awips2/pythonPackages/scientific/Scientific/Functions/Derivatives.py
root e2ecdcfe33 Initial revision of AWIPS2 11.9.0-7p5
Former-commit-id: a02aeb236c [formerly 9f19e3f712] [formerly a02aeb236c [formerly 9f19e3f712] [formerly 06a8b51d6d [formerly 64fa9254b946eae7e61bbc3f513b7c3696c4f54f]]]
Former-commit-id: 06a8b51d6d
Former-commit-id: 8e80217e59 [formerly 3360eb6c5f]
Former-commit-id: 377dcd10b9
2012-01-06 08:55:05 -06:00

412 lines
13 KiB
Python
Executable file

# Automatic nth-order derivatives
#
# Written by Konrad Hinsen <hinsen@cnrs-orleans.fr>
# last revision: 2007-5-25
#
"""
Automatic differentiation for functions of
any number of variables up to any order
An instance of the class DerivVar represents the value of a function
and the values of its partial X{derivatives} with respect to a list of
variables. All common mathematical operations and functions are
available for these numbers. There is no restriction on the type of
the numbers fed into the code; it works for real and complex numbers
as well as for any Python type that implements the necessary
operations.
If only first-order derivatives are required, the module
FirstDerivatives should be used. It is compatible to this
one, but significantly faster.
Example::
print sin(DerivVar(2))
produces the output::
(0.909297426826, [-0.416146836547])
The first number is the value of sin(2); the number in the following
list is the value of the derivative of sin(x) at x=2, i.e. cos(2).
When there is more than one variable, DerivVar must be called with
an integer second argument that specifies the number of the variable.
Example::
>>>x = DerivVar(7., 0)
>>>y = DerivVar(42., 1)
>>>z = DerivVar(pi, 2)
>>>print (sqrt(pow(x,2)+pow(y,2)+pow(z,2)))
produces the output
>>>(42.6950770511, [0.163953328662, 0.98371997197, 0.0735820818365])
The numbers in the list are the partial derivatives with respect
to x, y, and z, respectively.
Higher-order derivatives are requested with an optional third
argument to DerivVar.
Example::
>>>x = DerivVar(3., 0, 3)
>>>y = DerivVar(5., 1, 3)
>>>print sqrt(x*y)
produces the output
>>>(3.87298334621,
>>> [0.645497224368, 0.387298334621],
>>> [[-0.107582870728, 0.0645497224368],
>>> [0.0645497224368, -0.0387298334621]],
>>> [[[0.053791435364, -0.0107582870728],
>>> [-0.0107582870728, -0.00645497224368]],
>>> [[-0.0107582870728, -0.00645497224368],
>>> [-0.00645497224368, 0.0116189500386]]])
The individual orders can be extracted by indexing::
>>>print sqrt(x*y)[0]
>>>3.87298334621
>>>print sqrt(x*y)[1]
>>>[0.645497224368, 0.387298334621]
An n-th order derivative is represented by a nested list of
depth n.
When variables with different differentiation orders are mixed,
the result has the lower one of the two orders. An exception are
zeroth-order variables, which are treated as constants.
Caution: Higher-order derivatives are implemented by recursively
using DerivVars to represent derivatives. This makes the code
very slow for high orders.
Note: It doesn't make sense to use multiple DerivVar objects with
different values for the same variable index in one calculation, but
there is no check for this. I.e.::
>>>print DerivVar(3, 0)+DerivVar(5, 0)
produces
>>>(8, [2])
but this result is meaningless.
"""
from Scientific import N; Numeric = N
# The following class represents variables with derivatives:
class DerivVar:
"""
Numerical variable with automatic derivatives of arbitrary order
"""
def __init__(self, value, index=0, order = 1, recursive = None):
"""
@param value: the numerical value of the variable
@type value: number
@param index: the variable index, which serves to
distinguish between variables and as an index for
the derivative lists. Each explicitly created
instance of DerivVar must have a unique index.
@type index: C{int}
@param order: the derivative order
@type order: C{int}
@raise ValueError: if order < 0
"""
if order < 0:
raise ValueError('Negative derivative order')
self.value = value
if recursive:
d = 0
else:
d = 1
if type(index) == type([]):
self.deriv = index
elif order == 0:
self.deriv = []
elif order == 1:
self.deriv = index*[0] + [d]
else:
self.deriv = []
for i in range(index):
self.deriv.append(DerivVar(0, index, order-1, 1))
self.deriv.append(DerivVar(d, index, order-1, 1))
self.order = order
def toOrder(self, order):
"""
@param order: the highest derivative order to be kept
@type order: C{int}
@return: a DerivVar object with a lower derivative order
@rtype: L{DerivVar}
"""
if self.order <= order:
return self
if order == 0:
return self.value
return DerivVar(self.value, map(lambda x, o=order-1: x.toOrder(o),
self.deriv), order)
def __getitem__(self, order):
"""
@param order: derivative order
@type order: C{int}
@return: a list of all derivatives of the given order
@rtype: C{list}
@raise ValueError: if order < 0 or order > self.order
"""
if order < 0 or order > self.order:
raise ValueError('Index out of range')
if order == 0:
return self.value
else:
return map(lambda d, i=order-1: _indexDeriv(d,i), self.deriv)
def __repr__(self):
return repr(tuple(map(lambda n, x=self: x[n], range(self.order+1))))
def __str__(self):
return str(tuple(map(lambda n, x=self: x[n], range(self.order+1))))
def __coerce__(self, other):
if isDerivVar(other):
if self.order==other.order or self.order==0 or other.order==0:
return self, other
order = min(self.order, other.order)
return self.toOrder(order), other.toOrder(order)
else:
return self, DerivVar(other, [], 0)
def __cmp__(self, other):
return cmp(self.value, other.value)
def __neg__(self):
return DerivVar(-self.value,map(lambda a: -a, self.deriv), self.order)
def __pos__(self):
return self
def __abs__(self):
absvalue = abs(self.value)
return DerivVar(absvalue, map(lambda a, d=self.value/absvalue:
d*a, self.deriv), self.order)
def __nonzero__(self):
return self.value != 0
def __add__(self, other):
return DerivVar(self.value + other.value,
_mapderiv(lambda a,b: a+b, self.deriv, other.deriv),
max(self.order, other.order))
__radd__ = __add__
def __sub__(self, other):
return DerivVar(self.value - other.value,
_mapderiv(lambda a,b: a-b, self.deriv, other.deriv),
max(self.order, other.order))
def __rsub__(self, other):
return DerivVar(other.value - self.value,
_mapderiv(lambda a,b: a-b, other.deriv, self.deriv),
max(self.order, other.order))
def __mul__(self, other):
if self.order < 2:
s1 = self.value
else:
s1 = self.toOrder(self.order-1)
if other.order < 2:
o1 = other.value
else:
o1 = other.toOrder(other.order-1)
return DerivVar(self.value*other.value,
_mapderiv(lambda a,b: a+b,
map(lambda x,f=o1: f*x, self.deriv),
map(lambda x,f=s1: f*x, other.deriv)),
max(self.order, other.order))
__rmul__ = __mul__
def __div__(self, other):
if not other.value:
raise ZeroDivisionError('DerivVar division')
if self.order < 2:
s1 = self.value
else:
s1 = self.toOrder(self.order-1)
if other.order < 2:
o1i = 1./other.value
else:
o1i = 1./other.toOrder(other.order-1)
return DerivVar(_toFloat(self.value)/other.value,
_mapderiv(lambda a,b: a-b,
map(lambda x,f=o1i: x*f, self.deriv),
map(lambda x,f=s1*pow(o1i, 2): f*x,
other.deriv)),
max(self.order, other.order))
def __rdiv__(self, other):
return other/self
def __pow__(self, other, z=None):
if z is not None:
raise TypeError('DerivVar does not support ternary pow()')
if len(other.deriv) > 0:
return Numeric.exp(Numeric.log(self)*other)
else:
if self.order < 2:
ps1 = other.value*pow(self.value, other.value-1)
else:
ps1 = other.value*pow(self.toOrder(self.order-1), other.value-1)
return DerivVar(pow(self.value, other.value),
map(lambda x,f=ps1: f*x, self.deriv),
max(self.order, other.order))
def __rpow__(self, other):
return pow(other, self)
def _mathfunc(self, f, d):
if self.order < 2:
fd = d(self.value)
else:
fd = d(self.toOrder(self.order-1))
return DerivVar(f(self.value), map(lambda x, f=fd: f*x, self.deriv),
self.order)
def exp(self):
return self._mathfunc(Numeric.exp, Numeric.exp)
def log(self):
return self._mathfunc(Numeric.log, lambda x: 1./x)
def log10(self):
return self._mathfunc(Numeric.log10, lambda x: 1./(x*Numeric.log(10)))
def sqrt(self):
return self._mathfunc(Numeric.sqrt, lambda x: 0.5/Numeric.sqrt(x))
def sign(self):
if self.value == 0:
raise ValueError("can't differentiate sign() at zero")
return self._mathfunc(Numeric.sign, lambda x: 0)
def sin(self):
return self._mathfunc(Numeric.sin, Numeric.cos)
def cos(self):
return self._mathfunc(Numeric.cos, lambda x: -Numeric.sin(x))
def tan(self):
return self._mathfunc(Numeric.tan, lambda x: 1.+pow(Numeric.tan(x),2))
def sinh(self):
return self._mathfunc(Numeric.sinh, Numeric.cosh)
def cosh(self):
return self._mathfunc(Numeric.cosh, Numeric.sinh)
def tanh(self):
return self._mathfunc(Numeric.tanh, lambda x:
1./pow(Numeric.cosh(x),2))
def arcsin(self):
return self._mathfunc(Numeric.arcsin, lambda x:
1./Numeric.sqrt(1.-pow(x,2)))
def arccos(self):
return self._mathfunc(Numeric.arccos, lambda x:
-1./Numeric.sqrt(1.-pow(x,2)))
def arctan(self):
return self._mathfunc(Numeric.arctan, lambda x:
1./(1+pow(x,2)))
def arctan2(self, other):
if self.order < 2:
s1 = self.value
else:
s1 = self.toOrder(self.order-1)
if other.order < 2:
o1 = other.value
else:
o1 = other.toOrder(other.order-1)
den = s1*s1+o1*o1
s1 = s1/den
o1 = o1/den
return DerivVar(Numeric.arctan2(self.value, other.value),
_mapderiv(lambda a,b: a-b,
map(lambda x,f=o1: x*f, self.deriv),
map(lambda x,f=s1: x*f, other.deriv)),
max(self.order, other.order))
# Type check
def isDerivVar(x):
"""
@param x: an arbitrary object
@return: True if x is a DerivVar object, False otherwise
@rtype: C{bool}
"""
return hasattr(x,'value') and hasattr(x,'deriv') and hasattr(x,'order')
# Map a binary function on two first derivative lists
def _mapderiv(func, a, b):
nvars = max(len(a), len(b))
a = a + (nvars-len(a))*[0]
b = b + (nvars-len(b))*[0]
return map(func, a, b)
# Convert argument to float if it is integer
def _toFloat(x):
if isinstance(x, int):
return float(x)
return x
# Subscript for DerivVar or ordinary number
def _indexDeriv(d, i):
if isDerivVar(d):
return d[i]
if i != 0:
raise ValueError('Internal error')
return d
# Define vector of DerivVars
def DerivVector(x, y, z, index=0, order = 1):
"""
@param x: x component of the vector
@type x: number
@param y: y component of the vector
@type y: number
@param z: z component of the vector
@type z: number
@param index: the DerivVar index for the x component. The y and z
components receive consecutive indices.
@type index: C{int}
@param order: the derivative order
@type order: C{int}
@return: a vector whose components are DerivVar objects
@rtype: L{Scientific.Geometry.Vector}
"""
from Scientific.Geometry.VectorModule import Vector
if isDerivVar(x) and isDerivVar(y) and isDerivVar(z):
return Vector(x, y, z)
else:
return Vector(DerivVar(x, index, order),
DerivVar(y, index+1, order),
DerivVar(z, index+2, order))