_tasks.remove(task)
self.can_run.notifyAll()
self.can_run.release()
def _scheduler(self):
while 1:
self.task_available.acquire()
if not self.waiting_tasks:
self.task_available.wait()
self.task_available.release()
self.can_run.acquire()
while len(self.running_tasks) >= self.nthreads:
self.can_run.wait()
task = self.waiting_tasks[0]
del self.waiting_tasks[0]
if task is not None:
self.running_tasks.append(task)
task.start()
self.can_submit.notify()
self.can_run.release()
if task is None:
break
class Task(threading.Thread):
def __init__(self, manager, function, args):
self.__task_manager = manager
self.__function = function
self.__args = args
threading.Thread.__init__(self)
def run(self):
apply(self.__function, self.__args)
self.__task_manager._removeTask(self)
# Test code
if __name__ == '__main__':
import time
from random import randint
def dummy(n, results, lock):
print n, "running"
time.sleep(randint(1, 5))
lock.acquire()
results.append(n)
lock.release()
print n, "finished"
m = TaskManager(2)
results = []
for i in range(5):
m.runTask(dummy, (i, results))
m.terminate()
print "All finished"
print results