## # This software was developed and / or modified by Raytheon Company, # pursuant to Contract DG133W-05-CQ-1067 with the US Government. # # U.S. EXPORT CONTROLLED TECHNICAL DATA # This software product contains export-restricted data whose # export/transfer/disclosure is restricted by U.S. law. Dissemination # to non-U.S. persons whether in the United States or abroad requires # an export license or other authorization. # # Contractor Name: Raytheon Company # Contractor Address: 6825 Pine Street, Suite 340 # Mail Stop B8 # Omaha, NE 68106 # 402.291.0100 # # See the AWIPS II Master Rights File ("Master Rights File.pdf") for # further licensing information. ## import unittest import numpy as np import LiftedIndex class TestLiftedIndex(unittest.TestCase): def setUp(self): self.P = np.array([600, 700, 800, 900], dtype=np.float32) self.T = np.array([250, 275, 290, 300], dtype=np.float32) self.RH = np.array([30, 40, 50, 60], dtype=np.float32) self.P_500MB = 500.0 self.T_500MB = np.array([290, 280, 270, 260], dtype=np.float32) def testLiftedIndex(self): "Test simple operation on 4 data points with P_500MB a scalar." result = LiftedIndex.execute(self.P, self.T, self.RH, self.T_500MB, self.P_500MB) correct = np.array([52.701, 27.634, 6.831, -12.093], dtype=np.float32) if not np.allclose(result, correct, .001, .001): self.fail("Wrong answer:"+ repr(result)) def testMaskedPValue(self): self.P[2] = 1e37 result = LiftedIndex.execute(self.P, self.T, self.RH, self.T_500MB, self.P_500MB) correct = np.array([52.701, 27.634, 1e37, -12.093], dtype=np.float32) if not np.allclose(result, correct, .001, .001): self.fail("Wrong answer:"+ repr(result)) def testBadTValue(self): self.T[2] = 32.0 result = LiftedIndex.execute(self.P, self.T, self.RH, self.T_500MB, self.P_500MB) correct = np.array([52.701, 27.634, 1e37, -12.093], dtype=np.float32) if not np.allclose(result, correct, .001, .001): self.fail("Wrong answer:"+ repr(result)) def testBlackHoleValue(self): self.P = np.array([1008.18,1013.2], dtype=np.float32) self.T = np.array([302.02026,299.95776], dtype=np.float32) self.RH = np.array([88.98621,79.98621], dtype=np.float32) self.T_500MB = np.array([284.5984,284.3484], dtype=np.float32) self.P_500MB = 700 result = LiftedIndex.execute(self.P, self.T, self.RH, self.T_500MB, self.P_500MB) correct = np.array([-3.70840454, 0.28149414], dtype=np.float32) if not np.allclose(result, correct, .001, .001): self.fail("Wrong answer:"+ repr(result))