Omaha #3216 - Update Python to 2.7.8, move specific site-packages to AWIPS2_build

Change-Id: Iedaba76caf3b690d31012dff00f91f3cd5e81e8b

Former-commit-id: 0d4e39f166c8e8607d0a3c3f43f3656531e62e1e
This commit is contained in:
Greg Armendariz 2014-11-18 10:45:55 -06:00
parent e1106f77eb
commit ad5e3134e4
2483 changed files with 20 additions and 332907 deletions

File diff suppressed because it is too large Load diff

View file

@ -1,134 +0,0 @@
//-----------------------------------------------------------------------------
//
// Copyright (c) 1998 - 2007, The Regents of the University of California
// Produced at the Lawrence Livermore National Laboratory
// All rights reserved.
//
// This file is part of PyCXX. For details,see http://cxx.sourceforge.net/. The
// full copyright notice is contained in the file COPYRIGHT located at the root
// of the PyCXX distribution.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the disclaimer below.
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the disclaimer (as noted below) in the
// documentation and/or materials provided with the distribution.
// - Neither the name of the UC/LLNL nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OF THE UNIVERSITY OF
// CALIFORNIA, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
//-----------------------------------------------------------------------------
#ifndef __PyCXX_config_hh__
#define __PyCXX_config_hh__
//
// Microsoft VC++ 6.0 has no traits
//
#if defined( _MSC_VER )
# define STANDARD_LIBRARY_HAS_ITERATOR_TRAITS 1
#elif defined( __GNUC__ )
# if __GNUC__ >= 3
# define STANDARD_LIBRARY_HAS_ITERATOR_TRAITS 1
# else
# define STANDARD_LIBRARY_HAS_ITERATOR_TRAITS 0
#endif
//
// Assume all other compilers do
//
#else
// Macros to deal with deficiencies in compilers
# define STANDARD_LIBRARY_HAS_ITERATOR_TRAITS 1
#endif
#if STANDARD_LIBRARY_HAS_ITERATOR_TRAITS
# define random_access_iterator_parent(itemtype) std::iterator<std::random_access_iterator_tag,itemtype,int>
#else
# define random_access_iterator_parent(itemtype) std::random_access_iterator<itemtype, int>
#endif
//
// Which C++ standard is in use?
//
#if defined( _MSC_VER )
# if _MSC_VER <= 1200
// MSVC++ 6.0
# define PYCXX_ISO_CPP_LIB 0
# define STR_STREAM <strstream>
# define TEMPLATE_TYPENAME class
# else
# define PYCXX_ISO_CPP_LIB 1
# define STR_STREAM <sstream>
# define TEMPLATE_TYPENAME typename
# endif
#elif defined( __GNUC__ )
# if __GNUC__ >= 3
# define PYCXX_ISO_CPP_LIB 1
# define STR_STREAM <sstream>
# define TEMPLATE_TYPENAME typename
# else
# define PYCXX_ISO_CPP_LIB 0
# define STR_STREAM <strstream>
# define TEMPLATE_TYPENAME class
# endif
#endif
#if PYCXX_ISO_CPP_LIB
# define STR_STREAM <sstream>
# define OSTRSTREAM ostringstream
# define EXPLICIT_TYPENAME typename
# define EXPLICIT_CLASS class
# define TEMPLATE_TYPENAME typename
#else
# define STR_STREAM <strstream>
# define OSTRSTREAM ostrstream
# define EXPLICIT_TYPENAME
# define EXPLICIT_CLASS
# define TEMPLATE_TYPENAME class
#endif
// before 2.5 Py_ssize_t was missing
#ifndef PY_MAJOR_VERSION
#error not defined PY_MAJOR_VERSION
#endif
#if PY_MAJOR_VERSION < 2 || (PY_MAJOR_VERSION == 2 && PY_MINOR_VERSION < 5)
typedef int Py_ssize_t;
#endif
// hash_map container usage selection
// 1) if PYCXX_USING_STD_MAP is defined PyCXX will be using std::map<> container
// implementation only.
// 2) if compilers are used other than MS Visual Studio (7.1+) or GCC 3.x
// STANDARD_LIBRARY_HAS_HASH_MAP must be defined before compilation to
// make PyCXX using hash_map container.
#if !defined( PYCXX_USING_STD_MAP )
#if defined( _MSC_VER ) || defined( __INTEL_COMPILER ) || defined ( __ICC ) || (defined( __GNUC__ ) && ( __GNUC__ > 3 ))
# define PYCXX_USING_HASH_MAP
#else
# if defined( STANDARD_LIBRARY_HAS_HASH_MAP ) && !defined( PYCXX_USING_HASH_MAP )
# define PYCXX_USING_HASH_MAP
# endif
#endif
#endif
#endif // __PyCXX_config_hh__

View file

@ -1,249 +0,0 @@
//-----------------------------------------------------------------------------
//
// Copyright (c) 1998 - 2007, The Regents of the University of California
// Produced at the Lawrence Livermore National Laboratory
// All rights reserved.
//
// This file is part of PyCXX. For details,see http://cxx.sourceforge.net/. The
// full copyright notice is contained in the file COPYRIGHT located at the root
// of the PyCXX distribution.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the disclaimer below.
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the disclaimer (as noted below) in the
// documentation and/or materials provided with the distribution.
// - Neither the name of the UC/LLNL nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OF THE UNIVERSITY OF
// CALIFORNIA, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
//-----------------------------------------------------------------------------
#ifndef __CXX_Exception_h
#define __CXX_Exception_h
#include "CXX/WrapPython.h"
#include "CXX/Version.hxx"
#include "CXX/Config.hxx"
#include "CXX/IndirectPythonInterface.hxx"
#include <string>
#include <iostream>
// This mimics the Python structure, in order to minimize confusion
namespace Py
{
class ExtensionExceptionType;
class Object;
class Exception
{
public:
Exception( ExtensionExceptionType &exception, const std::string& reason );
Exception( ExtensionExceptionType &exception, Object &reason );
explicit Exception ()
{}
Exception (const std::string& reason)
{
PyErr_SetString (Py::_Exc_RuntimeError(), reason.c_str());
}
Exception (PyObject* exception, const std::string& reason)
{
PyErr_SetString (exception, reason.c_str());
}
Exception (PyObject* exception, Object &reason);
void clear() // clear the error
// technically but not philosophically const
{
PyErr_Clear();
}
};
// Abstract
class StandardError: public Exception
{
protected:
explicit StandardError()
{}
};
class LookupError: public StandardError
{
protected:
explicit LookupError()
{}
};
class ArithmeticError: public StandardError
{
protected:
explicit ArithmeticError()
{}
};
class EnvironmentError: public StandardError
{
protected:
explicit EnvironmentError()
{}
};
// Concrete
class TypeError: public StandardError
{
public:
TypeError (const std::string& reason)
: StandardError()
{
PyErr_SetString (Py::_Exc_TypeError(),reason.c_str());
}
};
class IndexError: public LookupError
{
public:
IndexError (const std::string& reason)
: LookupError()
{
PyErr_SetString (Py::_Exc_IndexError(), reason.c_str());
}
};
class AttributeError: public StandardError
{
public:
AttributeError (const std::string& reason)
: StandardError()
{
PyErr_SetString (Py::_Exc_AttributeError(), reason.c_str());
}
};
class NameError: public StandardError
{
public:
NameError (const std::string& reason)
: StandardError()
{
PyErr_SetString (Py::_Exc_NameError(), reason.c_str());
}
};
class RuntimeError: public StandardError
{
public:
RuntimeError (const std::string& reason)
: StandardError()
{
PyErr_SetString (Py::_Exc_RuntimeError(), reason.c_str());
}
};
class SystemError: public StandardError
{
public:
SystemError (const std::string& reason)
: StandardError()
{
PyErr_SetString (Py::_Exc_SystemError(),reason.c_str());
}
};
class KeyError: public LookupError
{
public:
KeyError (const std::string& reason)
: LookupError()
{
PyErr_SetString (Py::_Exc_KeyError(),reason.c_str());
}
};
class ValueError: public StandardError
{
public:
ValueError (const std::string& reason)
: StandardError()
{
PyErr_SetString (Py::_Exc_ValueError(), reason.c_str());
}
};
class OverflowError: public ArithmeticError
{
public:
OverflowError (const std::string& reason)
: ArithmeticError()
{
PyErr_SetString (Py::_Exc_OverflowError(), reason.c_str());
}
};
class ZeroDivisionError: public ArithmeticError
{
public:
ZeroDivisionError (const std::string& reason)
: ArithmeticError()
{
PyErr_SetString (Py::_Exc_ZeroDivisionError(), reason.c_str());
}
};
class FloatingPointError: public ArithmeticError
{
public:
FloatingPointError (const std::string& reason)
: ArithmeticError()
{
PyErr_SetString (Py::_Exc_FloatingPointError(), reason.c_str());
}
};
class MemoryError: public StandardError
{
public:
MemoryError (const std::string& reason)
: StandardError()
{
PyErr_SetString (Py::_Exc_MemoryError(), reason.c_str());
}
};
class SystemExit: public StandardError
{
public:
SystemExit (const std::string& reason)
: StandardError()
{
PyErr_SetString (Py::_Exc_SystemExit(),reason.c_str());
}
};
}// Py
#endif

View file

@ -1,928 +0,0 @@
//-----------------------------------------------------------------------------
//
// Copyright (c) 1998 - 2007, The Regents of the University of California
// Produced at the Lawrence Livermore National Laboratory
// All rights reserved.
//
// This file is part of PyCXX. For details,see http://cxx.sourceforge.net/. The
// full copyright notice is contained in the file COPYRIGHT located at the root
// of the PyCXX distribution.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the disclaimer below.
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the disclaimer (as noted below) in the
// documentation and/or materials provided with the distribution.
// - Neither the name of the UC/LLNL nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OF THE UNIVERSITY OF
// CALIFORNIA, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
//-----------------------------------------------------------------------------
#ifndef __CXX_Extensions__h
#define __CXX_Extensions__h
#ifdef _MSC_VER
// disable warning C4786: symbol greater than 255 character,
// okay to ignore
#pragma warning(disable: 4786)
#endif
#include "CXX/WrapPython.h"
#include "CXX/Version.hxx"
#include "CXX/Config.hxx"
#include "CXX/Objects.hxx"
extern "C"
{
extern PyObject py_object_initializer;
}
#include <vector>
// std::map / hash_map selection and declarations ----------------------------
#if !defined( PYCXX_USING_HASH_MAP )
#include <map>
#else
#if defined( __GNUC__) && !defined( _STLPORT_VERSION )
#include <ext/hash_map>
#else
#include <hash_map>
#endif
#if defined( _STLPORT_VERSION )
#define __PYCXX_HASHMAP_NAMESPACE std
using namespace std;
#elif defined ( _MSC_VER ) && !defined( __INTEL_COMPILER ) && !defined( __ICC ) && !defined( __ICL ) && !defined( __ECC )
#define __PYCXX_HASHMAP_NAMESPACE stdext
using namespace stdext;
#elif defined( __INTEL_COMPILER ) || defined( __ICC ) || defined( __ICL ) || defined( __ECC )
#define __PYCXX_HASHMAP_NAMESPACE stdext
using namespace stdext;
#elif defined( __GNUC__ )
#define __PYCXX_HASHMAP_NAMESPACE __gnu_cxx
using namespace __gnu_cxx;
#else
#define __PYCXX_HASHMAP_NAMESPACE std
using namespace std;
#endif
class __pycxx_str_hash_func
{
public:
enum
{
// parameters for hash table
bucket_size = 4, // 0 < bucket_size
min_buckets = 8 // min_buckets = 2 ^^ N, 0 < N
};
// http://www.azillionmonkeys.com/qed/hash.html
size_t operator()( const std::string &str ) const
{
const unsigned char * data = reinterpret_cast<const unsigned char *>( str.c_str() );
int len = (int)str.length();
unsigned int hash = len;
unsigned int tmp;
int rem;
if (len <= 0 || data == NULL)
return 0;
rem = len & 3;
len >>= 2;
/* Main loop */
for (;len > 0; len--)
{
hash += (data[1] << 8) | data[0];
tmp = (((data[3] << 8) | data[2]) << 11) ^ hash;
hash = (hash << 16) ^ tmp;
data += 2*sizeof (unsigned short);
hash += hash >> 11;
}
/* Handle end cases */
switch (rem)
{
case 3: hash += (data[1] << 8) | data[0];
hash ^= hash << 16;
hash ^= data[sizeof (unsigned short)] << 18;
hash += hash >> 11;
break;
case 2: hash += (data[1] << 8) | data[0];
hash ^= hash << 11;
hash += hash >> 17;
break;
case 1: hash += *data;
hash ^= hash << 10;
hash += hash >> 1;
}
/* Force "avalanching" of final 127 bits */
hash ^= hash << 3;
hash += hash >> 5;
hash ^= hash << 4;
hash += hash >> 17;
hash ^= hash << 25;
hash += hash >> 6;
return hash;
}
bool operator()(const std::string &str_1, const std::string &str_2) const
{
// test if str_1 ordered before str_2
return str_1 < str_2;
}
};
#endif // PYCXX_USING_HASH_MAP
// ----------------------------------------------------------------------
namespace Py
{
class ExtensionModuleBase;
// Make an Exception Type for use in raising custom exceptions
class ExtensionExceptionType : public Object
{
public:
ExtensionExceptionType();
virtual ~ExtensionExceptionType();
// call init to create the type
void init( ExtensionModuleBase &module, const std::string& name, ExtensionExceptionType &parent );
void init( ExtensionModuleBase &module, const std::string& name );
};
class MethodTable
{
public:
MethodTable();
virtual ~MethodTable();
void add(const char* method_name, PyCFunction f, const char* doc="", int flag=1);
PyMethodDef* table();
protected:
std::vector<PyMethodDef> t; // accumulator of PyMethodDef's
PyMethodDef *mt; // Actual method table produced when full
static PyMethodDef method (const char* method_name, PyCFunction f, int flags = 1, const char* doc="");
private:
//
// prevent the compiler generating these unwanted functions
//
MethodTable(const MethodTable& m); //unimplemented
void operator=(const MethodTable& m); //unimplemented
}; // end class MethodTable
extern "C"
{
typedef PyObject *(*method_varargs_call_handler_t)( PyObject *_self, PyObject *_args );
typedef PyObject *(*method_keyword_call_handler_t)( PyObject *_self, PyObject *_args, PyObject *_dict );
}
template<class T>
class MethodDefExt : public PyMethodDef
{
public:
typedef Object (T::*method_varargs_function_t)( const Tuple &args );
typedef Object (T::*method_keyword_function_t)( const Tuple &args, const Dict &kws );
MethodDefExt
(
const char *_name,
method_varargs_function_t _function,
method_varargs_call_handler_t _handler,
const char *_doc
)
{
ext_meth_def.ml_name = const_cast<char *>(_name);
ext_meth_def.ml_meth = _handler;
ext_meth_def.ml_flags = METH_VARARGS;
ext_meth_def.ml_doc = const_cast<char *>(_doc);
ext_varargs_function = _function;
ext_keyword_function = NULL;
}
MethodDefExt
(
const char *_name,
method_keyword_function_t _function,
method_keyword_call_handler_t _handler,
const char *_doc
)
{
ext_meth_def.ml_name = const_cast<char *>(_name);
ext_meth_def.ml_meth = method_varargs_call_handler_t( _handler );
ext_meth_def.ml_flags = METH_VARARGS|METH_KEYWORDS;
ext_meth_def.ml_doc = const_cast<char *>(_doc);
ext_varargs_function = NULL;
ext_keyword_function = _function;
}
~MethodDefExt()
{}
PyMethodDef ext_meth_def;
method_varargs_function_t ext_varargs_function;
method_keyword_function_t ext_keyword_function;
};
class ExtensionModuleBase
{
public:
ExtensionModuleBase( const char *name );
virtual ~ExtensionModuleBase();
Module module(void) const; // only valid after initialize() has been called
Dict moduleDictionary(void) const; // only valid after initialize() has been called
virtual Object invoke_method_keyword( const std::string &_name, const Tuple &_args, const Dict &_keywords ) = 0;
virtual Object invoke_method_varargs( const std::string &_name, const Tuple &_args ) = 0;
const std::string &name() const;
const std::string &fullName() const;
protected:
// Initialize the module
void initialize( const char *module_doc );
const std::string module_name;
const std::string full_module_name;
MethodTable method_table;
private:
//
// prevent the compiler generating these unwanted functions
//
ExtensionModuleBase( const ExtensionModuleBase & ); //unimplemented
void operator=( const ExtensionModuleBase & ); //unimplemented
};
extern "C" PyObject *method_keyword_call_handler( PyObject *_self_and_name_tuple, PyObject *_args, PyObject *_keywords );
extern "C" PyObject *method_varargs_call_handler( PyObject *_self_and_name_tuple, PyObject *_args );
extern "C" void do_not_dealloc( void * );
template<TEMPLATE_TYPENAME T>
class ExtensionModule : public ExtensionModuleBase
{
public:
ExtensionModule( const char *name )
: ExtensionModuleBase( name )
{}
virtual ~ExtensionModule()
{}
protected:
typedef Object (T::*method_varargs_function_t)( const Tuple &args );
typedef Object (T::*method_keyword_function_t)( const Tuple &args, const Dict &kws );
#if defined( PYCXX_USING_HASH_MAP )
typedef __PYCXX_HASHMAP_NAMESPACE::hash_map<std::string, MethodDefExt<T> *, __pycxx_str_hash_func> method_map_t;
#else
typedef std::map<std::string,MethodDefExt<T> *> method_map_t;
#endif
static void add_varargs_method( const char *name, method_varargs_function_t function, const char *doc="" )
{
method_map_t &mm = methods();
MethodDefExt<T> *method_definition = new MethodDefExt<T>
(
name,
function,
method_varargs_call_handler,
doc
);
mm[std::string( name )] = method_definition;
}
static void add_keyword_method( const char *name, method_keyword_function_t function, const char *doc="" )
{
method_map_t &mm = methods();
MethodDefExt<T> *method_definition = new MethodDefExt<T>
(
name,
function,
method_keyword_call_handler,
doc
);
mm[std::string( name )] = method_definition;
}
void initialize( const char *module_doc="" )
{
ExtensionModuleBase::initialize( module_doc );
Dict dict( moduleDictionary() );
//
// put each of the methods into the modules dictionary
// so that we get called back at the function in T.
//
method_map_t &mm = methods();
EXPLICIT_TYPENAME method_map_t::const_iterator i;
for( i=mm.begin(); i != mm.end(); ++i )
{
MethodDefExt<T> *method_definition = (*i).second;
static PyObject *self = PyCObject_FromVoidPtr( this, do_not_dealloc );
Tuple args( 2 );
args[0] = Object( self );
args[1] = String( (*i).first );
PyObject *func = PyCFunction_New
(
&method_definition->ext_meth_def,
new_reference_to( args )
);
dict[ (*i).first ] = Object( func );
}
}
protected: // Tom Malcolmson reports that derived classes need access to these
static method_map_t &methods(void)
{
static method_map_t *map_of_methods = NULL;
if( map_of_methods == NULL )
map_of_methods = new method_map_t;
return *map_of_methods;
}
// this invoke function must be called from within a try catch block
virtual Object invoke_method_keyword( const std::string &name, const Tuple &args, const Dict &keywords )
{
method_map_t &mm = methods();
MethodDefExt<T> *meth_def = mm[ name ];
if( meth_def == NULL )
{
std::string error_msg( "CXX - cannot invoke keyword method named " );
error_msg += name;
throw RuntimeError( error_msg );
}
// cast up to the derived class
T *self = static_cast<T *>(this);
return (self->*meth_def->ext_keyword_function)( args, keywords );
}
// this invoke function must be called from within a try catch block
virtual Object invoke_method_varargs( const std::string &name, const Tuple &args )
{
method_map_t &mm = methods();
MethodDefExt<T> *meth_def = mm[ name ];
if( meth_def == NULL )
{
std::string error_msg( "CXX - cannot invoke varargs method named " );
error_msg += name;
throw RuntimeError( error_msg );
}
// cast up to the derived class
T *self = static_cast<T *>(this);
return (self->*meth_def->ext_varargs_function)( args );
}
private:
//
// prevent the compiler generating these unwanted functions
//
ExtensionModule( const ExtensionModule<T> & ); //unimplemented
void operator=( const ExtensionModule<T> & ); //unimplemented
};
class PythonType
{
public:
// if you define one sequence method you must define
// all of them except the assigns
PythonType (size_t base_size, int itemsize, const char *default_name );
virtual ~PythonType ();
const char *getName () const;
const char *getDoc () const;
PyTypeObject* type_object () const;
PythonType & name (const char* nam);
PythonType & doc (const char* d);
PythonType & dealloc(void (*f)(PyObject*));
PythonType & supportPrint(void);
PythonType & supportGetattr(void);
PythonType & supportSetattr(void);
PythonType & supportGetattro(void);
PythonType & supportSetattro(void);
PythonType & supportCompare(void);
#if PY_MAJOR_VERSION > 2 || (PY_MAJOR_VERSION == 2 && PY_MINOR_VERSION >= 1)
PythonType & supportRichCompare(void);
#endif
PythonType & supportRepr(void);
PythonType & supportStr(void);
PythonType & supportHash(void);
PythonType & supportCall(void);
PythonType & supportIter(void);
PythonType & supportSequenceType(void);
PythonType & supportMappingType(void);
PythonType & supportNumberType(void);
PythonType & supportBufferType(void);
protected:
PyTypeObject *table;
PySequenceMethods *sequence_table;
PyMappingMethods *mapping_table;
PyNumberMethods *number_table;
PyBufferProcs *buffer_table;
void init_sequence();
void init_mapping();
void init_number();
void init_buffer();
private:
//
// prevent the compiler generating these unwanted functions
//
PythonType (const PythonType& tb); // unimplemented
void operator=(const PythonType& t); // unimplemented
}; // end of PythonType
// Class PythonExtension is what you inherit from to create
// a new Python extension type. You give your class itself
// as the template paramter.
// There are two ways that extension objects can get destroyed.
// 1. Their reference count goes to zero
// 2. Someone does an explicit delete on a pointer.
// In (1) the problem is to get the destructor called
// We register a special deallocator in the Python type object
// (see behaviors()) to do this.
// In (2) there is no problem, the dtor gets called.
// PythonExtension does not use the usual Python heap allocator,
// instead using new/delete. We do the setting of the type object
// and reference count, usually done by PyObject_New, in the
// base class ctor.
// This special deallocator does a delete on the pointer.
class PythonExtensionBase : public PyObject
{
public:
PythonExtensionBase();
virtual ~PythonExtensionBase();
public:
virtual int print( FILE *, int );
virtual Object getattr( const char * ) = 0;
virtual int setattr( const char *, const Object & );
virtual Object getattro( const Object & );
virtual int setattro( const Object &, const Object & );
virtual int compare( const Object & );
virtual Object rich_compare( const Object &, int op );
virtual Object repr();
virtual Object str();
virtual long hash();
virtual Object call( const Object &, const Object & );
virtual Object iter();
virtual PyObject* iternext();
// Sequence methods
virtual int sequence_length();
virtual Object sequence_concat( const Object & );
virtual Object sequence_repeat( Py_ssize_t );
virtual Object sequence_item( Py_ssize_t );
virtual Object sequence_slice( Py_ssize_t, Py_ssize_t );
virtual int sequence_ass_item( Py_ssize_t, const Object & );
virtual int sequence_ass_slice( Py_ssize_t, Py_ssize_t, const Object & );
// Mapping
virtual int mapping_length();
virtual Object mapping_subscript( const Object & );
virtual int mapping_ass_subscript( const Object &, const Object & );
// Number
virtual int number_nonzero();
virtual Object number_negative();
virtual Object number_positive();
virtual Object number_absolute();
virtual Object number_invert();
virtual Object number_int();
virtual Object number_float();
virtual Object number_long();
virtual Object number_oct();
virtual Object number_hex();
virtual Object number_add( const Object & );
virtual Object number_subtract( const Object & );
virtual Object number_multiply( const Object & );
virtual Object number_divide( const Object & );
virtual Object number_remainder( const Object & );
virtual Object number_divmod( const Object & );
virtual Object number_lshift( const Object & );
virtual Object number_rshift( const Object & );
virtual Object number_and( const Object & );
virtual Object number_xor( const Object & );
virtual Object number_or( const Object & );
virtual Object number_power( const Object &, const Object & );
// Buffer
virtual Py_ssize_t buffer_getreadbuffer( Py_ssize_t, void** );
virtual Py_ssize_t buffer_getwritebuffer( Py_ssize_t, void** );
virtual Py_ssize_t buffer_getsegcount( Py_ssize_t* );
private:
void missing_method( void );
static PyObject *method_call_handler( PyObject *self, PyObject *args );
};
template<TEMPLATE_TYPENAME T>
class PythonExtension: public PythonExtensionBase
{
public:
static PyTypeObject* type_object()
{
return behaviors().type_object();
}
static int check( PyObject *p )
{
// is p like me?
return p->ob_type == type_object();
}
static int check( const Object& ob )
{
return check( ob.ptr());
}
//
// every object needs getattr implemented
// to support methods
//
virtual Object getattr( const char *name )
{
return getattr_methods( name );
}
protected:
explicit PythonExtension()
: PythonExtensionBase()
{
#ifdef PyObject_INIT
(void)PyObject_INIT( this, type_object() );
#else
ob_refcnt = 1;
ob_type = type_object();
#endif
// every object must support getattr
behaviors().supportGetattr();
}
virtual ~PythonExtension()
{}
static PythonType &behaviors()
{
static PythonType* p;
if( p == NULL )
{
#if defined( _CPPRTTI ) || defined(__GNUG__)
const char *default_name = (typeid ( T )).name();
#else
const char *default_name = "unknown";
#endif
p = new PythonType( sizeof( T ), 0, default_name );
p->dealloc( extension_object_deallocator );
}
return *p;
}
typedef Object (T::*method_varargs_function_t)( const Tuple &args );
typedef Object (T::*method_keyword_function_t)( const Tuple &args, const Dict &kws );
#if defined( PYCXX_USING_HASH_MAP )
typedef __PYCXX_HASHMAP_NAMESPACE::hash_map<std::string, MethodDefExt<T> *, __pycxx_str_hash_func> method_map_t;
#else
typedef std::map<std::string,MethodDefExt<T> *> method_map_t;
#endif
// support the default attributes, __name__, __doc__ and methods
virtual Object getattr_default( const char *_name )
{
std::string name( _name );
if( name == "__name__" && type_object()->tp_name != NULL )
{
return Py::String( type_object()->tp_name );
}
if( name == "__doc__" && type_object()->tp_doc != NULL )
{
return Py::String( type_object()->tp_doc );
}
// trying to fake out being a class for help()
// else if( name == "__bases__" )
// {
// return Py::Tuple(0);
// }
// else if( name == "__module__" )
// {
// return Py::Nothing();
// }
// else if( name == "__dict__" )
// {
// return Py::Dict();
// }
return getattr_methods( _name );
}
// turn a name into function object
virtual Object getattr_methods( const char *_name )
{
std::string name( _name );
method_map_t &mm = methods();
EXPLICIT_TYPENAME method_map_t::const_iterator i;
if( name == "__methods__" )
{
List methods;
for( i = mm.begin(); i != mm.end(); ++i )
methods.append( String( (*i).first ) );
return methods;
}
// see if name exists and get entry with method
i = mm.find( name );
if( i == mm.end() )
throw AttributeError( name );
Tuple self( 2 );
self[0] = Object( this );
self[1] = String( name );
MethodDefExt<T> *method_definition = i->second;
PyObject *func = PyCFunction_New( &method_definition->ext_meth_def, self.ptr() );
return Object(func, true);
}
static void add_varargs_method( const char *name, method_varargs_function_t function, const char *doc="" )
{
method_map_t &mm = methods();
// check that all methods added are unique
EXPLICIT_TYPENAME method_map_t::const_iterator i;
i = mm.find( name );
if( i != mm.end() )
throw AttributeError( name );
MethodDefExt<T> *method_definition = new MethodDefExt<T>
(
name,
function,
method_varargs_call_handler,
doc
);
mm[std::string( name )] = method_definition;
}
static void add_keyword_method( const char *name, method_keyword_function_t function, const char *doc="" )
{
method_map_t &mm = methods();
// check that all methods added are unique
EXPLICIT_TYPENAME method_map_t::const_iterator i;
i = mm.find( name );
if( i != mm.end() )
throw AttributeError( name );
MethodDefExt<T> *method_definition = new MethodDefExt<T>
(
name,
function,
method_keyword_call_handler,
doc
);
mm[std::string( name )] = method_definition;
}
private:
static method_map_t &methods(void)
{
static method_map_t *map_of_methods = NULL;
if( map_of_methods == NULL )
map_of_methods = new method_map_t;
return *map_of_methods;
}
static PyObject *method_keyword_call_handler( PyObject *_self_and_name_tuple, PyObject *_args, PyObject *_keywords )
{
try
{
Tuple self_and_name_tuple( _self_and_name_tuple );
PyObject *self_in_cobject = self_and_name_tuple[0].ptr();
T *self = static_cast<T *>( self_in_cobject );
String name( self_and_name_tuple[1] );
method_map_t &mm = methods();
EXPLICIT_TYPENAME method_map_t::const_iterator i;
i = mm.find( name );
if( i == mm.end() )
return 0;
MethodDefExt<T> *meth_def = i->second;
Tuple args( _args );
// _keywords may be NULL so be careful about the way the dict is created
Dict keywords;
if( _keywords != NULL )
keywords = Dict( _keywords );
Object result( (self->*meth_def->ext_keyword_function)( args, keywords ) );
return new_reference_to( result.ptr() );
}
catch( Exception & )
{
return 0;
}
}
static PyObject *method_varargs_call_handler( PyObject *_self_and_name_tuple, PyObject *_args )
{
try
{
Tuple self_and_name_tuple( _self_and_name_tuple );
PyObject *self_in_cobject = self_and_name_tuple[0].ptr();
T *self = static_cast<T *>( self_in_cobject );
String name( self_and_name_tuple[1] );
method_map_t &mm = methods();
EXPLICIT_TYPENAME method_map_t::const_iterator i;
i = mm.find( name );
if( i == mm.end() )
return 0;
MethodDefExt<T> *meth_def = i->second;
Tuple args( _args );
Object result;
// TMM: 7Jun'01 - Adding try & catch in case of STL debug-mode exceptions.
#ifdef _STLP_DEBUG
try
{
result = (self->*meth_def->ext_varargs_function)( args );
}
catch (std::__stl_debug_exception)
{
// throw cxx::RuntimeError( sErrMsg );
throw cxx::RuntimeError( "Error message not set yet." );
}
#else
result = (self->*meth_def->ext_varargs_function)( args );
#endif // _STLP_DEBUG
return new_reference_to( result.ptr() );
}
catch( Exception & )
{
return 0;
}
}
static void extension_object_deallocator ( PyObject* t )
{
delete (T *)( t );
}
//
// prevent the compiler generating these unwanted functions
//
explicit PythonExtension( const PythonExtension<T>& other );
void operator=( const PythonExtension<T>& rhs );
};
//
// ExtensionObject<T> is an Object that will accept only T's.
//
template<TEMPLATE_TYPENAME T>
class ExtensionObject: public Object
{
public:
explicit ExtensionObject ( PyObject *pyob )
: Object( pyob )
{
validate();
}
ExtensionObject( const ExtensionObject<T>& other )
: Object( *other )
{
validate();
}
ExtensionObject( const Object& other )
: Object( *other )
{
validate();
}
ExtensionObject& operator= ( const Object& rhs )
{
return (*this = *rhs );
}
ExtensionObject& operator= ( PyObject* rhsp )
{
if( ptr() == rhsp )
return *this;
set( rhsp );
return *this;
}
virtual bool accepts ( PyObject *pyob ) const
{
return ( pyob && T::check( pyob ));
}
//
// Obtain a pointer to the PythonExtension object
//
T *extensionObject(void)
{
return static_cast<T *>( ptr() );
}
};
} // Namespace Py
// End of CXX_Extensions.h
#endif

View file

@ -1,597 +0,0 @@
//-----------------------------------------------------------------------------
//
// Copyright (c) 1998 - 2007, The Regents of the University of California
// Produced at the Lawrence Livermore National Laboratory
// All rights reserved.
//
// This file is part of PyCXX. For details,see http://cxx.sourceforge.net/. The
// full copyright notice is contained in the file COPYRIGHT located at the root
// of the PyCXX distribution.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the disclaimer below.
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the disclaimer (as noted below) in the
// documentation and/or materials provided with the distribution.
// - Neither the name of the UC/LLNL nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OF THE UNIVERSITY OF
// CALIFORNIA, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
//-----------------------------------------------------------------------------
#include "CXX/IndirectPythonInterface.hxx"
namespace Py
{
bool _Buffer_Check( PyObject *op ) { return (op)->ob_type == _Buffer_Type(); }
bool _CFunction_Check( PyObject *op ) { return (op)->ob_type == _CFunction_Type(); }
bool _Class_Check( PyObject *op ) { return (op)->ob_type == _Class_Type(); }
bool _CObject_Check( PyObject *op ) { return (op)->ob_type == _CObject_Type(); }
bool _Complex_Check( PyObject *op ) { return (op)->ob_type == _Complex_Type(); }
bool _Dict_Check( PyObject *op ) { return (op)->ob_type == _Dict_Type(); }
bool _File_Check( PyObject *op ) { return (op)->ob_type == _File_Type(); }
bool _Float_Check( PyObject *op ) { return (op)->ob_type == _Float_Type(); }
bool _Function_Check( PyObject *op ) { return (op)->ob_type == _Function_Type(); }
bool _Instance_Check( PyObject *op ) { return (op)->ob_type == _Instance_Type(); }
bool _Boolean_Check( PyObject *op ) { return (op)->ob_type == _Bool_Type(); }
bool _Int_Check( PyObject *op ) { return (op)->ob_type == _Int_Type(); }
bool _List_Check( PyObject *o ) { return o->ob_type == _List_Type(); }
bool _Long_Check( PyObject *op ) { return (op)->ob_type == _Long_Type(); }
bool _Method_Check( PyObject *op ) { return (op)->ob_type == _Method_Type(); }
bool _Module_Check( PyObject *op ) { return (op)->ob_type == _Module_Type(); }
bool _Range_Check( PyObject *op ) { return (op)->ob_type == _Range_Type(); }
bool _Slice_Check( PyObject *op ) { return (op)->ob_type == _Slice_Type(); }
bool _String_Check( PyObject *o ) { return o->ob_type == _String_Type(); }
bool _TraceBack_Check( PyObject *v ) { return (v)->ob_type == _TraceBack_Type(); }
bool _Tuple_Check( PyObject *op ) { return (op)->ob_type == _Tuple_Type(); }
bool _Type_Check( PyObject *op ) { return (op)->ob_type == _Type_Type(); }
#if PY_MAJOR_VERSION >= 2
bool _Unicode_Check( PyObject *op ) { return (op)->ob_type == _Unicode_Type(); }
#endif
#if defined(PY_WIN32_DELAYLOAD_PYTHON_DLL)
#if defined(MS_WINDOWS)
#include <windows.h>
static HMODULE python_dll;
static PyObject *ptr__Exc_ArithmeticError = NULL;
static PyObject *ptr__Exc_AssertionError = NULL;
static PyObject *ptr__Exc_AttributeError = NULL;
static PyObject *ptr__Exc_EnvironmentError = NULL;
static PyObject *ptr__Exc_EOFError = NULL;
static PyObject *ptr__Exc_Exception = NULL;
static PyObject *ptr__Exc_FloatingPointError = NULL;
static PyObject *ptr__Exc_ImportError = NULL;
static PyObject *ptr__Exc_IndexError = NULL;
static PyObject *ptr__Exc_IOError = NULL;
static PyObject *ptr__Exc_KeyboardInterrupt = NULL;
static PyObject *ptr__Exc_KeyError = NULL;
static PyObject *ptr__Exc_LookupError = NULL;
static PyObject *ptr__Exc_MemoryError = NULL;
static PyObject *ptr__Exc_MemoryErrorInst = NULL;
static PyObject *ptr__Exc_NameError = NULL;
static PyObject *ptr__Exc_NotImplementedError = NULL;
static PyObject *ptr__Exc_OSError = NULL;
static PyObject *ptr__Exc_OverflowError = NULL;
static PyObject *ptr__Exc_RuntimeError = NULL;
static PyObject *ptr__Exc_StandardError = NULL;
static PyObject *ptr__Exc_SyntaxError = NULL;
static PyObject *ptr__Exc_SystemError = NULL;
static PyObject *ptr__Exc_SystemExit = NULL;
static PyObject *ptr__Exc_TypeError = NULL;
static PyObject *ptr__Exc_ValueError = NULL;
static PyObject *ptr__Exc_ZeroDivisionError = NULL;
#ifdef MS_WINDOWS
static PyObject *ptr__Exc_WindowsError = NULL;
#endif
#if PY_MAJOR_VERSION >= 2
static PyObject *ptr__Exc_IndentationError = NULL;
static PyObject *ptr__Exc_TabError = NULL;
static PyObject *ptr__Exc_UnboundLocalError = NULL;
static PyObject *ptr__Exc_UnicodeError = NULL;
#endif
static PyObject *ptr__PyNone = NULL;
static PyObject *ptr__PyFalse = NULL;
static PyObject *ptr__PyTrue = NULL;
static PyTypeObject *ptr__Buffer_Type = NULL;
static PyTypeObject *ptr__CFunction_Type = NULL;
static PyTypeObject *ptr__Class_Type = NULL;
static PyTypeObject *ptr__CObject_Type = NULL;
static PyTypeObject *ptr__Complex_Type = NULL;
static PyTypeObject *ptr__Dict_Type = NULL;
static PyTypeObject *ptr__File_Type = NULL;
static PyTypeObject *ptr__Float_Type = NULL;
static PyTypeObject *ptr__Function_Type = NULL;
static PyTypeObject *ptr__Instance_Type = NULL;
static PyTypeObject *ptr__Int_Type = NULL;
static PyTypeObject *ptr__List_Type = NULL;
static PyTypeObject *ptr__Long_Type = NULL;
static PyTypeObject *ptr__Method_Type = NULL;
static PyTypeObject *ptr__Module_Type = NULL;
static PyTypeObject *ptr__Range_Type = NULL;
static PyTypeObject *ptr__Slice_Type = NULL;
static PyTypeObject *ptr__String_Type = NULL;
static PyTypeObject *ptr__TraceBack_Type = NULL;
static PyTypeObject *ptr__Tuple_Type = NULL;
static PyTypeObject *ptr__Type_Type = NULL;
#if PY_MAJOR_VERSION >= 2
static PyTypeObject *ptr__Unicode_Type = NULL;
#endif
static int *ptr_Py_DebugFlag = NULL;
static int *ptr_Py_InteractiveFlag = NULL;
static int *ptr_Py_OptimizeFlag = NULL;
static int *ptr_Py_NoSiteFlag = NULL;
static int *ptr_Py_TabcheckFlag = NULL;
static int *ptr_Py_VerboseFlag = NULL;
#if PY_MAJOR_VERSION >= 2
static int *ptr_Py_UnicodeFlag = NULL;
#endif
static char **ptr__Py_PackageContext = NULL;
#ifdef Py_REF_DEBUG
int *ptr_Py_RefTotal;
#endif
//--------------------------------------------------------------------------------
class GetAddressException
{
public:
GetAddressException( const char *_name )
: name( _name )
{}
virtual ~GetAddressException() {}
const char *name;
};
//--------------------------------------------------------------------------------
static PyObject *GetPyObjectPointer_As_PyObjectPointer( const char *name )
{
FARPROC addr = GetProcAddress( python_dll, name );
if( addr == NULL )
throw GetAddressException( name );
return *(PyObject **)addr;
}
static PyObject *GetPyObject_As_PyObjectPointer( const char *name )
{
FARPROC addr = GetProcAddress( python_dll, name );
if( addr == NULL )
throw GetAddressException( name );
return (PyObject *)addr;
}
static PyTypeObject *GetPyTypeObjectPointer_As_PyTypeObjectPointer( const char *name )
{
FARPROC addr = GetProcAddress( python_dll, name );
if( addr == NULL )
throw GetAddressException( name );
return *(PyTypeObject **)addr;
}
static PyTypeObject *GetPyTypeObject_As_PyTypeObjectPointer( const char *name )
{
FARPROC addr = GetProcAddress( python_dll, name );
if( addr == NULL )
throw GetAddressException( name );
return (PyTypeObject *)addr;
}
static int *GetInt_as_IntPointer( const char *name )
{
FARPROC addr = GetProcAddress( python_dll, name );
if( addr == NULL )
throw GetAddressException( name );
return (int *)addr;
}
static char **GetCharPointer_as_CharPointerPointer( const char *name )
{
FARPROC addr = GetProcAddress( python_dll, name );
if( addr == NULL )
throw GetAddressException( name );
return (char **)addr;
}
#ifdef _DEBUG
static const char python_dll_name_format[] = "PYTHON%1.1d%1.1d_D.DLL";
#else
static const char python_dll_name_format[] = "PYTHON%1.1d%1.1d.DLL";
#endif
//--------------------------------------------------------------------------------
bool InitialisePythonIndirectInterface()
{
char python_dll_name[sizeof(python_dll_name_format)];
sprintf( python_dll_name, python_dll_name_format, PY_MAJOR_VERSION, PY_MINOR_VERSION );
python_dll = LoadLibrary( python_dll_name );
if( python_dll == NULL )
return false;
try
{
#ifdef Py_REF_DEBUG
ptr_Py_RefTotal = GetInt_as_IntPointer( "_Py_RefTotal" );
#endif
ptr_Py_DebugFlag = GetInt_as_IntPointer( "Py_DebugFlag" );
ptr_Py_InteractiveFlag = GetInt_as_IntPointer( "Py_InteractiveFlag" );
ptr_Py_OptimizeFlag = GetInt_as_IntPointer( "Py_OptimizeFlag" );
ptr_Py_NoSiteFlag = GetInt_as_IntPointer( "Py_NoSiteFlag" );
ptr_Py_TabcheckFlag = GetInt_as_IntPointer( "Py_TabcheckFlag" );
ptr_Py_VerboseFlag = GetInt_as_IntPointer( "Py_VerboseFlag" );
#if PY_MAJOR_VERSION >= 2
ptr_Py_UnicodeFlag = GetInt_as_IntPointer( "Py_UnicodeFlag" );
#endif
ptr__Py_PackageContext = GetCharPointer_as_CharPointerPointer( "_Py_PackageContext" );
ptr__Exc_ArithmeticError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_ArithmeticError" );
ptr__Exc_AssertionError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_AssertionError" );
ptr__Exc_AttributeError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_AttributeError" );
ptr__Exc_EnvironmentError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_EnvironmentError" );
ptr__Exc_EOFError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_EOFError" );
ptr__Exc_Exception = GetPyObjectPointer_As_PyObjectPointer( "PyExc_Exception" );
ptr__Exc_FloatingPointError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_FloatingPointError" );
ptr__Exc_ImportError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_ImportError" );
ptr__Exc_IndexError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_IndexError" );
ptr__Exc_IOError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_IOError" );
ptr__Exc_KeyboardInterrupt = GetPyObjectPointer_As_PyObjectPointer( "PyExc_KeyboardInterrupt" );
ptr__Exc_KeyError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_KeyError" );
ptr__Exc_LookupError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_LookupError" );
ptr__Exc_MemoryError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_MemoryError" );
ptr__Exc_MemoryErrorInst = GetPyObjectPointer_As_PyObjectPointer( "PyExc_MemoryErrorInst" );
ptr__Exc_NameError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_NameError" );
ptr__Exc_NotImplementedError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_NotImplementedError" );
ptr__Exc_OSError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_OSError" );
ptr__Exc_OverflowError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_OverflowError" );
ptr__Exc_RuntimeError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_RuntimeError" );
ptr__Exc_StandardError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_StandardError" );
ptr__Exc_SyntaxError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_SyntaxError" );
ptr__Exc_SystemError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_SystemError" );
ptr__Exc_SystemExit = GetPyObjectPointer_As_PyObjectPointer( "PyExc_SystemExit" );
ptr__Exc_TypeError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_TypeError" );
ptr__Exc_ValueError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_ValueError" );
#ifdef MS_WINDOWS
ptr__Exc_WindowsError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_WindowsError" );
#endif
ptr__Exc_ZeroDivisionError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_ZeroDivisionError" );
#if PY_MAJOR_VERSION >= 2
ptr__Exc_IndentationError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_IndentationError" );
ptr__Exc_TabError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_TabError" );
ptr__Exc_UnboundLocalError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_UnboundLocalError" );
ptr__Exc_UnicodeError = GetPyObjectPointer_As_PyObjectPointer( "PyExc_UnicodeError" );
#endif
ptr__PyNone = GetPyObject_As_PyObjectPointer( "_Py_NoneStruct" );
ptr__PyFalse = GetPyObject_As_PyObjectPointer( "_Py_ZeroStruct" );
ptr__PyTrue = GetPyObject_As_PyObjectPointer( "_Py_TrueStruct" );
ptr__Buffer_Type = GetPyTypeObject_As_PyTypeObjectPointer( "PyBuffer_Type" );
ptr__CFunction_Type = GetPyTypeObject_As_PyTypeObjectPointer( "PyCFunction_Type" );
ptr__Class_Type = GetPyTypeObject_As_PyTypeObjectPointer( "PyClass_Type" );
ptr__CObject_Type = GetPyTypeObject_As_PyTypeObjectPointer( "PyCObject_Type" );
ptr__Complex_Type = GetPyTypeObject_As_PyTypeObjectPointer( "PyComplex_Type" );
ptr__Dict_Type = GetPyTypeObject_As_PyTypeObjectPointer( "PyDict_Type" );
ptr__File_Type = GetPyTypeObject_As_PyTypeObjectPointer( "PyFile_Type" );
ptr__Float_Type = GetPyTypeObject_As_PyTypeObjectPointer( "PyFloat_Type" );
ptr__Function_Type = GetPyTypeObject_As_PyTypeObjectPointer( "PyFunction_Type" );
ptr__Instance_Type = GetPyTypeObject_As_PyTypeObjectPointer( "PyInstance_Type" );
ptr__Int_Type = GetPyTypeObject_As_PyTypeObjectPointer( "PyInt_Type" );
ptr__List_Type = GetPyTypeObject_As_PyTypeObjectPointer( "PyList_Type" );
ptr__Long_Type = GetPyTypeObject_As_PyTypeObjectPointer( "PyLong_Type" );
ptr__Method_Type = GetPyTypeObject_As_PyTypeObjectPointer( "PyMethod_Type" );
ptr__Module_Type = GetPyTypeObject_As_PyTypeObjectPointer( "PyModule_Type" );
ptr__Range_Type = GetPyTypeObject_As_PyTypeObjectPointer( "PyRange_Type" );
ptr__Slice_Type = GetPyTypeObject_As_PyTypeObjectPointer( "PySlice_Type" );
ptr__String_Type = GetPyTypeObject_As_PyTypeObjectPointer( "PyString_Type" );
ptr__TraceBack_Type = GetPyTypeObject_As_PyTypeObjectPointer( "PyTraceBack_Type" );
ptr__Tuple_Type = GetPyTypeObject_As_PyTypeObjectPointer( "PyTuple_Type" );
ptr__Type_Type = GetPyTypeObject_As_PyTypeObjectPointer( "PyType_Type" );
#if PY_MAJOR_VERSION >= 2
ptr__Unicode_Type = GetPyTypeObject_As_PyTypeObjectPointer( "PyUnicode_Type" );
#endif
}
catch( GetAddressException &e )
{
OutputDebugString( python_dll_name );
OutputDebugString( " does not contain symbol ");
OutputDebugString( e.name );
OutputDebugString( "\n" );
return false;
}
return true;
}
//
// Wrap variables as function calls
//
PyObject * _Exc_ArithmeticError(){ return ptr__Exc_ArithmeticError; }
PyObject * _Exc_AssertionError(){ return ptr__Exc_AssertionError; }
PyObject * _Exc_AttributeError(){ return ptr__Exc_AttributeError; }
PyObject * _Exc_EnvironmentError(){ return ptr__Exc_EnvironmentError; }
PyObject * _Exc_EOFError() { return ptr__Exc_EOFError; }
PyObject * _Exc_Exception() { return ptr__Exc_Exception; }
PyObject * _Exc_FloatingPointError(){ return ptr__Exc_FloatingPointError; }
PyObject * _Exc_ImportError() { return ptr__Exc_ImportError; }
PyObject * _Exc_IndexError() { return ptr__Exc_IndexError; }
PyObject * _Exc_IOError() { return ptr__Exc_IOError; }
PyObject * _Exc_KeyboardInterrupt(){ return ptr__Exc_KeyboardInterrupt; }
PyObject * _Exc_KeyError() { return ptr__Exc_KeyError; }
PyObject * _Exc_LookupError() { return ptr__Exc_LookupError; }
PyObject * _Exc_MemoryError() { return ptr__Exc_MemoryError; }
PyObject * _Exc_MemoryErrorInst(){ return ptr__Exc_MemoryErrorInst; }
PyObject * _Exc_NameError() { return ptr__Exc_NameError; }
PyObject * _Exc_NotImplementedError(){ return ptr__Exc_NotImplementedError; }
PyObject * _Exc_OSError() { return ptr__Exc_OSError; }
PyObject * _Exc_OverflowError() { return ptr__Exc_OverflowError; }
PyObject * _Exc_RuntimeError() { return ptr__Exc_RuntimeError; }
PyObject * _Exc_StandardError() { return ptr__Exc_StandardError; }
PyObject * _Exc_SyntaxError() { return ptr__Exc_SyntaxError; }
PyObject * _Exc_SystemError() { return ptr__Exc_SystemError; }
PyObject * _Exc_SystemExit() { return ptr__Exc_SystemExit; }
PyObject * _Exc_TypeError() { return ptr__Exc_TypeError; }
PyObject * _Exc_ValueError() { return ptr__Exc_ValueError; }
#ifdef MS_WINDOWS
PyObject * _Exc_WindowsError() { return ptr__Exc_WindowsError; }
#endif
PyObject * _Exc_ZeroDivisionError(){ return ptr__Exc_ZeroDivisionError; }
#if PY_MAJOR_VERSION >= 2
PyObject * _Exc_IndentationError(){ return ptr__Exc_IndentationError; }
PyObject * _Exc_TabError() { return ptr__Exc_TabError; }
PyObject * _Exc_UnboundLocalError(){ return ptr__Exc_UnboundLocalError; }
PyObject * _Exc_UnicodeError() { return ptr__Exc_UnicodeError; }
#endif
//
// wrap items in Object.h
//
PyObject * _None() { return ptr__PyNone; }
PyObject * _False() { return ptr__PyFalse; }
PyObject * _True() { return ptr__PyTrue; }
PyTypeObject * _Buffer_Type() { return ptr__Buffer_Type; }
PyTypeObject * _CFunction_Type(){ return ptr__CFunction_Type; }
PyTypeObject * _Class_Type() { return ptr__Class_Type; }
PyTypeObject * _CObject_Type() { return ptr__CObject_Type; }
PyTypeObject * _Complex_Type() { return ptr__Complex_Type; }
PyTypeObject * _Dict_Type() { return ptr__Dict_Type; }
PyTypeObject * _File_Type() { return ptr__File_Type; }
PyTypeObject * _Float_Type() { return ptr__Float_Type; }
PyTypeObject * _Function_Type() { return ptr__Function_Type; }
PyTypeObject * _Instance_Type() { return ptr__Instance_Type; }
PyTypeObject * _Bool_Type() { return ptr__Bool_Type; }
PyTypeObject * _Int_Type() { return ptr__Int_Type; }
PyTypeObject * _List_Type() { return ptr__List_Type; }
PyTypeObject * _Long_Type() { return ptr__Long_Type; }
PyTypeObject * _Method_Type() { return ptr__Method_Type; }
PyTypeObject * _Module_Type() { return ptr__Module_Type; }
PyTypeObject * _Range_Type() { return ptr__Range_Type; }
PyTypeObject * _Slice_Type() { return ptr__Slice_Type; }
PyTypeObject * _String_Type() { return ptr__String_Type; }
PyTypeObject * _TraceBack_Type(){ return ptr__TraceBack_Type; }
PyTypeObject * _Tuple_Type() { return ptr__Tuple_Type; }
PyTypeObject * _Type_Type() { return ptr__Type_Type; }
#if PY_MAJOR_VERSION >= 2
PyTypeObject * _Unicode_Type() { return ptr__Unicode_Type; }
#endif
char *__Py_PackageContext() { return *ptr__Py_PackageContext; }
//
// wrap the Python Flag variables
//
int &_Py_DebugFlag() { return *ptr_Py_DebugFlag; }
int &_Py_InteractiveFlag() { return *ptr_Py_InteractiveFlag; }
int &_Py_OptimizeFlag() { return *ptr_Py_OptimizeFlag; }
int &_Py_NoSiteFlag() { return *ptr_Py_NoSiteFlag; }
int &_Py_TabcheckFlag() { return *ptr_Py_TabcheckFlag; }
int &_Py_VerboseFlag() { return *ptr_Py_VerboseFlag; }
#if PY_MAJOR_VERSION >= 2
int &_Py_UnicodeFlag() { return *ptr_Py_UnicodeFlag; }
#endif
void _XINCREF( PyObject *op )
{
// This function must match the contents of Py_XINCREF(op)
if( op == NULL )
return;
#ifdef Py_REF_DEBUG
(*ptr_Py_RefTotal)++;
#endif
(op)->ob_refcnt++;
}
void _XDECREF( PyObject *op )
{
// This function must match the contents of Py_XDECREF(op);
if( op == NULL )
return;
#ifdef Py_REF_DEBUG
(*ptr_Py_RefTotal)--;
#endif
if (--(op)->ob_refcnt == 0)
_Py_Dealloc((PyObject *)(op));
}
#else
#error "Can only delay load under Win32"
#endif
#else
//
// Duplicated these declarations from rangeobject.h which is missing the
// extern "C". This has been reported as a bug upto and include 2.1
//
extern "C" DL_IMPORT(PyTypeObject) PyRange_Type;
extern "C" DL_IMPORT(PyObject *) PyRange_New(long, long, long, int);
//================================================================================
//
// Map onto Macros
//
//================================================================================
//
// Wrap variables as function calls
//
PyObject * _Exc_ArithmeticError() { return ::PyExc_ArithmeticError; }
PyObject * _Exc_AssertionError() { return ::PyExc_AssertionError; }
PyObject * _Exc_AttributeError() { return ::PyExc_AttributeError; }
PyObject * _Exc_EnvironmentError() { return ::PyExc_EnvironmentError; }
PyObject * _Exc_EOFError() { return ::PyExc_EOFError; }
PyObject * _Exc_Exception() { return ::PyExc_Exception; }
PyObject * _Exc_FloatingPointError() { return ::PyExc_FloatingPointError; }
PyObject * _Exc_ImportError() { return ::PyExc_ImportError; }
PyObject * _Exc_IndexError() { return ::PyExc_IndexError; }
PyObject * _Exc_IOError() { return ::PyExc_IOError; }
PyObject * _Exc_KeyboardInterrupt() { return ::PyExc_KeyboardInterrupt; }
PyObject * _Exc_KeyError() { return ::PyExc_KeyError; }
PyObject * _Exc_LookupError() { return ::PyExc_LookupError; }
PyObject * _Exc_MemoryError() { return ::PyExc_MemoryError; }
PyObject * _Exc_MemoryErrorInst() { return ::PyExc_MemoryErrorInst; }
PyObject * _Exc_NameError() { return ::PyExc_NameError; }
PyObject * _Exc_NotImplementedError() { return ::PyExc_NotImplementedError; }
PyObject * _Exc_OSError() { return ::PyExc_OSError; }
PyObject * _Exc_OverflowError() { return ::PyExc_OverflowError; }
PyObject * _Exc_RuntimeError() { return ::PyExc_RuntimeError; }
PyObject * _Exc_StandardError() { return ::PyExc_StandardError; }
PyObject * _Exc_SyntaxError() { return ::PyExc_SyntaxError; }
PyObject * _Exc_SystemError() { return ::PyExc_SystemError; }
PyObject * _Exc_SystemExit() { return ::PyExc_SystemExit; }
PyObject * _Exc_TypeError() { return ::PyExc_TypeError; }
PyObject * _Exc_ValueError() { return ::PyExc_ValueError; }
PyObject * _Exc_ZeroDivisionError() { return ::PyExc_ZeroDivisionError; }
#ifdef MS_WINDOWS
PyObject * _Exc_WindowsError() { return ::PyExc_WindowsError; }
#endif
#if PY_MAJOR_VERSION >= 2
PyObject * _Exc_IndentationError() { return ::PyExc_IndentationError; }
PyObject * _Exc_TabError() { return ::PyExc_TabError; }
PyObject * _Exc_UnboundLocalError() { return ::PyExc_UnboundLocalError; }
PyObject * _Exc_UnicodeError() { return ::PyExc_UnicodeError; }
#endif
//
// wrap items in Object.h
//
PyObject * _None() { return &::_Py_NoneStruct; }
PyObject * _False() { return Py_False; }
PyObject * _True() { return Py_True; }
PyTypeObject * _Buffer_Type() { return &PyBuffer_Type; }
PyTypeObject * _CFunction_Type() { return &PyCFunction_Type; }
PyTypeObject * _Class_Type() { return &PyClass_Type; }
PyTypeObject * _CObject_Type() { return &PyCObject_Type; }
PyTypeObject * _Complex_Type() { return &PyComplex_Type; }
PyTypeObject * _Dict_Type() { return &PyDict_Type; }
PyTypeObject * _File_Type() { return &PyFile_Type; }
PyTypeObject * _Float_Type() { return &PyFloat_Type; }
PyTypeObject * _Function_Type() { return &PyFunction_Type; }
PyTypeObject * _Instance_Type() { return &PyInstance_Type; }
PyTypeObject * _Bool_Type() { return &PyBool_Type; }
PyTypeObject * _Int_Type() { return &PyInt_Type; }
PyTypeObject * _List_Type() { return &PyList_Type; }
PyTypeObject * _Long_Type() { return &PyLong_Type; }
PyTypeObject * _Method_Type() { return &PyMethod_Type; }
PyTypeObject * _Module_Type() { return &PyModule_Type; }
PyTypeObject * _Range_Type() { return &PyRange_Type; }
PyTypeObject * _Slice_Type() { return &PySlice_Type; }
PyTypeObject * _String_Type() { return &PyString_Type; }
PyTypeObject * _TraceBack_Type() { return &PyTraceBack_Type; }
PyTypeObject * _Tuple_Type() { return &PyTuple_Type; }
PyTypeObject * _Type_Type() { return &PyType_Type; }
#if PY_MAJOR_VERSION >= 2
PyTypeObject * _Unicode_Type() { return &PyUnicode_Type; }
#endif
//
// wrap flags
//
int &_Py_DebugFlag() { return Py_DebugFlag; }
int &_Py_InteractiveFlag(){ return Py_InteractiveFlag; }
int &_Py_OptimizeFlag() { return Py_OptimizeFlag; }
int &_Py_NoSiteFlag() { return Py_NoSiteFlag; }
int &_Py_TabcheckFlag() { return Py_TabcheckFlag; }
int &_Py_VerboseFlag() { return Py_VerboseFlag; }
#if PY_MAJOR_VERSION >= 2
int &_Py_UnicodeFlag() { return Py_UnicodeFlag; }
#endif
char *__Py_PackageContext(){ return _Py_PackageContext; }
//
// Needed to keep the abstactions for delayload interface
//
void _XINCREF( PyObject *op )
{
Py_XINCREF(op);
}
void _XDECREF( PyObject *op )
{
Py_XDECREF(op);
}
#endif
}

View file

@ -1,198 +0,0 @@
//-----------------------------------------------------------------------------
//
// Copyright (c) 1998 - 2007, The Regents of the University of California
// Produced at the Lawrence Livermore National Laboratory
// All rights reserved.
//
// This file is part of PyCXX. For details,see http://cxx.sourceforge.net/. The
// full copyright notice is contained in the file COPYRIGHT located at the root
// of the PyCXX distribution.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the disclaimer below.
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the disclaimer (as noted below) in the
// documentation and/or materials provided with the distribution.
// - Neither the name of the UC/LLNL nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OF THE UNIVERSITY OF
// CALIFORNIA, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
//-----------------------------------------------------------------------------
#ifndef __CXX_INDIRECT_PYTHON_INTERFACE__HXX__
#define __CXX_INDIRECT_PYTHON_INTERFACE__HXX__
#include "CXX/WrapPython.h"
namespace Py
{
bool InitialisePythonIndirectInterface();
//
// Wrap Exception variables as function calls
//
PyObject * _Exc_Exception();
PyObject * _Exc_StandardError();
PyObject * _Exc_ArithmeticError();
PyObject * _Exc_LookupError();
PyObject * _Exc_AssertionError();
PyObject * _Exc_AttributeError();
PyObject * _Exc_EOFError();
PyObject * _Exc_FloatingPointError();
PyObject * _Exc_EnvironmentError();
PyObject * _Exc_IOError();
PyObject * _Exc_OSError();
PyObject * _Exc_ImportError();
PyObject * _Exc_IndexError();
PyObject * _Exc_KeyError();
PyObject * _Exc_KeyboardInterrupt();
PyObject * _Exc_MemoryError();
PyObject * _Exc_NameError();
PyObject * _Exc_OverflowError();
PyObject * _Exc_RuntimeError();
PyObject * _Exc_NotImplementedError();
PyObject * _Exc_SyntaxError();
PyObject * _Exc_SystemError();
PyObject * _Exc_SystemExit();
PyObject * _Exc_TypeError();
PyObject * _Exc_ValueError();
PyObject * _Exc_ZeroDivisionError();
#ifdef MS_WINDOWS
PyObject * _Exc_WindowsError();
#endif
PyObject * _Exc_MemoryErrorInst();
#if PY_MAJOR_VERSION >= 2
PyObject * _Exc_IndentationError();
PyObject * _Exc_TabError();
PyObject * _Exc_UnboundLocalError();
PyObject * _Exc_UnicodeError();
#endif
//
// Wrap Object variables as function calls
//
PyObject * _None();
PyObject * _False();
PyObject * _True();
//
// Wrap Type variables as function calls
//
PyTypeObject * _List_Type();
bool _List_Check( PyObject *o );
PyTypeObject * _Buffer_Type();
bool _Buffer_Check( PyObject *op );
PyTypeObject * _Class_Type();
bool _Class_Check( PyObject *op );
PyTypeObject * _Instance_Type();
bool _Instance_Check( PyObject *op );
PyTypeObject * _Method_Type();
bool _Method_Check( PyObject *op );
PyTypeObject * _CObject_Type();
bool _CObject_Check( PyObject *op );
PyTypeObject * _Complex_Type();
bool _Complex_Check( PyObject *op );
PyTypeObject * _Dict_Type();
bool _Dict_Check( PyObject *op );
PyTypeObject * _File_Type();
bool _File_Check( PyObject *op );
PyTypeObject * _Float_Type();
bool _Float_Check( PyObject *op );
PyTypeObject * _Frame_Type();
bool _Frame_Check( PyObject *op );
PyTypeObject * _Function_Type();
bool _Function_Check( PyObject *op );
PyTypeObject * _Bool_Type();
bool _Boolean_Check( PyObject *op );
PyTypeObject * _Int_Type();
bool _Int_Check( PyObject *op );
PyTypeObject * _List_Type();
bool _List_Check( PyObject *op );
PyTypeObject * _Long_Type();
bool _Long_Check( PyObject *op );
PyTypeObject * _CFunction_Type();
bool _CFunction_Check( PyObject *op );
PyTypeObject * _Module_Type();
bool _Module_Check( PyObject *op );
PyTypeObject * _Type_Type();
bool _Type_Check( PyObject *op );
PyTypeObject * _Range_Type();
bool _Range_Check( PyObject *op );
PyTypeObject * _Slice_Type();
bool _Slice_Check( PyObject *op );
PyTypeObject * _String_Type();
bool _String_Check( PyObject *op );
PyTypeObject * _Unicode_Type();
bool _Unicode_Check( PyObject *op );
PyTypeObject * _TraceBack_Type();
bool _TraceBack_Check( PyObject *v );
PyTypeObject * _Tuple_Type();
bool _Tuple_Check( PyObject *op );
#if PY_MAJOR_VERSION >= 2
PyTypeObject * _Unicode_Type();
bool _Unicode_Check( PyObject *op );
#endif
int &_Py_DebugFlag();
int &_Py_InteractiveFlag();
int &_Py_OptimizeFlag();
int &_Py_NoSiteFlag();
int &_Py_TabcheckFlag();
int &_Py_VerboseFlag();
#if PY_MAJOR_VERSION >= 2
int &_Py_UnicodeFlag();
#endif
void _XINCREF( PyObject *op );
void _XDECREF( PyObject *op );
char *__Py_PackageContext();
}
#endif // __CXX_INDIRECT_PYTHON_INTERFACE__HXX__

File diff suppressed because it is too large Load diff

View file

@ -1,46 +0,0 @@
//-----------------------------------------------------------------------------
//
// Copyright (c) 1998 - 2007, The Regents of the University of California
// Produced at the Lawrence Livermore National Laboratory
// All rights reserved.
//
// This file is part of PyCXX. For details,see http://cxx.sourceforge.net/. The
// full copyright notice is contained in the file COPYRIGHT located at the root
// of the PyCXX distribution.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the disclaimer below.
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the disclaimer (as noted below) in the
// documentation and/or materials provided with the distribution.
// - Neither the name of the UC/LLNL nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OF THE UNIVERSITY OF
// CALIFORNIA, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
//-----------------------------------------------------------------------------
#ifndef __PyCXX_version_hxx__
#define __PyCXX_version_hxx__
#define PYCXX_VERSION_MAJOR 5
#define PYCXX_VERSION_MINOR 4
#define PYCXX_VERSION_PATCH 2
#define PYCXX_MAKEVERSION( major, minor, patch ) ((major<<16)|(minor<<8)|(patch))
#define PYCXX_VERSION PYCXX_MAKEVERSION( PYCXX_VERSION_MAJOR, PYCXX_VERSION_MINOR, PYCXX_VERSION_PATCH )
#endif

View file

@ -1,49 +0,0 @@
//-----------------------------------------------------------------------------
//
// Copyright (c) 1998 - 2007, The Regents of the University of California
// Produced at the Lawrence Livermore National Laboratory
// All rights reserved.
//
// This file is part of PyCXX. For details,see http://cxx.sourceforge.net/. The
// full copyright notice is contained in the file COPYRIGHT located at the root
// of the PyCXX distribution.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the disclaimer below.
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the disclaimer (as noted below) in the
// documentation and/or materials provided with the distribution.
// - Neither the name of the UC/LLNL nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OF THE UNIVERSITY OF
// CALIFORNIA, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
//-----------------------------------------------------------------------------
#ifndef __PyCXX_wrap_python_hxx__
#define __PyCXX_wrap_python_hxx__
// pull in python definitions
#include <Python.h>
// On some platforms we have to include time.h to get select defined
#if !defined(__WIN32__) && !defined(WIN32) && !defined(_WIN32) && !defined(_WIN64)
#include <sys/time.h>
#endif
#endif

File diff suppressed because it is too large Load diff

View file

@ -1,49 +0,0 @@
/*----------------------------------------------------------------------------
//
// Copyright (c) 1998 - 2007, The Regents of the University of California
// Produced at the Lawrence Livermore National Laboratory
// All rights reserved.
//
// This file is part of PyCXX. For details,see http://cxx.sourceforge.net/. The
// full copyright notice is contained in the file COPYRIGHT located at the root
// of the PyCXX distribution.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the disclaimer below.
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the disclaimer (as noted below) in the
// documentation and/or materials provided with the distribution.
// - Neither the name of the UC/LLNL nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OF THE UNIVERSITY OF
// CALIFORNIA, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
//---------------------------------------------------------------------------*/
#include "CXX/WrapPython.h"
#ifdef __cplusplus
extern "C"
{
#endif
PyObject py_object_initializer = {PyObject_HEAD_INIT(0)};
#ifdef __cplusplus
}
#endif

View file

@ -1,174 +0,0 @@
//-----------------------------------------------------------------------------
//
// Copyright (c) 1998 - 2007, The Regents of the University of California
// Produced at the Lawrence Livermore National Laboratory
// All rights reserved.
//
// This file is part of PyCXX. For details,see http://cxx.sourceforge.net/. The
// full copyright notice is contained in the file COPYRIGHT located at the root
// of the PyCXX distribution.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the disclaimer below.
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the disclaimer (as noted below) in the
// documentation and/or materials provided with the distribution.
// - Neither the name of the UC/LLNL nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OF THE UNIVERSITY OF
// CALIFORNIA, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
//-----------------------------------------------------------------------------
#include "CXX/Objects.hxx"
namespace Py {
Py_UNICODE unicode_null_string[1] = { 0 };
Type Object::type () const
{
return Type (PyObject_Type (p), true);
}
String Object::str () const
{
return String (PyObject_Str (p), true);
}
String Object::repr () const
{
return String (PyObject_Repr (p), true);
}
std::string Object::as_string() const
{
return static_cast<std::string>(str());
}
List Object::dir () const
{
return List (PyObject_Dir (p), true);
}
bool Object::isType (const Type& t) const
{
return type ().ptr() == t.ptr();
}
Char::operator String() const
{
return String(ptr());
}
// TMM: non-member operaters for iterators - see above
// I've also made a bug fix in respect to the cxx code
// (dereffed the left.seq and right.seq comparison)
bool operator==(const Sequence::iterator& left, const Sequence::iterator& right)
{
return left.eql( right );
}
bool operator!=(const Sequence::iterator& left, const Sequence::iterator& right)
{
return left.neq( right );
}
bool operator< (const Sequence::iterator& left, const Sequence::iterator& right)
{
return left.lss( right );
}
bool operator> (const Sequence::iterator& left, const Sequence::iterator& right)
{
return left.gtr( right );
}
bool operator<=(const Sequence::iterator& left, const Sequence::iterator& right)
{
return left.leq( right );
}
bool operator>=(const Sequence::iterator& left, const Sequence::iterator& right)
{
return left.geq( right );
}
// now for const_iterator
bool operator==(const Sequence::const_iterator& left, const Sequence::const_iterator& right)
{
return left.eql( right );
}
bool operator!=(const Sequence::const_iterator& left, const Sequence::const_iterator& right)
{
return left.neq( right );
}
bool operator< (const Sequence::const_iterator& left, const Sequence::const_iterator& right)
{
return left.lss( right );
}
bool operator> (const Sequence::const_iterator& left, const Sequence::const_iterator& right)
{
return left.gtr( right );
}
bool operator<=(const Sequence::const_iterator& left, const Sequence::const_iterator& right)
{
return left.leq( right );
}
bool operator>=(const Sequence::const_iterator& left, const Sequence::const_iterator& right)
{
return left.geq( right );
}
// For mappings:
bool operator==(const Mapping::iterator& left, const Mapping::iterator& right)
{
return left.eql( right );
}
bool operator!=(const Mapping::iterator& left, const Mapping::iterator& right)
{
return left.neq( right );
}
// now for const_iterator
bool operator==(const Mapping::const_iterator& left, const Mapping::const_iterator& right)
{
return left.eql( right );
}
bool operator!=(const Mapping::const_iterator& left, const Mapping::const_iterator& right)
{
return left.neq( right );
}
// TMM: 31May'01 - Added the #ifndef so I can exclude iostreams.
#ifndef CXX_NO_IOSTREAMS
// output
std::ostream& operator<< (std::ostream& os, const Object& ob)
{
return (os << static_cast<std::string>(ob.str()));
}
#endif
} // Py

View file

@ -1,141 +0,0 @@
INTRODUCTION
matplotlib requires at a minimum python 2.3, numpy, libpng and
freetype. To get the most out of matplotlib, you will want to build
some of the optional GUI and image extensions, discussed below.
Matplotlib is known to work on linux, unix, win32 and OS X
platforms.
There are two kinds of matplotlib backends: vector based and raster
based. The vector based backends, SVG, PDF and PS, produce ASCII
text output files *.svg, *.pdf and *.ps. The core raster based
renderer is the http://antigrain.com (agg) backend. This is a high
quality 2D library that supports fast antialiasing, alpha blending
and much more. If you want to produce PNGs or GUI images that
support all of matplotlib's features, you should compile matplotlib
with agg support and use one of the GUI agg backends: GTKAgg, WXAgg,
TkAgg or FLTKAgg.
COMPILING
You will need to have recent versions of freetype, libpng and zlib
installed on your system. If you are using a package manager, also
make sure the devel versions of these packages are also installed
(eg freetype-devel).
matplotlib ships with a setup.cfg.template which you can use to
customize the build process. Copy it to setup.cfg if you need to
customize something. See that files for details of the parameters
you can set.
If you want to use a GUI backend, you will need either Tkinter,
pygtk , wxPython or Qt installed on your system, from src or from a
package manager including the devel packages. You can choose which
backends to enable by setting the flags in setup.cfg, but the default
is to automatically detect your installed GUIs and build support for
them. If you later find that you did not have a GUI toolkit like
pygtk installed when you built matplotlib, but now want it, you will
need to install the toolkit and rebuild matplotlib.
If you have installed prerequisites to nonstandard places and need
to inform matplotlib where they are, edit setupext.py an add the
base dirs to the 'basedir' dictionary entry for your sys.platform.
Eg, if the header to some required library is in
/some/path/include/somheader.h, put /some/path in the basedir list
for your platform.
Once you have everything above set to your liking, just do the usual
thing
python setup.py build
python setup.py install
WINDOWS
If you don't already have python installed, you may want to consider
using the enthought edition of python, which has scipy, numpy, and
wxpython, plus a lot of other goodies, preinstalled -
http://www.enthought.com/python . With the enthought edition of
python + matplotlib installer, the following backends should work
out of the box: agg, wx, wxagg, tkagg, ps, pdf and svg.
For standard python installations, you will also need to install
either numpy, in addition to the matplotlib installer. On some
systems you will also need to download msvcp71.dll library, which
you can download from
http://www.dll-files.com/dllindex/dll-files.shtml?msvcp71 or other
sites. You will need to unzip the archive and drag the dll into
c:\windows\system32
All of the GUI backends run on windows, but TkAgg is probably the
best for interactive use from the standard python shell or ipython.
The windows installer (*.exe) on the download page contains all the
code you need to get up and running. However, there are many
examples that are not included in the windows installer. If you
want to try the many demos that come in the matplotlib src
distribution, download the zip file and look in the examples subdir.
Important: There are known conflicts with some of the backends with
some python IDEs such as pycrust, idle. If you want to
use matplotlib from an IDE, please consult
http://matplotlib.sf.net/backends.html for compatibility
information. You will have the greatest likelihood of
success if you run the examples from the command shell or
by double clicking on them, rather than from an IDE. If
you are interactively generating plots, your best bet is
TkAgg from the standard python shell or ipython.
DISTROS: (rpms, apt, fink, osx, freebsd, gentoo, etc)
RPMS
To build all the backends on a binary linux distro such as redhat,
you need to install a number of the devel libs (and whatever
dependencies they require), I suggest
matplotlib core: zlib, zlib-devel, libpng, libpng-devel,
freetype, freetype-devel, freetype-utils
gtk backend: gtk2-devel, gtk+-devel, pygtk2, glib-devel,
pygtk2-devel, gnome-libs-devel, pygtk2-libglade
tk backend: tcl, tk, tkinter
DEBIAN
matplotlib is part of debian (and ubuntu) so you shoule be able to
apt-get install it.
FREEBSD
http://www.freshports.org/math/py-matplotlib/
Gentoo
http://www.gentoo-portage.com/dev-python/matplotlib
OS X
All of the backends run on OS X. You will need to install
freetype2, libpng and zlib via fink or from src. You will also
need the base libraries for a given backend. Eg, if you want to
run TkAgg, you will need a python with Tkinter; if you want to use
WxAgg, install wxpython. See
http://matplotlib.sf.net/backends.html for a more comprehensive
discussion of the various backend requirements. Edit setup.py to
configure the backends you want to build as described above.
Note when running a GUI backend in OSX, you should launch your
programs with pythonw rather than python, or you may get
nonresponsive GUIs.
FINK
fink users should use Jeffrey Whitaker's fink distribution, which
supports the GTK, TkAgg, GTKAgg, PS, WX, WXAgg and Agg backends.
http://fink.sourceforge.net/pdb/package.php/matplotlib-py23

View file

@ -1,74 +0,0 @@
To use matplotlib interactively from the prompt, you need a special
interpreter that doesn't enter the gtk mainloop. One is provided in
examples/interactive.py. The coew functionality of this interpreter
was provided by Brian McErlean and John Finlay. See the header for
more info.
This will only work if you have pygtk compiled with threading. See
instrubtions below.
WIN32 Users
I haven't tested the interactive shell on win32. It is apparently
possible, but not easy, to get threading to work on win32. See
http://www.async.com.br/faq/pygtk/index.py?req=show&file=faq21.003.htp
LINUX/UNIX Users:
To compile pygtk with threading, I recommend you make a backup of your
existing pygtk install tree and completely remove it
eg
> cd /your/path/to/python/site-packages
> cp -a gtk-2.0 /some/backup/dir
> rm -rf gtk-2.0
This is because I have found that recompiling pygtk with threads on top
of an existing installation w/o threads does not enable threads. Your
milage may vary.
Then from a clean pygtk src tree
> ./configure --enable-thread # and any other flags
> make install
TESTING threading
To test whether this install worked, try running this script
import pygtk
pygtk.require('2.0')
import gtk
import threading, time
def func():
n = 0
while 1:
print n
n += 1
time.sleep(0.1)
gtk.threads_init()
threading.Thread(target=func).start()
gtk.mainloop()
If it spits numbers back at you, you're golden.
TESTING with matplotlib
You should be able to make a simple plot with
> cd examples
> ./interactive.py
Welcome to matplotlib.
help(matlab) -- shows a list of all matlab compatible commands provided
help(plotting) -- shows a list of plot specific commands
>> plot([1,2,3])

View file

@ -1,50 +0,0 @@
KNOWN BUGS
- DONE - Circle needs to provide window extent -- see scatter demo
- DONE - axes patch edge on gtk backend not complete
- DONE - autoscale on y not satisfactory -- see histogram demo
- DONE with multiple subplots there is a small gap between the
bottom of the xtick1 line and the axes patch edge. see
subplot_demo
- DONE 2003-11-14 - lowest line position is off in legend_demo
- DONE the markers for circ and square in the gtk backend do not have the
same center. See the stock_demo for example.
- DONE 2003-11-16 - GD port of new API not done
- DONE 2003-11-16 - xticklabels in PS backend need clip
- x and y ticklabels overlap at origin
- DONE parse error on lines like plot(bins, mu, bins, mu+sigma, '--')
- DONE 2004-02-11 mri with eeg offsets whacked
- add backend method draw ellipse
GD
- FIXED right tickline is off
- dashes not scaling with dpi properly - rounding error or other?
- GD not allocating colors on high res figs
- I don't know how to fill arcs in a way that will guarantee the
ellipse will be filled. gd fills till it meets a different border
color, which makes it difficult to fill arcs. expose gdEllipse
and gdFilledEllipse
FT2
- chars are truncated on the right, eg, -0.8 in simple_plot
yticklabels
- no rotated text
- error handling

View file

@ -1,23 +0,0 @@
include CHANGELOG KNOWN_BUGS INSTALL
include INTERACTIVE TODO
include Makefile make.osx MANIFEST.in MANIFEST
include matplotlibrc.template setup.cfg.template
include __init__.py setupext.py setup.py setupegg.py
include examples/data/*
include lib/mpl_toolkits
include lib/matplotlib/mpl-data/matplotlib.conf
include lib/matplotlib/mpl-data/matplotlib.conf.template
include lib/matplotlib/mpl-data/lineprops.glade
include lib/matplotlib/mpl-data/matplotlibrc
include lib/matplotlib/mpl-data/images/*
include lib/matplotlib/mpl-data/fonts/ttf/*
include lib/matplotlib/mpl-data/fonts/pdfcorefonts/*
include lib/matplotlib/mpl-data/fonts/afm/*
recursive-include license LICENSE*
recursive-include examples *
recursive-include doc *
recursive-include src *.cpp *.c *.h *.m
recursive-include CXX *.cxx *.hxx *.c *.h
recursive-include agg24 *
recursive-include lib *
recursive-include ttconv *.cpp *.h

View file

@ -1,50 +0,0 @@
# Makefile for matplotlib
PYTHON = `which python`
VERSION = `${PYTHON} setup.py --version`
DISTFILES = API_CHANGES KNOWN_BUGS INSTALL README TODO license \
CHANGELOG Makefile INTERACTIVE \
MANIFEST.in lib lib/matplotlib lib/dateutil lib/pytz examples setup.py
RELEASE = matplotlib-${VERSION}
clean:
${PYTHON} setup.py clean;\
rm -f *.png *.ps *.eps *.svg *.jpg *.pdf
find . -name "_tmp*.py" | xargs rm -f;\
find . \( -name "*~" -o -name "*.pyc" \) | xargs rm -f;\
find unit \( -name "*.png" -o -name "*.ps" -o -name "*.pdf" -o -name "*.eps" \) | xargs rm -f
find . \( -name "#*" -o -name ".#*" -o -name ".*~" -o -name "*~" \) | xargs rm -f
release: ${DISTFILES}
rm -f MANIFEST;\
${PYTHON} license.py ${VERSION} license/LICENSE;\
${PYTHON} setup.py sdist --formats=gztar,zip;
pyback:
tar cvfz pyback.tar.gz *.py lib src examples/*.py unit/*.py
_build_osx105:
CFLAGS="-Os -arch i386 -arch ppc" LDFLAGS="-Os -arch i386 -arch ppc" python setup.py build
build_osx105:
echo "Use 'make -f fetch deps mpl_install instead'"
jdh_doc_snapshot:
svn up;\
python setup.py install --prefix=~/dev;\
cd doc;\
rm -rf build;\
python make.py clean;\
svn up;\
python make.py html latex sf sfpdf;

View file

@ -1,16 +0,0 @@
Metadata-Version: 1.0
Name: matplotlib
Version: 0.99.1.1
Summary: Python plotting package
Home-page: http://matplotlib.sourceforge.net
Author: John D. Hunter
Author-email: jdh2358@gmail.com
License: UNKNOWN
Description:
matplotlib strives to produce publication quality 2D graphics
for interactive graphing, scientific publishing, user interface
development and web application servers targeting multiple user
interfaces and hardcopy output formats. There is a 'pylab' mode
which emulates matlab graphics
Platform: any

View file

@ -1,45 +0,0 @@
matplotlib for MacOS X 10.3.9 or later and Python 2.5 and Python 2.6
matplotlib is a python 2D plotting library which produces publication
quality figures in a variety of hardcopy formats and interactive
environments across platforms. matplotlib can be used in python
scripts, the python and ipython shell (ala matlab or mathematica), web
application servers, and various graphical user interface toolkits.
Home page: <http://matplotlib.sourceforge.net/>
Before running matplotlib, you must install numpy. Binary installers
for all these packages are available here:
<http://pythonmac.org/packages/py25-fat/index.html>.
*** Back Ends ***
You may use TkAgg or WXAgg back ends; Qt and GTK support is not
provided in this package. By default this matplotlib uses TkAgg
because Tcl/Tk is included with MacOS X.
If you wish to use WXAgg then:
* Install wxPython from:
<http://pythonmac.org/packages/py25-fat/index.html>.
* Configure a matplotlibrc file, as described below.
For TkAgg you may use Apple's built-in Tcl/Tk or install your own 8.4.x
*** Configuring a matplotlibrc file ***
If you wish to change any matplotlib settings, create a file:
~/.matplotlib/matplotlibrc
that contains at least the following information. The values shown are
the defaults in the internal matplotlibrc file; change them as you see
fit:
# the default backend; one of GTK GTKAgg GTKCairo FltkAgg QtAgg TkAgg WXAgg
# Agg Cairo GD GDK Paint PS PDF SVG Template
backend : TkAgg
interactive : False # see http://matplotlib.sourceforge.net/interactive.html
See also
<http://matplotlib.sourceforge.net/users/customizing.html>

View file

@ -1,744 +0,0 @@
-- Test merging from multiple branches.
-- ALMOST DONE : add print/save functionality. Currently you can save by right
clicking on the fig window, but you must have nothing in front of
the window. I suppose I need to first draw to a pixbuf. I would
also like to control the resolution.
UPDATE: high resolution printing. Resolution can be set from the
command line, but the GUI needs to be updated to allow resolution
to be set along with filename
-- DONE : fix text size calculations using pango layouts:
-- DROPPED : add a font selection dialog for the axis text
-- DONE enable vertical rendering for ylabels:
-- DONE with pango : enable anti aliasing for fonts
-- DONE enable fancy text labels (eg, greek letters, math symbols,
superscripts) ala TeX or unicode
-- DROPPED add a color selection dialog for the background, lines, and text
-- DONE allow interactive control of the plot from the python shell after
it has been launched using the cookbook thread recipe.
-- write a user guide
-- DONE allow more intelligent choice of tick labels and locs when panning and
zooming.
-- figure out why the positioning of dialog boxes based on position
and size of main window and dialog window doesn't work exactly as
expected. For example, the width of the dialog box is being
reported as being much smaller than it is. Is window pixels the
unit being returned by for gtk.Dialogs.get_size? Also, this isn't
working cross platform. According to the docs this is better
handled using size hints -- but I don't know how to use them, yet.
-- vlines and hlines disappear in some instance due to improper
clipping
-- One the errorbar demo the hlines do not always appear symmetric
about the x values. Is there an tranformation or rounding problem
occurring somewhere?
-- DONE Clip patches outside view port
-- DONE: subplot now takes a kwarg axisbg with color format string
just as axes does : Allow background color to be set for subplots
-- DONE Expose bug on win32 for axis text
-- Fix floating point bug on panx/pany where 0 is computed as 5e-17
UPDATE: hack workaround. If the distance of the tickloc from the
nearest integer is a small fraction of the view lim, just use the
integer
-- DONE: 2003-05-12 fixed _grab_next_args in figure.py : fmt process
bug on this kind of plot command (2nd of 3 has no format string)
plot(t1, p1, 'o', t2, p2, ogtt.times, ogtt.cpeptide, 's')
-- DONE xlabel is lower than it needs to be
-- DONE 2003-05-12 Removed some of the state handling of text labels
so they always redraw: interactive setting of x/ylabels doesn't
redraw all labels unless you click a forced redraw
-- CLOSED When you change a property using the OO interface in interactive,
the figure doesn't know to redraw.
Some possibilities:
1) redraw on all interactive commands. kind of heavy handled
2) override setattr on artist to signal a redraw event. kind of
heavy handled
3) allow derived classes to signal redraw events when nexessary.
kind of code intrusive.
-- DONE 2003-05-11 on exit from interactive.py call gtk. mainquit
-- DONE 2003-05-11 pan/zoom on axes_demo flushes insets
-- DONE 2003-05-12 with window.window.raise_() : raise the figure
returned by figure but don't give it the focus
-- CLOSED when you toggle an axes for interactive navigation, make sure a
checked on appears as the default is one is checked
-- DONE compile pygtk for threads on win32.
-- DONE 2004-02-04 There is a bug in vertical rendering of text that is exposed in the
text, but not the ylabel, command. It looks like a pixmap or
images is not being properly initialized, resulting in pixel noise.
-- DONE Fix the way the color map allocs colors. Use only one DrawingArea
instead of creating a new one with each call to ColorDispatcher().
With this fix the bug in the logo code where the foreground text
doesn't render to the desired color
-- include manifest file for rpms
-- fix CTRL-z bug in interactive2.py
-- CLOSED Allow gca not gca(); ditto for gcf()
-- DONE Fix legend to take a vector of line handles
-- DONE Fix legend bug on win32 and stock_demo. This appears to be GTK
specific
-- DONE with log scaling ticks too short with log scaling
-- arbitrary patches for scatter
-- DONE zoom x and y controls in wrong direction. tick labels not updating
with interactive zoom
-- DONE 2003-11-20 - add TM for matlab on website and in docs
-- Why are the pcolor PS files so large (45MB!). How to do interp
shapding with GTK. Look at the effect of linewidth on GTK plots --
what happens when linewidth < 1. Fix pcolor problem arising from
integer location error on the pcolor borders
-- DONE 2003-11-02 - Do a nearest neighbor color pick on GD when
allocate fails
-- DONE 2003-11-20 - make a nice errorbar and scatter screenshot
-- DONE finish contour
-- allow rectangle select region for zoom tool
-- update Debian section on web page
-- DONE 2003-11-20 - auto line style cycling for multiple line types
broken
-- DONE 2003-11-18 (using inkrect) :logical rect too big on gtk backend
-- DONE 2003-11-18 ticks don't reach edge of axes in gtk mode --
rounding error?
-- DONE 2003-11-20 - port Gary's errorbar code to new API before 0.40
-- DONE 2003-11-20 - problem with stale _set_font. legend axes box
doesn't resize on save in GTK backend -- see htdocs legend_demo.py
-- DONE 2003-11-21 - make a dash-dot dict for the GC
-- dashes broken in GTK backend on win32?
-- finish XVFB architecture
-- write a PDF user's guide
-- Add Kishimoto's suggestions to hist
-- DONE 2003-12-15 - fix install path bug
-- DONE Scale line width with DPI
-- DONE 2004-02-06 allow pass of file handle to backend_gd
-- DONE check clipping for GD
-- Fix GD color allocation bug
-- DONE Write install instructions for Paint on win32 and linux
-- DONE Write install instructions for gd on win32
-- Separate out the backend web pages and get developers to maintain
them.
-- DONE FAQ
-- DONE 2004-02-11 explaing the new interactive syntax on
http://matplotlib.sourceforge.net/interactive.html
-- DONE 2004-02-11 lost backend_gtk rotate_text fix - find it!
-- DONE GTK clipping broken?
-- DONE GTK facecolor reversed for line markers
-- DONE figure clear
-- DONE 2004-02-12 (used filledEllipse) gd filling is not working like
I think - see arctest
-- gd edge clipping is whacked - see arc test
-- DONE 2004-02-15 font manager for paint and agg
-- DONE - website docs for agg - eg, backends.html#Agg
-- DONE 2004-02-17 build win installer for agg matplotlib-0.50
-- DONE 2004-02-16 incorporate John Gill's PS patch
-- DONE 2004-02-13 agg bug; when repeated calls to savefig are made,
the dpi setting in the second one is ignored.
-- DONE alignment test: facecolor blue
-- axes_demo - strange line artifact in paint
-- DONE 2004-02-15 - figtext missing
-- table doesn't update on interactive
-- DONE update fonts page with TTFPATH and info on how to use win32 fonts.
-- DONE 2004-02-17 make legend attributes accessible
-- DONE decreasing axes - James Boyle <boyle5@llnl.gov>
-- CLOSED check out Helge's contour
-- DONE 2004-02-23 with points_to_pixels. fonts too big on wx
-- test agg/freetype2 with ms freetype fonts in path. Be sure to
remove ~/.fonts.cache after changing yout ttfpath
-- why doesn't dir reveal any attrs on my Glyph and FT2Font objs?
-- get module docs for ft2font working right
-- DONE kwargs in plot to set lineprops?
-- DONE fix data clipping to per matthew' suggestion
-- DONE 2004-02-25 fix setup.py to build ft2
-- DONE TkAgg resize (test on win32)
-- DONE TkAgg interactive on win32
-- DONE test mathdemo on win32
-- DONE 2004-03-01 - figure out what you want to do about mathtext on GTK for next relase
-- DONE mathtext screenshot demo
-- DONE integrate numerix chooser with matplotlib.__init__
-- CLOSED figure out how to make draw if interactive play nicely
-- DONE - (Todd updated docs) - python2.2 no default tkinter
-- DONE check out wx
-- DONE 2004-03-02 - fix ft2font clipping on agg
-- DONE 2004-03-02 - why are aliased lines of varying widths on agg?
-- DONE update dynamic_demo_wx
-- DONE add figure legend
-- DONE - support partial window expose redraws in agg
-- fix datalim problem with aspect preserved for image backend
-- add get_xlim and get_ylim for patches
-- DONE - mathtext size not scaling with DPI
-- CLOSED implement Paul's mathtext parser fixes
-- DONE rotated mathtext
-- DONE fix mathtext sub and super layout
-- DONE get a sf request to remove fonttools and ttfquery
-- DONE add polar plots
-- add pie charts
-- DONE support fontdicts, with deprecation as necessary
-- DONE move text layout to front end and support newlines with rotation.
-- DONE aligment test of backend_ps and table_demo on all backends
-- fix the sqrt mathtext bug revealed by Flavio's example
-- fix the parser for sqrt,
-- DONE fix the parser for over/under subscripts
-- DONE add \/ for TeX
-- fix kerning for TeX
-- DONE - text_themes is segfaulting on gtkagg
-- DONE mathtext s l o w
-- DONE ps backend fails alignment test
-- DONE ps backend is slow! Almost all of this is eaten by parsing afm
files
-- decreasing log axes needs fix
-- DONE modify pcolor to allow custom cmap
-- Check for empty quote data returns
-- DONE toolbar not showing up in wx os x
-- fromstring examples need byte order in darwin
-- DONE PS not centering properly
-- DONE gary's win crash
-- get a standard way to show windows w/o entering mainloop
-- DONE wx tooltips
-- DONE close wx return to interpreter
-- allow sharing of locators
-- check out epydoc
-- DONE fix color on errorbar lines
-- DONE savefig to file handle.
-- add agg and and image generic tostring methods
-- DONE expose line set dashes
-- DONE fix vertical layout in PS
-- DONE y clipping broken
-- DONE fix data lim problem with image; see image_demo2
-- DONE handle space in roman/font text
-- DONE scatter demos whacked
-- DONE fix small artist bboxing problems
-- DONE fix backend image area problem for vert text in GTK - related to
ascender I think - same problem as above
-- Tim's log y on hist.
-- DONE test numarray with default draw collections
-- DONE clipping for collections
-- DONE Todd's nx stuff
-- DONE fix object picker and eeg demo
-- DONE axes bg color
-- check paint vs gd/agg tick locations
-- DONE PS text vert centering off
-- DONE - pcolor edge color
-- DONE fix log bar - worked on OSX?
-- DONE convert rank 1 arrays as per Flaviu's post
-- email tim log bar code after release
-- fix + 2 hack in width, height of ft2font and backend_agg and GTK
-- DONE check mathtext in GTK
-- DONE axes frame dim
-- DONE image data scaling
-- DONE y tick outside frame?
-- DONE incorporate gary's errorbar
-- DONE bug in -45 newline text
-- write to stream in Agg
-- DONE gtkagg bug in win98
-- DONE fix try in errorbar
-- add collections to lines
-- some strangeness in table when multiple saves are called
-- use RGBA throughout lib
-- DONE fix wrt log and recommit cvs
-- check Fernando's bounds problem with pcolor.
-- DONE Write John's Letter
-- DONE add default args to imshow per Fernando's suggestion
-- DONE - check out Fernando's wx prob
-- DONE add interp and aspect info to imshow doc
-- add write png method to image module
-- change the viewlim on call to log if min ax <=0
-- DONE fix set_def font example and update API_CHANGES
-- CLOSED upload 0.54.2 zip
-- DONE need a new way to indicate linestyle
-- DONE update website re debian
-- DONE Fix stale link on GTK FAQ entry
-- DONE flush all traces of gtkgd
-- DONE run backend_driver with numeric and numarray (the latter only
with agg)
-- DONE fix vlines raise in matlab.py
-- DONE fix imshow/figlegend try/except raise in matlab.py
-- DONE fix colorbar
-- DONE add rc, figlegend to headers and docs
-- DONE clear agg bg to 0 alpha
-- DONE reset build flags in setup.py
-- add wxagg extension code to goals
-- DONE major and minor ticks for log and major and minor grid on/off
-- make the subplot slider function
-- add colorbar to screenshots
-- add jim's legend patch
-- DONE clear clip for agg
-- DONE layer images broken
-- font dict in wx is broken w/ respect to new font names
-- DONE update nav section of tutorial
-- DONE track down transforms memleak
-- DONE make sure you handle cacheing of rotated mathtext properly
-- handle deprecated connect across backends graciously
-- embedding_in_wx3 seems broken with numeric
-- DONE add new connect to API_CHANGES
-- DONE port new toolbar to embedding examples
-- DONE \sum height problem - see mathtext_tut
-- DONE check for zero zoom to rect
-- make sure toolbar events and user events can coexist happily
-- DONE copy in axis and text return undo
-- repeated zoom in to rect causes tick labels to stop updating and
eventual crash with
ZeroDivisionError: SeparableTransformation::eval_scalars yin interval is zero; cannot transform
Traceback (most recent call last):
File "/usr/local/lib/python2.3/site-packages/matplotlib/backends/backend_gtk.py", line 713, in wrapper
xdata, ydata = a.transData.inverse_xy_tup((thisEvent.x, thisEvent.y))
ZeroDivisionError: SeparableTransformation::eval_scalars yin interval is zero; cannot transform
Traceback (most recent call last):
File "/usr/local/lib/python2.3/site-packages/matplotlib/backends/backend_gtk.py", line 713, in wrapper
xdata, ydata = a.transData.inverse_xy_tup((thisEvent.x, thisEvent.y))
ZeroDivisionError: SeparableTransformation::eval_scalars yin interval is zero; cannot transform
-- DONE some backends (ps and svg) appear to layout legend_demo2 text
improperly
-- DONE text colors for svg
-- DONE update installing.html from INSTALL
-- DONE rubberbanding broken on subplot_demo/gtk
-- PARTIAL - need to copy function type - add copy/deepcopy support
for transforms
-- DONE (added stroke width) text looks funky in SVG - stroke width?
-- DONE blit on gtkagg after print is whacked
-- investigate matfile inclusion
-- offset ps and svg text by max descender
-- DONE mathtext PROD offset spi dependent!
-- DONE layer image whacked
-- DONE scatter demo2 whacked
-- fail intelligently when matplotlib data is not found
-- \cal{B} doesn't parse in s =
r'$\cal{R}\prod_{i=\alpha\cal{B}}^\infty a_i\rm{sin}(2 \pi f x_i)$'
-- user events and nav event clashing on tkagg coords_demo/win32
-- DONE check signal connect and disconnect in interactive use with
multiple figure creation / deletion etc.
-- DONE add xlim, ylim
-- tick bug on preserve, possibly center preserved image, flagt to
reshape axes on preserve
-- test rellinks in pydoc
-- port transforms to backend and break up long arrays in agg and svg
-- clickable plot elements with labels, attributes in collections
-- 'g' grid, 'l' log, SHIFT l, log closest to axis, coords always
available, middle click annotates, p, n, h for view stack,
-- relative distance mode
-- backend dependent cursoring
-- relative distance measures
-- on/off for button in status bar
-- interactive drawing and palletes
-- bk://sidl.bkbits.net/BuildSystem for py configure
-- post hacking points memo on site, ann and send copy to Fernando
-- loadrc() function, possibly replacing per-directory .matplotlibrc
files.
-- file save dialog for Tk? See Mayavi for the right call to make.
-- colorbar for dynamic images.
-- DONE Finish the coords notification for all backends - allow custom
formatters for toolbar
-- DONE an rrulewrapper demo
-- implement a new data clipping method with more exensive cache
interval
-- Humufr errobar
-- DONE why is tkagg loading init 2x
-- DONE add ishold and spy
-- Humufr's shared ticker bug
-- DONE figure should increment the figure if one already exists
-- CLOSED oplot
-- CLOSED override setattr in matlab interface for artists.
-- DONE cmap observer bug - see
~/python/matplotlib_support/test/cmap_observer_bug.py
-- DONE add connect function.
-- DONE add silent list
-- xmajor and xminor kwargs
-- DONE add hold option to plot
-- fix linestyle for collections
-- update ticklabels and range for colorbar when clim changes
-- DONE agg rotation bug for angles > 180
-- DONE mathtext color is wrong in PS
-- CLOSED reverse pie rotation
-- check keypress event handling on tooggle_images.
-- imshow tick labeling buck with aspect preserve
-- scatter_demo2 svg colorbar placement bug
-- tex_rotation svg line bug (clipping??)
-- lag in release events makes key press nav difficult
-- Jim's tick bug in non-interactive mode
-- more flexible tick placement.
-- DONE fix horizontal colorbar axes resize if cax is None
-- mathtext layout bug
from pylab import *
plot(range(10))
title(r'$This\ is\ a\ test$')
show()
-- DONE fix contour mappable to work under changes in clim, cmap
-- DONE make subplot delaxes on other subplots under it.
-- DONE fix transoffset->operator calls in _backend_agg.cpp to handle
exceptions
-- keypress mods on pan/zoom broken in QT in linux
-- DONE linestyles in contour
-- check stabar in wx with toolbar = None or classic
-- nan handling?
-- kwarg processing - eg raise on unrecognized kwargs
-- provide a literal kwarg for text strings to pass thru directly to
the backend, eg ps symbol formatting
-- add gc warning to oo agg and FAQ
-- DONE check why lowest contour is not labeled in contour_demo2 and why
the colormap is still not applying to the contour.
-- the problem with attaching a mappable to the silent_list for
contours is that it doesn't carry over when the list is sliced, eg
when passing every 2nd contour and level to the labeler.
-- colorbar image origin with contour is broken in SVG; test PS
-- Bryan Cole's CXX type segfault
-- DONE japanese ft2font bug
-- Add backend draw cursor method
-- coords kwargs, 'axes', 'figure'
-- axes packing sizes
-- DONE direction fields
-- DONE add a force option to the add_axes code.
-- DONE move object inspector into Artist method
-- make toolbar visible or not
-- DONE hide lazy values make dpi and friends setters
-- CLOSED add a get description to axes which returns the args and kwargs to
construct it
-- restore __all__ to pylab and add ArtistInspector
-- create set_window_title in the figure manager interface expose this
in the figure command
-- multiple tick marks
-- DONE colorbar not updating in CVS
-- DONE tkagg figure not launching new figure until plot is called?
-- clipping off in date_demo_rrule (agg 0.5 offset bug?)
-- DONE merge qt patch.
-- properly handle sys.arv, so that it does not conflict with library
usage of mpl. mpl processes -Dagg, --verbose-helpful, etc, itself,
which can conflict with code that uses mpl as a library and process
options itself.
-- DONE Darren's black band ps image problem.
-- Martin's zoomhist bug
-- Add shading for patches and patch collections.
-- tex system call problem
-- tex rendering looks fuzzy (dvipng version or flag problem)
-- Martin's zoomhist bug
-- restore robert leftwich's tutorial link to FAQ
-- JPL and NIST screenshots...
-- John Gill's patch!
-- Fix latex texmanager caching bug that is preventing the cache from
recognizing a font change
-- handle lineprops.glade install file
-- support zoom to rect in x or y only
-- add Ryan's patch

View file

@ -1,499 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// scanline_u8 class
//
//----------------------------------------------------------------------------
#ifndef AGG_ALPHA_MASK_U8_INCLUDED
#define AGG_ALPHA_MASK_U8_INCLUDED
#include <string.h>
#include "agg_basics.h"
#include "agg_rendering_buffer.h"
namespace agg
{
//===================================================one_component_mask_u8
struct one_component_mask_u8
{
static unsigned calculate(const int8u* p) { return *p; }
};
//=====================================================rgb_to_gray_mask_u8
template<unsigned R, unsigned G, unsigned B>
struct rgb_to_gray_mask_u8
{
static unsigned calculate(const int8u* p)
{
return (p[R]*77 + p[G]*150 + p[B]*29) >> 8;
}
};
//==========================================================alpha_mask_u8
template<unsigned Step=1, unsigned Offset=0, class MaskF=one_component_mask_u8>
class alpha_mask_u8
{
public:
typedef int8u cover_type;
typedef alpha_mask_u8<Step, Offset, MaskF> self_type;
enum cover_scale_e
{
cover_shift = 8,
cover_none = 0,
cover_full = 255
};
alpha_mask_u8() : m_rbuf(0) {}
explicit alpha_mask_u8(rendering_buffer& rbuf) : m_rbuf(&rbuf) {}
void attach(rendering_buffer& rbuf) { m_rbuf = &rbuf; }
MaskF& mask_function() { return m_mask_function; }
const MaskF& mask_function() const { return m_mask_function; }
//--------------------------------------------------------------------
cover_type pixel(int x, int y) const
{
if(x >= 0 && y >= 0 &&
x < (int)m_rbuf->width() &&
y < (int)m_rbuf->height())
{
return (cover_type)m_mask_function.calculate(
m_rbuf->row_ptr(y) + x * Step + Offset);
}
return 0;
}
//--------------------------------------------------------------------
cover_type combine_pixel(int x, int y, cover_type val) const
{
if(x >= 0 && y >= 0 &&
x < (int)m_rbuf->width() &&
y < (int)m_rbuf->height())
{
return (cover_type)((cover_full + val *
m_mask_function.calculate(
m_rbuf->row_ptr(y) + x * Step + Offset)) >>
cover_shift);
}
return 0;
}
//--------------------------------------------------------------------
void fill_hspan(int x, int y, cover_type* dst, int num_pix) const
{
int xmax = m_rbuf->width() - 1;
int ymax = m_rbuf->height() - 1;
int count = num_pix;
cover_type* covers = dst;
if(y < 0 || y > ymax)
{
memset(dst, 0, num_pix * sizeof(cover_type));
return;
}
if(x < 0)
{
count += x;
if(count <= 0)
{
memset(dst, 0, num_pix * sizeof(cover_type));
return;
}
memset(covers, 0, -x * sizeof(cover_type));
covers -= x;
x = 0;
}
if(x + count > xmax)
{
int rest = x + count - xmax - 1;
count -= rest;
if(count <= 0)
{
memset(dst, 0, num_pix * sizeof(cover_type));
return;
}
memset(covers + count, 0, rest * sizeof(cover_type));
}
const int8u* mask = m_rbuf->row_ptr(y) + x * Step + Offset;
do
{
*covers++ = (cover_type)m_mask_function.calculate(mask);
mask += Step;
}
while(--count);
}
//--------------------------------------------------------------------
void combine_hspan(int x, int y, cover_type* dst, int num_pix) const
{
int xmax = m_rbuf->width() - 1;
int ymax = m_rbuf->height() - 1;
int count = num_pix;
cover_type* covers = dst;
if(y < 0 || y > ymax)
{
memset(dst, 0, num_pix * sizeof(cover_type));
return;
}
if(x < 0)
{
count += x;
if(count <= 0)
{
memset(dst, 0, num_pix * sizeof(cover_type));
return;
}
memset(covers, 0, -x * sizeof(cover_type));
covers -= x;
x = 0;
}
if(x + count > xmax)
{
int rest = x + count - xmax - 1;
count -= rest;
if(count <= 0)
{
memset(dst, 0, num_pix * sizeof(cover_type));
return;
}
memset(covers + count, 0, rest * sizeof(cover_type));
}
const int8u* mask = m_rbuf->row_ptr(y) + x * Step + Offset;
do
{
*covers = (cover_type)((cover_full + (*covers) *
m_mask_function.calculate(mask)) >>
cover_shift);
++covers;
mask += Step;
}
while(--count);
}
//--------------------------------------------------------------------
void fill_vspan(int x, int y, cover_type* dst, int num_pix) const
{
int xmax = m_rbuf->width() - 1;
int ymax = m_rbuf->height() - 1;
int count = num_pix;
cover_type* covers = dst;
if(x < 0 || x > xmax)
{
memset(dst, 0, num_pix * sizeof(cover_type));
return;
}
if(y < 0)
{
count += y;
if(count <= 0)
{
memset(dst, 0, num_pix * sizeof(cover_type));
return;
}
memset(covers, 0, -y * sizeof(cover_type));
covers -= y;
y = 0;
}
if(y + count > ymax)
{
int rest = y + count - ymax - 1;
count -= rest;
if(count <= 0)
{
memset(dst, 0, num_pix * sizeof(cover_type));
return;
}
memset(covers + count, 0, rest * sizeof(cover_type));
}
const int8u* mask = m_rbuf->row_ptr(y) + x * Step + Offset;
do
{
*covers++ = (cover_type)m_mask_function.calculate(mask);
mask += m_rbuf->stride();
}
while(--count);
}
//--------------------------------------------------------------------
void combine_vspan(int x, int y, cover_type* dst, int num_pix) const
{
int xmax = m_rbuf->width() - 1;
int ymax = m_rbuf->height() - 1;
int count = num_pix;
cover_type* covers = dst;
if(x < 0 || x > xmax)
{
memset(dst, 0, num_pix * sizeof(cover_type));
return;
}
if(y < 0)
{
count += y;
if(count <= 0)
{
memset(dst, 0, num_pix * sizeof(cover_type));
return;
}
memset(covers, 0, -y * sizeof(cover_type));
covers -= y;
y = 0;
}
if(y + count > ymax)
{
int rest = y + count - ymax - 1;
count -= rest;
if(count <= 0)
{
memset(dst, 0, num_pix * sizeof(cover_type));
return;
}
memset(covers + count, 0, rest * sizeof(cover_type));
}
const int8u* mask = m_rbuf->row_ptr(y) + x * Step + Offset;
do
{
*covers = (cover_type)((cover_full + (*covers) *
m_mask_function.calculate(mask)) >>
cover_shift);
++covers;
mask += m_rbuf->stride();
}
while(--count);
}
private:
alpha_mask_u8(const self_type&);
const self_type& operator = (const self_type&);
agg::rendering_buffer* m_rbuf;
MaskF m_mask_function;
};
typedef alpha_mask_u8<1, 0> alpha_mask_gray8; //----alpha_mask_gray8
typedef alpha_mask_u8<3, 0> alpha_mask_rgb24r; //----alpha_mask_rgb24r
typedef alpha_mask_u8<3, 1> alpha_mask_rgb24g; //----alpha_mask_rgb24g
typedef alpha_mask_u8<3, 2> alpha_mask_rgb24b; //----alpha_mask_rgb24b
typedef alpha_mask_u8<3, 2> alpha_mask_bgr24r; //----alpha_mask_bgr24r
typedef alpha_mask_u8<3, 1> alpha_mask_bgr24g; //----alpha_mask_bgr24g
typedef alpha_mask_u8<3, 0> alpha_mask_bgr24b; //----alpha_mask_bgr24b
typedef alpha_mask_u8<4, 0> alpha_mask_rgba32r; //----alpha_mask_rgba32r
typedef alpha_mask_u8<4, 1> alpha_mask_rgba32g; //----alpha_mask_rgba32g
typedef alpha_mask_u8<4, 2> alpha_mask_rgba32b; //----alpha_mask_rgba32b
typedef alpha_mask_u8<4, 3> alpha_mask_rgba32a; //----alpha_mask_rgba32a
typedef alpha_mask_u8<4, 1> alpha_mask_argb32r; //----alpha_mask_argb32r
typedef alpha_mask_u8<4, 2> alpha_mask_argb32g; //----alpha_mask_argb32g
typedef alpha_mask_u8<4, 3> alpha_mask_argb32b; //----alpha_mask_argb32b
typedef alpha_mask_u8<4, 0> alpha_mask_argb32a; //----alpha_mask_argb32a
typedef alpha_mask_u8<4, 2> alpha_mask_bgra32r; //----alpha_mask_bgra32r
typedef alpha_mask_u8<4, 1> alpha_mask_bgra32g; //----alpha_mask_bgra32g
typedef alpha_mask_u8<4, 0> alpha_mask_bgra32b; //----alpha_mask_bgra32b
typedef alpha_mask_u8<4, 3> alpha_mask_bgra32a; //----alpha_mask_bgra32a
typedef alpha_mask_u8<4, 3> alpha_mask_abgr32r; //----alpha_mask_abgr32r
typedef alpha_mask_u8<4, 2> alpha_mask_abgr32g; //----alpha_mask_abgr32g
typedef alpha_mask_u8<4, 1> alpha_mask_abgr32b; //----alpha_mask_abgr32b
typedef alpha_mask_u8<4, 0> alpha_mask_abgr32a; //----alpha_mask_abgr32a
typedef alpha_mask_u8<3, 0, rgb_to_gray_mask_u8<0, 1, 2> > alpha_mask_rgb24gray; //----alpha_mask_rgb24gray
typedef alpha_mask_u8<3, 0, rgb_to_gray_mask_u8<2, 1, 0> > alpha_mask_bgr24gray; //----alpha_mask_bgr24gray
typedef alpha_mask_u8<4, 0, rgb_to_gray_mask_u8<0, 1, 2> > alpha_mask_rgba32gray; //----alpha_mask_rgba32gray
typedef alpha_mask_u8<4, 1, rgb_to_gray_mask_u8<0, 1, 2> > alpha_mask_argb32gray; //----alpha_mask_argb32gray
typedef alpha_mask_u8<4, 0, rgb_to_gray_mask_u8<2, 1, 0> > alpha_mask_bgra32gray; //----alpha_mask_bgra32gray
typedef alpha_mask_u8<4, 1, rgb_to_gray_mask_u8<2, 1, 0> > alpha_mask_abgr32gray; //----alpha_mask_abgr32gray
//==========================================================amask_no_clip_u8
template<unsigned Step=1, unsigned Offset=0, class MaskF=one_component_mask_u8>
class amask_no_clip_u8
{
public:
typedef int8u cover_type;
typedef amask_no_clip_u8<Step, Offset, MaskF> self_type;
enum cover_scale_e
{
cover_shift = 8,
cover_none = 0,
cover_full = 255
};
amask_no_clip_u8() : m_rbuf(0) {}
explicit amask_no_clip_u8(rendering_buffer& rbuf) : m_rbuf(&rbuf) {}
void attach(rendering_buffer& rbuf) { m_rbuf = &rbuf; }
MaskF& mask_function() { return m_mask_function; }
const MaskF& mask_function() const { return m_mask_function; }
//--------------------------------------------------------------------
cover_type pixel(int x, int y) const
{
return (cover_type)m_mask_function.calculate(
m_rbuf->row_ptr(y) + x * Step + Offset);
}
//--------------------------------------------------------------------
cover_type combine_pixel(int x, int y, cover_type val) const
{
return (cover_type)((cover_full + val *
m_mask_function.calculate(
m_rbuf->row_ptr(y) + x * Step + Offset)) >>
cover_shift);
}
//--------------------------------------------------------------------
void fill_hspan(int x, int y, cover_type* dst, int num_pix) const
{
const int8u* mask = m_rbuf->row_ptr(y) + x * Step + Offset;
do
{
*dst++ = (cover_type)m_mask_function.calculate(mask);
mask += Step;
}
while(--num_pix);
}
//--------------------------------------------------------------------
void combine_hspan(int x, int y, cover_type* dst, int num_pix) const
{
const int8u* mask = m_rbuf->row_ptr(y) + x * Step + Offset;
do
{
*dst = (cover_type)((cover_full + (*dst) *
m_mask_function.calculate(mask)) >>
cover_shift);
++dst;
mask += Step;
}
while(--num_pix);
}
//--------------------------------------------------------------------
void fill_vspan(int x, int y, cover_type* dst, int num_pix) const
{
const int8u* mask = m_rbuf->row_ptr(y) + x * Step + Offset;
do
{
*dst++ = (cover_type)m_mask_function.calculate(mask);
mask += m_rbuf->stride();
}
while(--num_pix);
}
//--------------------------------------------------------------------
void combine_vspan(int x, int y, cover_type* dst, int num_pix) const
{
const int8u* mask = m_rbuf->row_ptr(y) + x * Step + Offset;
do
{
*dst = (cover_type)((cover_full + (*dst) *
m_mask_function.calculate(mask)) >>
cover_shift);
++dst;
mask += m_rbuf->stride();
}
while(--num_pix);
}
private:
amask_no_clip_u8(const self_type&);
const self_type& operator = (const self_type&);
agg::rendering_buffer* m_rbuf;
MaskF m_mask_function;
};
typedef amask_no_clip_u8<1, 0> amask_no_clip_gray8; //----amask_no_clip_gray8
typedef amask_no_clip_u8<3, 0> amask_no_clip_rgb24r; //----amask_no_clip_rgb24r
typedef amask_no_clip_u8<3, 1> amask_no_clip_rgb24g; //----amask_no_clip_rgb24g
typedef amask_no_clip_u8<3, 2> amask_no_clip_rgb24b; //----amask_no_clip_rgb24b
typedef amask_no_clip_u8<3, 2> amask_no_clip_bgr24r; //----amask_no_clip_bgr24r
typedef amask_no_clip_u8<3, 1> amask_no_clip_bgr24g; //----amask_no_clip_bgr24g
typedef amask_no_clip_u8<3, 0> amask_no_clip_bgr24b; //----amask_no_clip_bgr24b
typedef amask_no_clip_u8<4, 0> amask_no_clip_rgba32r; //----amask_no_clip_rgba32r
typedef amask_no_clip_u8<4, 1> amask_no_clip_rgba32g; //----amask_no_clip_rgba32g
typedef amask_no_clip_u8<4, 2> amask_no_clip_rgba32b; //----amask_no_clip_rgba32b
typedef amask_no_clip_u8<4, 3> amask_no_clip_rgba32a; //----amask_no_clip_rgba32a
typedef amask_no_clip_u8<4, 1> amask_no_clip_argb32r; //----amask_no_clip_argb32r
typedef amask_no_clip_u8<4, 2> amask_no_clip_argb32g; //----amask_no_clip_argb32g
typedef amask_no_clip_u8<4, 3> amask_no_clip_argb32b; //----amask_no_clip_argb32b
typedef amask_no_clip_u8<4, 0> amask_no_clip_argb32a; //----amask_no_clip_argb32a
typedef amask_no_clip_u8<4, 2> amask_no_clip_bgra32r; //----amask_no_clip_bgra32r
typedef amask_no_clip_u8<4, 1> amask_no_clip_bgra32g; //----amask_no_clip_bgra32g
typedef amask_no_clip_u8<4, 0> amask_no_clip_bgra32b; //----amask_no_clip_bgra32b
typedef amask_no_clip_u8<4, 3> amask_no_clip_bgra32a; //----amask_no_clip_bgra32a
typedef amask_no_clip_u8<4, 3> amask_no_clip_abgr32r; //----amask_no_clip_abgr32r
typedef amask_no_clip_u8<4, 2> amask_no_clip_abgr32g; //----amask_no_clip_abgr32g
typedef amask_no_clip_u8<4, 1> amask_no_clip_abgr32b; //----amask_no_clip_abgr32b
typedef amask_no_clip_u8<4, 0> amask_no_clip_abgr32a; //----amask_no_clip_abgr32a
typedef amask_no_clip_u8<3, 0, rgb_to_gray_mask_u8<0, 1, 2> > amask_no_clip_rgb24gray; //----amask_no_clip_rgb24gray
typedef amask_no_clip_u8<3, 0, rgb_to_gray_mask_u8<2, 1, 0> > amask_no_clip_bgr24gray; //----amask_no_clip_bgr24gray
typedef amask_no_clip_u8<4, 0, rgb_to_gray_mask_u8<0, 1, 2> > amask_no_clip_rgba32gray; //----amask_no_clip_rgba32gray
typedef amask_no_clip_u8<4, 1, rgb_to_gray_mask_u8<0, 1, 2> > amask_no_clip_argb32gray; //----amask_no_clip_argb32gray
typedef amask_no_clip_u8<4, 0, rgb_to_gray_mask_u8<2, 1, 0> > amask_no_clip_bgra32gray; //----amask_no_clip_bgra32gray
typedef amask_no_clip_u8<4, 1, rgb_to_gray_mask_u8<2, 1, 0> > amask_no_clip_abgr32gray; //----amask_no_clip_abgr32gray
}
#endif

View file

@ -1,74 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Arc vertex generator
//
//----------------------------------------------------------------------------
#ifndef AGG_ARC_INCLUDED
#define AGG_ARC_INCLUDED
#include <math.h>
#include "agg_basics.h"
namespace agg
{
//=====================================================================arc
//
// See Implementation agg_arc.cpp
//
class arc
{
public:
arc() : m_scale(1.0), m_initialized(false) {}
arc(double x, double y,
double rx, double ry,
double a1, double a2,
bool ccw=true);
void init(double x, double y,
double rx, double ry,
double a1, double a2,
bool ccw=true);
void approximation_scale(double s);
double approximation_scale() const { return m_scale; }
void rewind(unsigned);
unsigned vertex(double* x, double* y);
private:
void normalize(double a1, double a2, bool ccw);
double m_x;
double m_y;
double m_rx;
double m_ry;
double m_angle;
double m_start;
double m_end;
double m_scale;
double m_da;
bool m_ccw;
bool m_initialized;
unsigned m_path_cmd;
};
}
#endif

File diff suppressed because it is too large Load diff

View file

@ -1,82 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Simple arrowhead/arrowtail generator
//
//----------------------------------------------------------------------------
#ifndef AGG_ARROWHEAD_INCLUDED
#define AGG_ARROWHEAD_INCLUDED
#include "agg_basics.h"
namespace agg
{
//===============================================================arrowhead
//
// See implementation agg_arrowhead.cpp
//
class arrowhead
{
public:
arrowhead();
void head(double d1, double d2, double d3, double d4)
{
m_head_d1 = d1;
m_head_d2 = d2;
m_head_d3 = d3;
m_head_d4 = d4;
m_head_flag = true;
}
void head() { m_head_flag = true; }
void no_head() { m_head_flag = false; }
void tail(double d1, double d2, double d3, double d4)
{
m_tail_d1 = d1;
m_tail_d2 = d2;
m_tail_d3 = d3;
m_tail_d4 = d4;
m_tail_flag = true;
}
void tail() { m_tail_flag = true; }
void no_tail() { m_tail_flag = false; }
void rewind(unsigned path_id);
unsigned vertex(double* x, double* y);
private:
double m_head_d1;
double m_head_d2;
double m_head_d3;
double m_head_d4;
double m_tail_d1;
double m_tail_d2;
double m_tail_d3;
double m_tail_d4;
bool m_head_flag;
bool m_tail_flag;
double m_coord[16];
unsigned m_cmd[8];
unsigned m_curr_id;
unsigned m_curr_coord;
};
}
#endif

View file

@ -1,530 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_BASICS_INCLUDED
#define AGG_BASICS_INCLUDED
#include <math.h>
#include "agg_config.h"
//---------------------------------------------------------AGG_CUSTOM_ALLOCATOR
#ifdef AGG_CUSTOM_ALLOCATOR
#include "agg_allocator.h"
#else
namespace agg
{
// The policy of all AGG containers and memory allocation strategy
// in general is that no allocated data requires explicit construction.
// It means that the allocator can be really simple; you can even
// replace new/delete to malloc/free. The constructors and destructors
// won't be called in this case, however everything will remain working.
// The second argument of deallocate() is the size of the allocated
// block. You can use this information if you wish.
//------------------------------------------------------------pod_allocator
template<class T> struct pod_allocator
{
static T* allocate(unsigned num) { return new T [num]; }
static void deallocate(T* ptr, unsigned) { delete [] ptr; }
};
// Single object allocator. It's also can be replaced with your custom
// allocator. The difference is that it can only allocate a single
// object and the constructor and destructor must be called.
// In AGG there is no need to allocate an array of objects with
// calling their constructors (only single ones). So that, if you
// replace these new/delete to malloc/free make sure that the in-place
// new is called and take care of calling the destructor too.
//------------------------------------------------------------obj_allocator
template<class T> struct obj_allocator
{
static T* allocate() { return new T; }
static void deallocate(T* ptr) { delete ptr; }
};
}
#endif
//-------------------------------------------------------- Default basic types
//
// If the compiler has different capacity of the basic types you can redefine
// them via the compiler command line or by generating agg_config.h that is
// empty by default.
//
#ifndef AGG_INT8
#define AGG_INT8 signed char
#endif
#ifndef AGG_INT8U
#define AGG_INT8U unsigned char
#endif
#ifndef AGG_INT16
#define AGG_INT16 short
#endif
#ifndef AGG_INT16U
#define AGG_INT16U unsigned short
#endif
#ifndef AGG_INT32
#define AGG_INT32 int
#endif
#ifndef AGG_INT32U
#define AGG_INT32U unsigned
#endif
#ifndef AGG_INT64
#if defined(_MSC_VER) || defined(__BORLANDC__)
#define AGG_INT64 signed __int64
#else
#define AGG_INT64 signed long long
#endif
#endif
#ifndef AGG_INT64U
#if defined(_MSC_VER) || defined(__BORLANDC__)
#define AGG_INT64U unsigned __int64
#else
#define AGG_INT64U unsigned long long
#endif
#endif
//------------------------------------------------ Some fixes for MS Visual C++
#if defined(_MSC_VER)
#pragma warning(disable:4786) // Identifier was truncated...
#endif
#if defined(_MSC_VER)
#define AGG_INLINE __forceinline
#else
#define AGG_INLINE inline
#endif
namespace agg
{
//-------------------------------------------------------------------------
typedef AGG_INT8 int8; //----int8
typedef AGG_INT8U int8u; //----int8u
typedef AGG_INT16 int16; //----int16
typedef AGG_INT16U int16u; //----int16u
typedef AGG_INT32 int32; //----int32
typedef AGG_INT32U int32u; //----int32u
typedef AGG_INT64 int64; //----int64
typedef AGG_INT64U int64u; //----int64u
#if defined(AGG_FISTP)
#pragma warning(push)
#pragma warning(disable : 4035) //Disable warning "no return value"
AGG_INLINE int iround(double v) //-------iround
{
int t;
__asm fld qword ptr [v]
__asm fistp dword ptr [t]
__asm mov eax, dword ptr [t]
}
AGG_INLINE unsigned uround(double v) //-------uround
{
unsigned t;
__asm fld qword ptr [v]
__asm fistp dword ptr [t]
__asm mov eax, dword ptr [t]
}
#pragma warning(pop)
AGG_INLINE unsigned ufloor(double v) //-------ufloor
{
return unsigned(floor(v));
}
AGG_INLINE unsigned uceil(double v) //--------uceil
{
return unsigned(ceil(v));
}
#elif defined(AGG_QIFIST)
AGG_INLINE int iround(double v)
{
return int(v);
}
AGG_INLINE int uround(double v)
{
return unsigned(v);
}
AGG_INLINE unsigned ufloor(double v)
{
return unsigned(floor(v));
}
AGG_INLINE unsigned uceil(double v)
{
return unsigned(ceil(v));
}
#else
AGG_INLINE int iround(double v)
{
return int((v < 0.0) ? v - 0.5 : v + 0.5);
}
AGG_INLINE int uround(double v)
{
return unsigned(v + 0.5);
}
AGG_INLINE unsigned ufloor(double v)
{
return unsigned(v);
}
AGG_INLINE unsigned uceil(double v)
{
return unsigned(ceil(v));
}
#endif
//---------------------------------------------------------------saturation
template<int Limit> struct saturation
{
AGG_INLINE static int iround(double v)
{
if(v < double(-Limit)) return -Limit;
if(v > double( Limit)) return Limit;
return agg::iround(v);
}
};
//------------------------------------------------------------------mul_one
template<unsigned Shift> struct mul_one
{
AGG_INLINE static unsigned mul(unsigned a, unsigned b)
{
register unsigned q = a * b + (1 << (Shift-1));
return (q + (q >> Shift)) >> Shift;
}
};
//-------------------------------------------------------------------------
typedef unsigned char cover_type; //----cover_type
enum cover_scale_e
{
cover_shift = 8, //----cover_shift
cover_size = 1 << cover_shift, //----cover_size
cover_mask = cover_size - 1, //----cover_mask
cover_none = 0, //----cover_none
cover_full = cover_mask //----cover_full
};
//----------------------------------------------------poly_subpixel_scale_e
// These constants determine the subpixel accuracy, to be more precise,
// the number of bits of the fractional part of the coordinates.
// The possible coordinate capacity in bits can be calculated by formula:
// sizeof(int) * 8 - poly_subpixel_shift, i.e, for 32-bit integers and
// 8-bits fractional part the capacity is 24 bits.
enum poly_subpixel_scale_e
{
poly_subpixel_shift = 8, //----poly_subpixel_shift
poly_subpixel_scale = 1<<poly_subpixel_shift, //----poly_subpixel_scale
poly_subpixel_mask = poly_subpixel_scale-1 //----poly_subpixel_mask
};
//----------------------------------------------------------filling_rule_e
enum filling_rule_e
{
fill_non_zero,
fill_even_odd
};
//-----------------------------------------------------------------------pi
const double pi = 3.14159265358979323846;
//------------------------------------------------------------------deg2rad
inline double deg2rad(double deg)
{
return deg * pi / 180.0;
}
//------------------------------------------------------------------rad2deg
inline double rad2deg(double rad)
{
return rad * 180.0 / pi;
}
//----------------------------------------------------------------rect_base
template<class T> struct rect_base
{
typedef T value_type;
typedef rect_base<T> self_type;
T x1, y1, x2, y2;
rect_base() {}
rect_base(T x1_, T y1_, T x2_, T y2_) :
x1(x1_), y1(y1_), x2(x2_), y2(y2_) {}
void init(T x1_, T y1_, T x2_, T y2_)
{
x1 = x1_; y1 = y1_; x2 = x2_; y2 = y2_;
}
const self_type& normalize()
{
T t;
if(x1 > x2) { t = x1; x1 = x2; x2 = t; }
if(y1 > y2) { t = y1; y1 = y2; y2 = t; }
return *this;
}
bool clip(const self_type& r)
{
if(x2 > r.x2) x2 = r.x2;
if(y2 > r.y2) y2 = r.y2;
if(x1 < r.x1) x1 = r.x1;
if(y1 < r.y1) y1 = r.y1;
return x1 <= x2 && y1 <= y2;
}
bool is_valid() const
{
return x1 <= x2 && y1 <= y2;
}
bool hit_test(T x, T y) const
{
return (x >= x1 && x <= x2 && y >= y1 && y <= y2);
}
};
//-----------------------------------------------------intersect_rectangles
template<class Rect>
inline Rect intersect_rectangles(const Rect& r1, const Rect& r2)
{
Rect r = r1;
// First process x2,y2 because the other order
// results in Internal Compiler Error under
// Microsoft Visual C++ .NET 2003 69462-335-0000007-18038 in
// case of "Maximize Speed" optimization option.
//-----------------
if(r.x2 > r2.x2) r.x2 = r2.x2;
if(r.y2 > r2.y2) r.y2 = r2.y2;
if(r.x1 < r2.x1) r.x1 = r2.x1;
if(r.y1 < r2.y1) r.y1 = r2.y1;
return r;
}
//---------------------------------------------------------unite_rectangles
template<class Rect>
inline Rect unite_rectangles(const Rect& r1, const Rect& r2)
{
Rect r = r1;
if(r.x2 < r2.x2) r.x2 = r2.x2;
if(r.y2 < r2.y2) r.y2 = r2.y2;
if(r.x1 > r2.x1) r.x1 = r2.x1;
if(r.y1 > r2.y1) r.y1 = r2.y1;
return r;
}
typedef rect_base<int> rect_i; //----rect_i
typedef rect_base<float> rect_f; //----rect_f
typedef rect_base<double> rect_d; //----rect_d
//---------------------------------------------------------path_commands_e
enum path_commands_e
{
path_cmd_stop = 0, //----path_cmd_stop
path_cmd_move_to = 1, //----path_cmd_move_to
path_cmd_line_to = 2, //----path_cmd_line_to
path_cmd_curve3 = 3, //----path_cmd_curve3
path_cmd_curve4 = 4, //----path_cmd_curve4
path_cmd_curveN = 5, //----path_cmd_curveN
path_cmd_catrom = 6, //----path_cmd_catrom
path_cmd_ubspline = 7, //----path_cmd_ubspline
path_cmd_end_poly = 0x0F, //----path_cmd_end_poly
path_cmd_mask = 0x0F //----path_cmd_mask
};
//------------------------------------------------------------path_flags_e
enum path_flags_e
{
path_flags_none = 0, //----path_flags_none
path_flags_ccw = 0x10, //----path_flags_ccw
path_flags_cw = 0x20, //----path_flags_cw
path_flags_close = 0x40, //----path_flags_close
path_flags_mask = 0xF0 //----path_flags_mask
};
//---------------------------------------------------------------is_vertex
inline bool is_vertex(unsigned c)
{
return c >= path_cmd_move_to && c < path_cmd_end_poly;
}
//--------------------------------------------------------------is_drawing
inline bool is_drawing(unsigned c)
{
return c >= path_cmd_line_to && c < path_cmd_end_poly;
}
//-----------------------------------------------------------------is_stop
inline bool is_stop(unsigned c)
{
return c == path_cmd_stop;
}
//--------------------------------------------------------------is_move_to
inline bool is_move_to(unsigned c)
{
return c == path_cmd_move_to;
}
//--------------------------------------------------------------is_line_to
inline bool is_line_to(unsigned c)
{
return c == path_cmd_line_to;
}
//----------------------------------------------------------------is_curve
inline bool is_curve(unsigned c)
{
return c == path_cmd_curve3 || c == path_cmd_curve4;
}
//---------------------------------------------------------------is_curve3
inline bool is_curve3(unsigned c)
{
return c == path_cmd_curve3;
}
//---------------------------------------------------------------is_curve4
inline bool is_curve4(unsigned c)
{
return c == path_cmd_curve4;
}
//-------------------------------------------------------------is_end_poly
inline bool is_end_poly(unsigned c)
{
return (c & path_cmd_mask) == path_cmd_end_poly;
}
//----------------------------------------------------------------is_close
inline bool is_close(unsigned c)
{
return (c & ~(path_flags_cw | path_flags_ccw)) ==
(path_cmd_end_poly | path_flags_close);
}
//------------------------------------------------------------is_next_poly
inline bool is_next_poly(unsigned c)
{
return is_stop(c) || is_move_to(c) || is_end_poly(c);
}
//-------------------------------------------------------------------is_cw
inline bool is_cw(unsigned c)
{
return (c & path_flags_cw) != 0;
}
//------------------------------------------------------------------is_ccw
inline bool is_ccw(unsigned c)
{
return (c & path_flags_ccw) != 0;
}
//-------------------------------------------------------------is_oriented
inline bool is_oriented(unsigned c)
{
return (c & (path_flags_cw | path_flags_ccw)) != 0;
}
//---------------------------------------------------------------is_closed
inline bool is_closed(unsigned c)
{
return (c & path_flags_close) != 0;
}
//----------------------------------------------------------get_close_flag
inline unsigned get_close_flag(unsigned c)
{
return c & path_flags_close;
}
//-------------------------------------------------------clear_orientation
inline unsigned clear_orientation(unsigned c)
{
return c & ~(path_flags_cw | path_flags_ccw);
}
//---------------------------------------------------------get_orientation
inline unsigned get_orientation(unsigned c)
{
return c & (path_flags_cw | path_flags_ccw);
}
//---------------------------------------------------------set_orientation
inline unsigned set_orientation(unsigned c, unsigned o)
{
return clear_orientation(c) | o;
}
//--------------------------------------------------------------point_base
template<class T> struct point_base
{
typedef T value_type;
T x,y;
point_base() {}
point_base(T x_, T y_) : x(x_), y(y_) {}
};
typedef point_base<int> point_i; //-----point_i
typedef point_base<float> point_f; //-----point_f
typedef point_base<double> point_d; //-----point_d
//-------------------------------------------------------------vertex_base
template<class T> struct vertex_base
{
typedef T value_type;
T x,y;
unsigned cmd;
vertex_base() {}
vertex_base(T x_, T y_, unsigned cmd_) : x(x_), y(y_), cmd(cmd_) {}
};
typedef vertex_base<int> vertex_i; //-----vertex_i
typedef vertex_base<float> vertex_f; //-----vertex_f
typedef vertex_base<double> vertex_d; //-----vertex_d
//----------------------------------------------------------------row_info
template<class T> struct row_info
{
int x1, x2;
T* ptr;
row_info() {}
row_info(int x1_, int x2_, T* ptr_) : x1(x1_), x2(x2_), ptr(ptr_) {}
};
//----------------------------------------------------------const_row_info
template<class T> struct const_row_info
{
int x1, x2;
const T* ptr;
const_row_info() {}
const_row_info(int x1_, int x2_, const T* ptr_) :
x1(x1_), x2(x2_), ptr(ptr_) {}
};
//------------------------------------------------------------is_equal_eps
template<class T> inline bool is_equal_eps(T v1, T v2, T epsilon)
{
return fabs(v1 - v2) <= double(epsilon);
}
}
#endif

View file

@ -1,159 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Arc generator. Produces at most 4 consecutive cubic bezier curves, i.e.,
// 4, 7, 10, or 13 vertices.
//
//----------------------------------------------------------------------------
#ifndef AGG_BEZIER_ARC_INCLUDED
#define AGG_BEZIER_ARC_INCLUDED
#include "agg_conv_transform.h"
namespace agg
{
//-----------------------------------------------------------------------
void arc_to_bezier(double cx, double cy, double rx, double ry,
double start_angle, double sweep_angle,
double* curve);
//==============================================================bezier_arc
//
// See implemantaion agg_bezier_arc.cpp
//
class bezier_arc
{
public:
//--------------------------------------------------------------------
bezier_arc() : m_vertex(26), m_num_vertices(0), m_cmd(path_cmd_line_to) {}
bezier_arc(double x, double y,
double rx, double ry,
double start_angle,
double sweep_angle)
{
init(x, y, rx, ry, start_angle, sweep_angle);
}
//--------------------------------------------------------------------
void init(double x, double y,
double rx, double ry,
double start_angle,
double sweep_angle);
//--------------------------------------------------------------------
void rewind(unsigned)
{
m_vertex = 0;
}
//--------------------------------------------------------------------
unsigned vertex(double* x, double* y)
{
if(m_vertex >= m_num_vertices) return path_cmd_stop;
*x = m_vertices[m_vertex];
*y = m_vertices[m_vertex + 1];
m_vertex += 2;
return (m_vertex == 2) ? path_cmd_move_to : m_cmd;
}
// Supplemantary functions. num_vertices() actually returns doubled
// number of vertices. That is, for 1 vertex it returns 2.
//--------------------------------------------------------------------
unsigned num_vertices() const { return m_num_vertices; }
const double* vertices() const { return m_vertices; }
double* vertices() { return m_vertices; }
private:
unsigned m_vertex;
unsigned m_num_vertices;
double m_vertices[26];
unsigned m_cmd;
};
//==========================================================bezier_arc_svg
// Compute an SVG-style bezier arc.
//
// Computes an elliptical arc from (x1, y1) to (x2, y2). The size and
// orientation of the ellipse are defined by two radii (rx, ry)
// and an x-axis-rotation, which indicates how the ellipse as a whole
// is rotated relative to the current coordinate system. The center
// (cx, cy) of the ellipse is calculated automatically to satisfy the
// constraints imposed by the other parameters.
// large-arc-flag and sweep-flag contribute to the automatic calculations
// and help determine how the arc is drawn.
class bezier_arc_svg
{
public:
//--------------------------------------------------------------------
bezier_arc_svg() : m_arc(), m_radii_ok(false) {}
bezier_arc_svg(double x1, double y1,
double rx, double ry,
double angle,
bool large_arc_flag,
bool sweep_flag,
double x2, double y2) :
m_arc(), m_radii_ok(false)
{
init(x1, y1, rx, ry, angle, large_arc_flag, sweep_flag, x2, y2);
}
//--------------------------------------------------------------------
void init(double x1, double y1,
double rx, double ry,
double angle,
bool large_arc_flag,
bool sweep_flag,
double x2, double y2);
//--------------------------------------------------------------------
bool radii_ok() const { return m_radii_ok; }
//--------------------------------------------------------------------
void rewind(unsigned)
{
m_arc.rewind(0);
}
//--------------------------------------------------------------------
unsigned vertex(double* x, double* y)
{
return m_arc.vertex(x, y);
}
// Supplemantary functions. num_vertices() actually returns doubled
// number of vertices. That is, for 1 vertex it returns 2.
//--------------------------------------------------------------------
unsigned num_vertices() const { return m_arc.num_vertices(); }
const double* vertices() const { return m_arc.vertices(); }
double* vertices() { return m_arc.vertices(); }
private:
bezier_arc m_arc;
bool m_radii_ok;
};
}
#endif

View file

@ -1,54 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_BITSET_ITERATOR_INCLUDED
#define AGG_BITSET_ITERATOR_INCLUDED
#include "agg_basics.h"
namespace agg
{
class bitset_iterator
{
public:
bitset_iterator(const int8u* bits, unsigned offset = 0) :
m_bits(bits + (offset >> 3)),
m_mask(0x80 >> (offset & 7))
{}
void operator ++ ()
{
m_mask >>= 1;
if(m_mask == 0)
{
++m_bits;
m_mask = 0x80;
}
}
unsigned bit() const
{
return (*m_bits) & m_mask;
}
private:
const int8u* m_bits;
int8u m_mask;
};
}
#endif

File diff suppressed because it is too large Load diff

View file

@ -1,116 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// bounding_rect function template
//
//----------------------------------------------------------------------------
#ifndef AGG_BOUNDING_RECT_INCLUDED
#define AGG_BOUNDING_RECT_INCLUDED
#include "agg_basics.h"
namespace agg
{
//-----------------------------------------------------------bounding_rect
template<class VertexSource, class GetId, class CoordT>
bool bounding_rect(VertexSource& vs, GetId& gi,
unsigned start, unsigned num,
CoordT* x1, CoordT* y1, CoordT* x2, CoordT* y2)
{
unsigned i;
double x;
double y;
bool first = true;
*x1 = CoordT(1);
*y1 = CoordT(1);
*x2 = CoordT(0);
*y2 = CoordT(0);
for(i = 0; i < num; i++)
{
vs.rewind(gi[start + i]);
unsigned cmd;
while(!is_stop(cmd = vs.vertex(&x, &y)))
{
if(is_vertex(cmd))
{
if(first)
{
*x1 = CoordT(x);
*y1 = CoordT(y);
*x2 = CoordT(x);
*y2 = CoordT(y);
first = false;
}
else
{
if(CoordT(x) < *x1) *x1 = CoordT(x);
if(CoordT(y) < *y1) *y1 = CoordT(y);
if(CoordT(x) > *x2) *x2 = CoordT(x);
if(CoordT(y) > *y2) *y2 = CoordT(y);
}
}
}
}
return *x1 <= *x2 && *y1 <= *y2;
}
//-----------------------------------------------------bounding_rect_single
template<class VertexSource, class CoordT>
bool bounding_rect_single(VertexSource& vs, unsigned path_id,
CoordT* x1, CoordT* y1, CoordT* x2, CoordT* y2)
{
double x;
double y;
bool first = true;
*x1 = CoordT(1);
*y1 = CoordT(1);
*x2 = CoordT(0);
*y2 = CoordT(0);
vs.rewind(path_id);
unsigned cmd;
while(!is_stop(cmd = vs.vertex(&x, &y)))
{
if(is_vertex(cmd))
{
if(first)
{
*x1 = CoordT(x);
*y1 = CoordT(y);
*x2 = CoordT(x);
*y2 = CoordT(y);
first = false;
}
else
{
if(CoordT(x) < *x1) *x1 = CoordT(x);
if(CoordT(y) < *y1) *y1 = CoordT(y);
if(CoordT(x) > *x2) *x2 = CoordT(x);
if(CoordT(y) > *y2) *y2 = CoordT(y);
}
}
}
return *x1 <= *x2 && *y1 <= *y2;
}
}
#endif

View file

@ -1,76 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// class bspline
//
//----------------------------------------------------------------------------
#ifndef AGG_BSPLINE_INCLUDED
#define AGG_BSPLINE_INCLUDED
#include "agg_array.h"
namespace agg
{
//----------------------------------------------------------------bspline
// A very simple class of Bi-cubic Spline interpolation.
// First call init(num, x[], y[]) where num - number of source points,
// x, y - arrays of X and Y values respectively. Here Y must be a function
// of X. It means that all the X-coordinates must be arranged in the ascending
// order.
// Then call get(x) that calculates a value Y for the respective X.
// The class supports extrapolation, i.e. you can call get(x) where x is
// outside the given with init() X-range. Extrapolation is a simple linear
// function.
//
// See Implementation agg_bspline.cpp
//------------------------------------------------------------------------
class bspline
{
public:
bspline();
bspline(int num);
bspline(int num, const double* x, const double* y);
void init(int num);
void add_point(double x, double y);
void prepare();
void init(int num, const double* x, const double* y);
double get(double x) const;
double get_stateful(double x) const;
private:
bspline(const bspline&);
const bspline& operator = (const bspline&);
static void bsearch(int n, const double *x, double x0, int *i);
double extrapolation_left(double x) const;
double extrapolation_right(double x) const;
double interpolation(double x, int i) const;
int m_max;
int m_num;
double* m_x;
double* m_y;
pod_array<double> m_am;
mutable int m_last_idx;
};
}
#endif

View file

@ -1,333 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Liang-Barsky clipping
//
//----------------------------------------------------------------------------
#ifndef AGG_CLIP_LIANG_BARSKY_INCLUDED
#define AGG_CLIP_LIANG_BARSKY_INCLUDED
#include "agg_basics.h"
namespace agg
{
//------------------------------------------------------------------------
enum clipping_flags_e
{
clipping_flags_x1_clipped = 4,
clipping_flags_x2_clipped = 1,
clipping_flags_y1_clipped = 8,
clipping_flags_y2_clipped = 2,
clipping_flags_x_clipped = clipping_flags_x1_clipped | clipping_flags_x2_clipped,
clipping_flags_y_clipped = clipping_flags_y1_clipped | clipping_flags_y2_clipped
};
//----------------------------------------------------------clipping_flags
// Determine the clipping code of the vertex according to the
// Cyrus-Beck line clipping algorithm
//
// | |
// 0110 | 0010 | 0011
// | |
// -------+--------+-------- clip_box.y2
// | |
// 0100 | 0000 | 0001
// | |
// -------+--------+-------- clip_box.y1
// | |
// 1100 | 1000 | 1001
// | |
// clip_box.x1 clip_box.x2
//
//
template<class T>
inline unsigned clipping_flags(T x, T y, const rect_base<T>& clip_box)
{
return (x > clip_box.x2) |
((y > clip_box.y2) << 1) |
((x < clip_box.x1) << 2) |
((y < clip_box.y1) << 3);
}
//--------------------------------------------------------clipping_flags_x
template<class T>
inline unsigned clipping_flags_x(T x, const rect_base<T>& clip_box)
{
return (x > clip_box.x2) | ((x < clip_box.x1) << 2);
}
//--------------------------------------------------------clipping_flags_y
template<class T>
inline unsigned clipping_flags_y(T y, const rect_base<T>& clip_box)
{
return ((y > clip_box.y2) << 1) | ((y < clip_box.y1) << 3);
}
//-------------------------------------------------------clip_liang_barsky
template<class T>
inline unsigned clip_liang_barsky(T x1, T y1, T x2, T y2,
const rect_base<T>& clip_box,
T* x, T* y)
{
const double nearzero = 1e-30;
double deltax = x2 - x1;
double deltay = y2 - y1;
double xin;
double xout;
double yin;
double yout;
double tinx;
double tiny;
double toutx;
double touty;
double tin1;
double tin2;
double tout1;
unsigned np = 0;
if(deltax == 0.0)
{
// bump off of the vertical
deltax = (x1 > clip_box.x1) ? -nearzero : nearzero;
}
if(deltay == 0.0)
{
// bump off of the horizontal
deltay = (y1 > clip_box.y1) ? -nearzero : nearzero;
}
if(deltax > 0.0)
{
// points to right
xin = clip_box.x1;
xout = clip_box.x2;
}
else
{
xin = clip_box.x2;
xout = clip_box.x1;
}
if(deltay > 0.0)
{
// points up
yin = clip_box.y1;
yout = clip_box.y2;
}
else
{
yin = clip_box.y2;
yout = clip_box.y1;
}
tinx = (xin - x1) / deltax;
tiny = (yin - y1) / deltay;
if (tinx < tiny)
{
// hits x first
tin1 = tinx;
tin2 = tiny;
}
else
{
// hits y first
tin1 = tiny;
tin2 = tinx;
}
if(tin1 <= 1.0)
{
if(0.0 < tin1)
{
*x++ = (T)xin;
*y++ = (T)yin;
++np;
}
if(tin2 <= 1.0)
{
toutx = (xout - x1) / deltax;
touty = (yout - y1) / deltay;
tout1 = (toutx < touty) ? toutx : touty;
if(tin2 > 0.0 || tout1 > 0.0)
{
if(tin2 <= tout1)
{
if(tin2 > 0.0)
{
if(tinx > tiny)
{
*x++ = (T)xin;
*y++ = (T)(y1 + tinx * deltay);
}
else
{
*x++ = (T)(x1 + tiny * deltax);
*y++ = (T)yin;
}
++np;
}
if(tout1 < 1.0)
{
if(toutx < touty)
{
*x++ = (T)xout;
*y++ = (T)(y1 + toutx * deltay);
}
else
{
*x++ = (T)(x1 + touty * deltax);
*y++ = (T)yout;
}
}
else
{
*x++ = x2;
*y++ = y2;
}
++np;
}
else
{
if(tinx > tiny)
{
*x++ = (T)xin;
*y++ = (T)yout;
}
else
{
*x++ = (T)xout;
*y++ = (T)yin;
}
++np;
}
}
}
}
return np;
}
//----------------------------------------------------------------------------
template<class T>
bool clip_move_point(T x1, T y1, T x2, T y2,
const rect_base<T>& clip_box,
T* x, T* y, unsigned flags)
{
T bound;
if(flags & clipping_flags_x_clipped)
{
if(x1 == x2)
{
return false;
}
bound = (flags & clipping_flags_x1_clipped) ? clip_box.x1 : clip_box.x2;
*y = (T)(double(bound - x1) * (y2 - y1) / (x2 - x1) + y1);
*x = bound;
}
flags = clipping_flags_y(*y, clip_box);
if(flags & clipping_flags_y_clipped)
{
if(y1 == y2)
{
return false;
}
bound = (flags & clipping_flags_y1_clipped) ? clip_box.y1 : clip_box.y2;
*x = (T)(double(bound - y1) * (x2 - x1) / (y2 - y1) + x1);
*y = bound;
}
return true;
}
//-------------------------------------------------------clip_line_segment
// Returns: ret >= 4 - Fully clipped
// (ret & 1) != 0 - First point has been moved
// (ret & 2) != 0 - Second point has been moved
//
template<class T>
unsigned clip_line_segment(T* x1, T* y1, T* x2, T* y2,
const rect_base<T>& clip_box)
{
unsigned f1 = clipping_flags(*x1, *y1, clip_box);
unsigned f2 = clipping_flags(*x2, *y2, clip_box);
unsigned ret = 0;
if((f2 | f1) == 0)
{
// Fully visible
return 0;
}
if((f1 & clipping_flags_x_clipped) != 0 &&
(f1 & clipping_flags_x_clipped) == (f2 & clipping_flags_x_clipped))
{
// Fully clipped
return 4;
}
if((f1 & clipping_flags_y_clipped) != 0 &&
(f1 & clipping_flags_y_clipped) == (f2 & clipping_flags_y_clipped))
{
// Fully clipped
return 4;
}
T tx1 = *x1;
T ty1 = *y1;
T tx2 = *x2;
T ty2 = *y2;
if(f1)
{
if(!clip_move_point(tx1, ty1, tx2, ty2, clip_box, x1, y1, f1))
{
return 4;
}
if(*x1 == *x2 && *y1 == *y2)
{
return 4;
}
ret |= 1;
}
if(f2)
{
if(!clip_move_point(tx1, ty1, tx2, ty2, clip_box, x2, y2, f2))
{
return 4;
}
if(*x1 == *x2 && *y1 == *y2)
{
return 4;
}
ret |= 2;
}
return ret;
}
}
#endif

View file

@ -1,414 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Adaptation for high precision colors has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
//
// color types gray8, gray16
//
//----------------------------------------------------------------------------
#ifndef AGG_COLOR_GRAY_INCLUDED
#define AGG_COLOR_GRAY_INCLUDED
#include "agg_basics.h"
#include "agg_color_rgba.h"
namespace agg
{
//===================================================================gray8
struct gray8
{
typedef int8u value_type;
typedef int32u calc_type;
typedef int32 long_type;
enum base_scale_e
{
base_shift = 8,
base_scale = 1 << base_shift,
base_mask = base_scale - 1
};
typedef gray8 self_type;
value_type v;
value_type a;
//--------------------------------------------------------------------
gray8() {}
//--------------------------------------------------------------------
gray8(unsigned v_, unsigned a_=base_mask) :
v(int8u(v_)), a(int8u(a_)) {}
//--------------------------------------------------------------------
gray8(const self_type& c, unsigned a_) :
v(c.v), a(value_type(a_)) {}
//--------------------------------------------------------------------
gray8(const rgba& c) :
v((value_type)uround((0.299*c.r + 0.587*c.g + 0.114*c.b) * double(base_mask))),
a((value_type)uround(c.a * double(base_mask))) {}
//--------------------------------------------------------------------
gray8(const rgba& c, double a_) :
v((value_type)uround((0.299*c.r + 0.587*c.g + 0.114*c.b) * double(base_mask))),
a((value_type)uround(a_ * double(base_mask))) {}
//--------------------------------------------------------------------
gray8(const rgba8& c) :
v((c.r*77 + c.g*150 + c.b*29) >> 8),
a(c.a) {}
//--------------------------------------------------------------------
gray8(const rgba8& c, unsigned a_) :
v((c.r*77 + c.g*150 + c.b*29) >> 8),
a(a_) {}
//--------------------------------------------------------------------
void clear()
{
v = a = 0;
}
//--------------------------------------------------------------------
const self_type& transparent()
{
a = 0;
return *this;
}
//--------------------------------------------------------------------
void opacity(double a_)
{
if(a_ < 0.0) a_ = 0.0;
if(a_ > 1.0) a_ = 1.0;
a = (value_type)uround(a_ * double(base_mask));
}
//--------------------------------------------------------------------
double opacity() const
{
return double(a) / double(base_mask);
}
//--------------------------------------------------------------------
const self_type& premultiply()
{
if(a == base_mask) return *this;
if(a == 0)
{
v = 0;
return *this;
}
v = value_type((calc_type(v) * a) >> base_shift);
return *this;
}
//--------------------------------------------------------------------
const self_type& premultiply(unsigned a_)
{
if(a == base_mask && a_ >= base_mask) return *this;
if(a == 0 || a_ == 0)
{
v = a = 0;
return *this;
}
calc_type v_ = (calc_type(v) * a_) / a;
v = value_type((v_ > a_) ? a_ : v_);
a = value_type(a_);
return *this;
}
//--------------------------------------------------------------------
const self_type& demultiply()
{
if(a == base_mask) return *this;
if(a == 0)
{
v = 0;
return *this;
}
calc_type v_ = (calc_type(v) * base_mask) / a;
v = value_type((v_ > base_mask) ? (value_type)base_mask : v_);
return *this;
}
//--------------------------------------------------------------------
self_type gradient(self_type c, double k) const
{
self_type ret;
calc_type ik = uround(k * base_scale);
ret.v = value_type(calc_type(v) + (((calc_type(c.v) - v) * ik) >> base_shift));
ret.a = value_type(calc_type(a) + (((calc_type(c.a) - a) * ik) >> base_shift));
return ret;
}
//--------------------------------------------------------------------
AGG_INLINE void add(const self_type& c, unsigned cover)
{
calc_type cv, ca;
if(cover == cover_mask)
{
if(c.a == base_mask)
{
*this = c;
}
else
{
cv = v + c.v; v = (cv > calc_type(base_mask)) ? calc_type(base_mask) : cv;
ca = a + c.a; a = (ca > calc_type(base_mask)) ? calc_type(base_mask) : ca;
}
}
else
{
cv = v + ((c.v * cover + cover_mask/2) >> cover_shift);
ca = a + ((c.a * cover + cover_mask/2) >> cover_shift);
v = (cv > calc_type(base_mask)) ? calc_type(base_mask) : cv;
a = (ca > calc_type(base_mask)) ? calc_type(base_mask) : ca;
}
}
//--------------------------------------------------------------------
static self_type no_color() { return self_type(0,0); }
};
//-------------------------------------------------------------gray8_pre
inline gray8 gray8_pre(unsigned v, unsigned a = gray8::base_mask)
{
return gray8(v,a).premultiply();
}
inline gray8 gray8_pre(const gray8& c, unsigned a)
{
return gray8(c,a).premultiply();
}
inline gray8 gray8_pre(const rgba& c)
{
return gray8(c).premultiply();
}
inline gray8 gray8_pre(const rgba& c, double a)
{
return gray8(c,a).premultiply();
}
inline gray8 gray8_pre(const rgba8& c)
{
return gray8(c).premultiply();
}
inline gray8 gray8_pre(const rgba8& c, unsigned a)
{
return gray8(c,a).premultiply();
}
//==================================================================gray16
struct gray16
{
typedef int16u value_type;
typedef int32u calc_type;
typedef int64 long_type;
enum base_scale_e
{
base_shift = 16,
base_scale = 1 << base_shift,
base_mask = base_scale - 1
};
typedef gray16 self_type;
value_type v;
value_type a;
//--------------------------------------------------------------------
gray16() {}
//--------------------------------------------------------------------
gray16(unsigned v_, unsigned a_=base_mask) :
v(int16u(v_)), a(int16u(a_)) {}
//--------------------------------------------------------------------
gray16(const self_type& c, unsigned a_) :
v(c.v), a(value_type(a_)) {}
//--------------------------------------------------------------------
gray16(const rgba& c) :
v((value_type)uround((0.299*c.r + 0.587*c.g + 0.114*c.b) * double(base_mask))),
a((value_type)uround(c.a * double(base_mask))) {}
//--------------------------------------------------------------------
gray16(const rgba& c, double a_) :
v((value_type)uround((0.299*c.r + 0.587*c.g + 0.114*c.b) * double(base_mask))),
a((value_type)uround(a_ * double(base_mask))) {}
//--------------------------------------------------------------------
gray16(const rgba8& c) :
v(c.r*77 + c.g*150 + c.b*29),
a((value_type(c.a) << 8) | c.a) {}
//--------------------------------------------------------------------
gray16(const rgba8& c, unsigned a_) :
v(c.r*77 + c.g*150 + c.b*29),
a((value_type(a_) << 8) | c.a) {}
//--------------------------------------------------------------------
void clear()
{
v = a = 0;
}
//--------------------------------------------------------------------
const self_type& transparent()
{
a = 0;
return *this;
}
//--------------------------------------------------------------------
void opacity(double a_)
{
if(a_ < 0.0) a_ = 0.0;
if(a_ > 1.0) a_ = 1.0;
a = (value_type)uround(a_ * double(base_mask));
}
//--------------------------------------------------------------------
double opacity() const
{
return double(a) / double(base_mask);
}
//--------------------------------------------------------------------
const self_type& premultiply()
{
if(a == base_mask) return *this;
if(a == 0)
{
v = 0;
return *this;
}
v = value_type((calc_type(v) * a) >> base_shift);
return *this;
}
//--------------------------------------------------------------------
const self_type& premultiply(unsigned a_)
{
if(a == base_mask && a_ >= base_mask) return *this;
if(a == 0 || a_ == 0)
{
v = a = 0;
return *this;
}
calc_type v_ = (calc_type(v) * a_) / a;
v = value_type((v_ > a_) ? a_ : v_);
a = value_type(a_);
return *this;
}
//--------------------------------------------------------------------
const self_type& demultiply()
{
if(a == base_mask) return *this;
if(a == 0)
{
v = 0;
return *this;
}
calc_type v_ = (calc_type(v) * base_mask) / a;
v = value_type((v_ > base_mask) ? base_mask : v_);
return *this;
}
//--------------------------------------------------------------------
self_type gradient(self_type c, double k) const
{
self_type ret;
calc_type ik = uround(k * base_scale);
ret.v = value_type(calc_type(v) + (((calc_type(c.v) - v) * ik) >> base_shift));
ret.a = value_type(calc_type(a) + (((calc_type(c.a) - a) * ik) >> base_shift));
return ret;
}
//--------------------------------------------------------------------
AGG_INLINE void add(const self_type& c, unsigned cover)
{
calc_type cv, ca;
if(cover == cover_mask)
{
if(c.a == base_mask)
{
*this = c;
}
else
{
cv = v + c.v; v = (cv > calc_type(base_mask)) ? calc_type(base_mask) : cv;
ca = a + c.a; a = (ca > calc_type(base_mask)) ? calc_type(base_mask) : ca;
}
}
else
{
cv = v + ((c.v * cover + cover_mask/2) >> cover_shift);
ca = a + ((c.a * cover + cover_mask/2) >> cover_shift);
v = (cv > calc_type(base_mask)) ? calc_type(base_mask) : cv;
a = (ca > calc_type(base_mask)) ? calc_type(base_mask) : ca;
}
}
//--------------------------------------------------------------------
static self_type no_color() { return self_type(0,0); }
};
//------------------------------------------------------------gray16_pre
inline gray16 gray16_pre(unsigned v, unsigned a = gray16::base_mask)
{
return gray16(v,a).premultiply();
}
inline gray16 gray16_pre(const gray16& c, unsigned a)
{
return gray16(c,a).premultiply();
}
inline gray16 gray16_pre(const rgba& c)
{
return gray16(c).premultiply();
}
inline gray16 gray16_pre(const rgba& c, double a)
{
return gray16(c,a).premultiply();
}
inline gray16 gray16_pre(const rgba8& c)
{
return gray16(c).premultiply();
}
inline gray16 gray16_pre(const rgba8& c, unsigned a)
{
return gray16(c,a).premultiply();
}
}
#endif

View file

@ -1,743 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
//
// Adaptation for high precision colors has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_COLOR_RGBA_INCLUDED
#define AGG_COLOR_RGBA_INCLUDED
#include <math.h>
#include "agg_basics.h"
namespace agg
{
// Supported byte orders for RGB and RGBA pixel formats
//=======================================================================
struct order_rgb { enum rgb_e { R=0, G=1, B=2, rgb_tag }; }; //----order_rgb
struct order_bgr { enum bgr_e { B=0, G=1, R=2, rgb_tag }; }; //----order_bgr
struct order_rgba { enum rgba_e { R=0, G=1, B=2, A=3, rgba_tag }; }; //----order_rgba
struct order_argb { enum argb_e { A=0, R=1, G=2, B=3, rgba_tag }; }; //----order_argb
struct order_abgr { enum abgr_e { A=0, B=1, G=2, R=3, rgba_tag }; }; //----order_abgr
struct order_bgra { enum bgra_e { B=0, G=1, R=2, A=3, rgba_tag }; }; //----order_bgra
//====================================================================rgba
struct rgba
{
typedef double value_type;
double r;
double g;
double b;
double a;
//--------------------------------------------------------------------
rgba() {}
//--------------------------------------------------------------------
rgba(double r_, double g_, double b_, double a_=1.0) :
r(r_), g(g_), b(b_), a(a_) {}
//--------------------------------------------------------------------
rgba(const rgba& c, double a_) : r(c.r), g(c.g), b(c.b), a(a_) {}
//--------------------------------------------------------------------
void clear()
{
r = g = b = a = 0;
}
//--------------------------------------------------------------------
const rgba& transparent()
{
a = 0.0;
return *this;
}
//--------------------------------------------------------------------
const rgba& opacity(double a_)
{
if(a_ < 0.0) a_ = 0.0;
if(a_ > 1.0) a_ = 1.0;
a = a_;
return *this;
}
//--------------------------------------------------------------------
double opacity() const
{
return a;
}
//--------------------------------------------------------------------
const rgba& premultiply()
{
r *= a;
g *= a;
b *= a;
return *this;
}
//--------------------------------------------------------------------
const rgba& premultiply(double a_)
{
if(a <= 0.0 || a_ <= 0.0)
{
r = g = b = a = 0.0;
return *this;
}
a_ /= a;
r *= a_;
g *= a_;
b *= a_;
a = a_;
return *this;
}
//--------------------------------------------------------------------
const rgba& demultiply()
{
if(a == 0)
{
r = g = b = 0;
return *this;
}
double a_ = 1.0 / a;
r *= a_;
g *= a_;
b *= a_;
return *this;
}
//--------------------------------------------------------------------
rgba gradient(rgba c, double k) const
{
rgba ret;
ret.r = r + (c.r - r) * k;
ret.g = g + (c.g - g) * k;
ret.b = b + (c.b - b) * k;
ret.a = a + (c.a - a) * k;
return ret;
}
//--------------------------------------------------------------------
static rgba no_color() { return rgba(0,0,0,0); }
//--------------------------------------------------------------------
static rgba from_wavelength(double wl, double gamma = 1.0);
//--------------------------------------------------------------------
explicit rgba(double wavelen, double gamma=1.0)
{
*this = from_wavelength(wavelen, gamma);
}
};
//----------------------------------------------------------------rgba_pre
inline rgba rgba_pre(double r, double g, double b, double a=1.0)
{
return rgba(r, g, b, a).premultiply();
}
inline rgba rgba_pre(const rgba& c)
{
return rgba(c).premultiply();
}
inline rgba rgba_pre(const rgba& c, double a)
{
return rgba(c, a).premultiply();
}
//------------------------------------------------------------------------
inline rgba rgba::from_wavelength(double wl, double gamma)
{
rgba t(0.0, 0.0, 0.0);
if(wl >= 380.0 && wl <= 440.0)
{
t.r = -1.0 * (wl - 440.0) / (440.0 - 380.0);
t.b = 1.0;
}
else
if(wl >= 440.0 && wl <= 490.0)
{
t.g = (wl - 440.0) / (490.0 - 440.0);
t.b = 1.0;
}
else
if(wl >= 490.0 && wl <= 510.0)
{
t.g = 1.0;
t.b = -1.0 * (wl - 510.0) / (510.0 - 490.0);
}
else
if(wl >= 510.0 && wl <= 580.0)
{
t.r = (wl - 510.0) / (580.0 - 510.0);
t.g = 1.0;
}
else
if(wl >= 580.0 && wl <= 645.0)
{
t.r = 1.0;
t.g = -1.0 * (wl - 645.0) / (645.0 - 580.0);
}
else
if(wl >= 645.0 && wl <= 780.0)
{
t.r = 1.0;
}
double s = 1.0;
if(wl > 700.0) s = 0.3 + 0.7 * (780.0 - wl) / (780.0 - 700.0);
else if(wl < 420.0) s = 0.3 + 0.7 * (wl - 380.0) / (420.0 - 380.0);
t.r = pow(t.r * s, gamma);
t.g = pow(t.g * s, gamma);
t.b = pow(t.b * s, gamma);
return t;
}
//===================================================================rgba8
struct rgba8
{
typedef int8u value_type;
typedef int32u calc_type;
typedef int32 long_type;
enum base_scale_e
{
base_shift = 8,
base_scale = 1 << base_shift,
base_mask = base_scale - 1
};
typedef rgba8 self_type;
value_type r;
value_type g;
value_type b;
value_type a;
//--------------------------------------------------------------------
rgba8() {}
//--------------------------------------------------------------------
rgba8(unsigned r_, unsigned g_, unsigned b_, unsigned a_=base_mask) :
r(value_type(r_)),
g(value_type(g_)),
b(value_type(b_)),
a(value_type(a_)) {}
//--------------------------------------------------------------------
rgba8(const rgba& c, double a_) :
r((value_type)uround(c.r * double(base_mask))),
g((value_type)uround(c.g * double(base_mask))),
b((value_type)uround(c.b * double(base_mask))),
a((value_type)uround(a_ * double(base_mask))) {}
//--------------------------------------------------------------------
rgba8(const self_type& c, unsigned a_) :
r(c.r), g(c.g), b(c.b), a(value_type(a_)) {}
//--------------------------------------------------------------------
rgba8(const rgba& c) :
r((value_type)uround(c.r * double(base_mask))),
g((value_type)uround(c.g * double(base_mask))),
b((value_type)uround(c.b * double(base_mask))),
a((value_type)uround(c.a * double(base_mask))) {}
//--------------------------------------------------------------------
void clear()
{
r = g = b = a = 0;
}
//--------------------------------------------------------------------
const self_type& transparent()
{
a = 0;
return *this;
}
//--------------------------------------------------------------------
const self_type& opacity(double a_)
{
if(a_ < 0.0) a_ = 0.0;
if(a_ > 1.0) a_ = 1.0;
a = (value_type)uround(a_ * double(base_mask));
return *this;
}
//--------------------------------------------------------------------
double opacity() const
{
return double(a) / double(base_mask);
}
//--------------------------------------------------------------------
AGG_INLINE const self_type& premultiply()
{
if(a == base_mask) return *this;
if(a == 0)
{
r = g = b = 0;
return *this;
}
r = value_type((calc_type(r) * a) >> base_shift);
g = value_type((calc_type(g) * a) >> base_shift);
b = value_type((calc_type(b) * a) >> base_shift);
return *this;
}
//--------------------------------------------------------------------
AGG_INLINE const self_type& premultiply(unsigned a_)
{
if(a == base_mask && a_ >= base_mask) return *this;
if(a == 0 || a_ == 0)
{
r = g = b = a = 0;
return *this;
}
calc_type r_ = (calc_type(r) * a_) / a;
calc_type g_ = (calc_type(g) * a_) / a;
calc_type b_ = (calc_type(b) * a_) / a;
r = value_type((r_ > a_) ? a_ : r_);
g = value_type((g_ > a_) ? a_ : g_);
b = value_type((b_ > a_) ? a_ : b_);
a = value_type(a_);
return *this;
}
//--------------------------------------------------------------------
AGG_INLINE const self_type& demultiply()
{
if(a == base_mask) return *this;
if(a == 0)
{
r = g = b = 0;
return *this;
}
calc_type r_ = (calc_type(r) * base_mask) / a;
calc_type g_ = (calc_type(g) * base_mask) / a;
calc_type b_ = (calc_type(b) * base_mask) / a;
r = value_type((r_ > calc_type(base_mask)) ? calc_type(base_mask) : r_);
g = value_type((g_ > calc_type(base_mask)) ? calc_type(base_mask) : g_);
b = value_type((b_ > calc_type(base_mask)) ? calc_type(base_mask) : b_);
return *this;
}
//--------------------------------------------------------------------
AGG_INLINE self_type gradient(const self_type& c, double k) const
{
self_type ret;
calc_type ik = uround(k * base_scale);
ret.r = value_type(calc_type(r) + (((calc_type(c.r) - r) * ik) >> base_shift));
ret.g = value_type(calc_type(g) + (((calc_type(c.g) - g) * ik) >> base_shift));
ret.b = value_type(calc_type(b) + (((calc_type(c.b) - b) * ik) >> base_shift));
ret.a = value_type(calc_type(a) + (((calc_type(c.a) - a) * ik) >> base_shift));
return ret;
}
//--------------------------------------------------------------------
AGG_INLINE void add(const self_type& c, unsigned cover)
{
calc_type cr, cg, cb, ca;
if(cover == cover_mask)
{
if(c.a == base_mask)
{
*this = c;
}
else
{
cr = r + c.r; r = (cr > calc_type(base_mask)) ? calc_type(base_mask) : cr;
cg = g + c.g; g = (cg > calc_type(base_mask)) ? calc_type(base_mask) : cg;
cb = b + c.b; b = (cb > calc_type(base_mask)) ? calc_type(base_mask) : cb;
ca = a + c.a; a = (ca > calc_type(base_mask)) ? calc_type(base_mask) : ca;
}
}
else
{
cr = r + ((c.r * cover + cover_mask/2) >> cover_shift);
cg = g + ((c.g * cover + cover_mask/2) >> cover_shift);
cb = b + ((c.b * cover + cover_mask/2) >> cover_shift);
ca = a + ((c.a * cover + cover_mask/2) >> cover_shift);
r = (cr > calc_type(base_mask)) ? calc_type(base_mask) : cr;
g = (cg > calc_type(base_mask)) ? calc_type(base_mask) : cg;
b = (cb > calc_type(base_mask)) ? calc_type(base_mask) : cb;
a = (ca > calc_type(base_mask)) ? calc_type(base_mask) : ca;
}
}
//--------------------------------------------------------------------
template<class GammaLUT>
AGG_INLINE void apply_gamma_dir(const GammaLUT& gamma)
{
r = gamma.dir(r);
g = gamma.dir(g);
b = gamma.dir(b);
}
//--------------------------------------------------------------------
template<class GammaLUT>
AGG_INLINE void apply_gamma_inv(const GammaLUT& gamma)
{
r = gamma.inv(r);
g = gamma.inv(g);
b = gamma.inv(b);
}
//--------------------------------------------------------------------
static self_type no_color() { return self_type(0,0,0,0); }
//--------------------------------------------------------------------
static self_type from_wavelength(double wl, double gamma = 1.0)
{
return self_type(rgba::from_wavelength(wl, gamma));
}
};
//-------------------------------------------------------------rgba8_pre
inline rgba8 rgba8_pre(unsigned r, unsigned g, unsigned b,
unsigned a = rgba8::base_mask)
{
return rgba8(r,g,b,a).premultiply();
}
inline rgba8 rgba8_pre(const rgba8& c)
{
return rgba8(c).premultiply();
}
inline rgba8 rgba8_pre(const rgba8& c, unsigned a)
{
return rgba8(c,a).premultiply();
}
inline rgba8 rgba8_pre(const rgba& c)
{
return rgba8(c).premultiply();
}
inline rgba8 rgba8_pre(const rgba& c, double a)
{
return rgba8(c,a).premultiply();
}
//-------------------------------------------------------------rgb8_packed
inline rgba8 rgb8_packed(unsigned v)
{
return rgba8((v >> 16) & 0xFF, (v >> 8) & 0xFF, v & 0xFF);
}
//-------------------------------------------------------------bgr8_packed
inline rgba8 bgr8_packed(unsigned v)
{
return rgba8(v & 0xFF, (v >> 8) & 0xFF, (v >> 16) & 0xFF);
}
//------------------------------------------------------------argb8_packed
inline rgba8 argb8_packed(unsigned v)
{
return rgba8((v >> 16) & 0xFF, (v >> 8) & 0xFF, v & 0xFF, v >> 24);
}
//---------------------------------------------------------rgba8_gamma_dir
template<class GammaLUT>
rgba8 rgba8_gamma_dir(rgba8 c, const GammaLUT& gamma)
{
return rgba8(gamma.dir(c.r), gamma.dir(c.g), gamma.dir(c.b), c.a);
}
//---------------------------------------------------------rgba8_gamma_inv
template<class GammaLUT>
rgba8 rgba8_gamma_inv(rgba8 c, const GammaLUT& gamma)
{
return rgba8(gamma.inv(c.r), gamma.inv(c.g), gamma.inv(c.b), c.a);
}
//==================================================================rgba16
struct rgba16
{
typedef int16u value_type;
typedef int32u calc_type;
typedef int64 long_type;
enum base_scale_e
{
base_shift = 16,
base_scale = 1 << base_shift,
base_mask = base_scale - 1
};
typedef rgba16 self_type;
value_type r;
value_type g;
value_type b;
value_type a;
//--------------------------------------------------------------------
rgba16() {}
//--------------------------------------------------------------------
rgba16(unsigned r_, unsigned g_, unsigned b_, unsigned a_=base_mask) :
r(value_type(r_)),
g(value_type(g_)),
b(value_type(b_)),
a(value_type(a_)) {}
//--------------------------------------------------------------------
rgba16(const self_type& c, unsigned a_) :
r(c.r), g(c.g), b(c.b), a(value_type(a_)) {}
//--------------------------------------------------------------------
rgba16(const rgba& c) :
r((value_type)uround(c.r * double(base_mask))),
g((value_type)uround(c.g * double(base_mask))),
b((value_type)uround(c.b * double(base_mask))),
a((value_type)uround(c.a * double(base_mask))) {}
//--------------------------------------------------------------------
rgba16(const rgba& c, double a_) :
r((value_type)uround(c.r * double(base_mask))),
g((value_type)uround(c.g * double(base_mask))),
b((value_type)uround(c.b * double(base_mask))),
a((value_type)uround(a_ * double(base_mask))) {}
//--------------------------------------------------------------------
rgba16(const rgba8& c) :
r(value_type((value_type(c.r) << 8) | c.r)),
g(value_type((value_type(c.g) << 8) | c.g)),
b(value_type((value_type(c.b) << 8) | c.b)),
a(value_type((value_type(c.a) << 8) | c.a)) {}
//--------------------------------------------------------------------
rgba16(const rgba8& c, unsigned a_) :
r(value_type((value_type(c.r) << 8) | c.r)),
g(value_type((value_type(c.g) << 8) | c.g)),
b(value_type((value_type(c.b) << 8) | c.b)),
a(value_type(( a_ << 8) | c.a)) {}
//--------------------------------------------------------------------
void clear()
{
r = g = b = a = 0;
}
//--------------------------------------------------------------------
const self_type& transparent()
{
a = 0;
return *this;
}
//--------------------------------------------------------------------
AGG_INLINE const self_type& opacity(double a_)
{
if(a_ < 0.0) a_ = 0.0;
if(a_ > 1.0) a_ = 1.0;
a = (value_type)uround(a_ * double(base_mask));
return *this;
}
//--------------------------------------------------------------------
double opacity() const
{
return double(a) / double(base_mask);
}
//--------------------------------------------------------------------
AGG_INLINE const self_type& premultiply()
{
if(a == base_mask) return *this;
if(a == 0)
{
r = g = b = 0;
return *this;
}
r = value_type((calc_type(r) * a) >> base_shift);
g = value_type((calc_type(g) * a) >> base_shift);
b = value_type((calc_type(b) * a) >> base_shift);
return *this;
}
//--------------------------------------------------------------------
AGG_INLINE const self_type& premultiply(unsigned a_)
{
if(a == base_mask && a_ >= base_mask) return *this;
if(a == 0 || a_ == 0)
{
r = g = b = a = 0;
return *this;
}
calc_type r_ = (calc_type(r) * a_) / a;
calc_type g_ = (calc_type(g) * a_) / a;
calc_type b_ = (calc_type(b) * a_) / a;
r = value_type((r_ > a_) ? a_ : r_);
g = value_type((g_ > a_) ? a_ : g_);
b = value_type((b_ > a_) ? a_ : b_);
a = value_type(a_);
return *this;
}
//--------------------------------------------------------------------
AGG_INLINE const self_type& demultiply()
{
if(a == base_mask) return *this;
if(a == 0)
{
r = g = b = 0;
return *this;
}
calc_type r_ = (calc_type(r) * base_mask) / a;
calc_type g_ = (calc_type(g) * base_mask) / a;
calc_type b_ = (calc_type(b) * base_mask) / a;
r = value_type((r_ > calc_type(base_mask)) ? calc_type(base_mask) : r_);
g = value_type((g_ > calc_type(base_mask)) ? calc_type(base_mask) : g_);
b = value_type((b_ > calc_type(base_mask)) ? calc_type(base_mask) : b_);
return *this;
}
//--------------------------------------------------------------------
AGG_INLINE self_type gradient(const self_type& c, double k) const
{
self_type ret;
calc_type ik = uround(k * base_scale);
ret.r = value_type(calc_type(r) + (((calc_type(c.r) - r) * ik) >> base_shift));
ret.g = value_type(calc_type(g) + (((calc_type(c.g) - g) * ik) >> base_shift));
ret.b = value_type(calc_type(b) + (((calc_type(c.b) - b) * ik) >> base_shift));
ret.a = value_type(calc_type(a) + (((calc_type(c.a) - a) * ik) >> base_shift));
return ret;
}
//--------------------------------------------------------------------
AGG_INLINE void add(const self_type& c, unsigned cover)
{
calc_type cr, cg, cb, ca;
if(cover == cover_mask)
{
if(c.a == base_mask)
{
*this = c;
}
else
{
cr = r + c.r; r = (cr > calc_type(base_mask)) ? calc_type(base_mask) : cr;
cg = g + c.g; g = (cg > calc_type(base_mask)) ? calc_type(base_mask) : cg;
cb = b + c.b; b = (cb > calc_type(base_mask)) ? calc_type(base_mask) : cb;
ca = a + c.a; a = (ca > calc_type(base_mask)) ? calc_type(base_mask) : ca;
}
}
else
{
cr = r + ((c.r * cover + cover_mask) >> cover_shift);
cg = g + ((c.g * cover + cover_mask) >> cover_shift);
cb = b + ((c.b * cover + cover_mask) >> cover_shift);
ca = a + ((c.a * cover + cover_mask) >> cover_shift);
r = (cr > calc_type(base_mask)) ? calc_type(base_mask) : cr;
g = (cg > calc_type(base_mask)) ? calc_type(base_mask) : cg;
b = (cb > calc_type(base_mask)) ? calc_type(base_mask) : cb;
a = (ca > calc_type(base_mask)) ? calc_type(base_mask) : ca;
}
}
//--------------------------------------------------------------------
template<class GammaLUT>
AGG_INLINE void apply_gamma_dir(const GammaLUT& gamma)
{
r = gamma.dir(r);
g = gamma.dir(g);
b = gamma.dir(b);
}
//--------------------------------------------------------------------
template<class GammaLUT>
AGG_INLINE void apply_gamma_inv(const GammaLUT& gamma)
{
r = gamma.inv(r);
g = gamma.inv(g);
b = gamma.inv(b);
}
//--------------------------------------------------------------------
static self_type no_color() { return self_type(0,0,0,0); }
//--------------------------------------------------------------------
static self_type from_wavelength(double wl, double gamma = 1.0)
{
return self_type(rgba::from_wavelength(wl, gamma));
}
};
//--------------------------------------------------------------rgba16_pre
inline rgba16 rgba16_pre(unsigned r, unsigned g, unsigned b,
unsigned a = rgba16::base_mask)
{
return rgba16(r,g,b,a).premultiply();
}
inline rgba16 rgba16_pre(const rgba16& c, unsigned a)
{
return rgba16(c,a).premultiply();
}
inline rgba16 rgba16_pre(const rgba& c)
{
return rgba16(c).premultiply();
}
inline rgba16 rgba16_pre(const rgba& c, double a)
{
return rgba16(c,a).premultiply();
}
inline rgba16 rgba16_pre(const rgba8& c)
{
return rgba16(c).premultiply();
}
inline rgba16 rgba16_pre(const rgba8& c, unsigned a)
{
return rgba16(c,a).premultiply();
}
//------------------------------------------------------rgba16_gamma_dir
template<class GammaLUT>
rgba16 rgba16_gamma_dir(rgba16 c, const GammaLUT& gamma)
{
return rgba16(gamma.dir(c.r), gamma.dir(c.g), gamma.dir(c.b), c.a);
}
//------------------------------------------------------rgba16_gamma_inv
template<class GammaLUT>
rgba16 rgba16_gamma_inv(rgba16 c, const GammaLUT& gamma)
{
return rgba16(gamma.inv(c.r), gamma.inv(c.g), gamma.inv(c.b), c.a);
}
}
#endif

View file

@ -1,44 +0,0 @@
#ifndef AGG_CONFIG_INCLUDED
#define AGG_CONFIG_INCLUDED
// This file can be used to redefine certain data types.
//---------------------------------------
// 1. Default basic types such as:
//
// AGG_INT8
// AGG_INT8U
// AGG_INT16
// AGG_INT16U
// AGG_INT32
// AGG_INT32U
// AGG_INT64
// AGG_INT64U
//
// Just replace this file with new defines if necessary.
// For example, if your compiler doesn't have a 64 bit integer type
// you can still use AGG if you define the follows:
//
// #define AGG_INT64 int
// #define AGG_INT64U unsigned
//
// It will result in overflow in 16 bit-per-component image/pattern resampling
// but it won't result any crash and the rest of the library will remain
// fully functional.
//---------------------------------------
// 2. Default rendering_buffer type. Can be:
//
// Provides faster access for massive pixel operations,
// such as blur, image filtering:
// #define AGG_RENDERING_BUFFER row_ptr_cache<int8u>
//
// Provides cheaper creation and destruction (no mem allocs):
// #define AGG_RENDERING_BUFFER row_accessor<int8u>
//
// You can still use both of them simultaneouslyin your applications
// This #define is used only for default rendering_buffer type,
// in short hand typedefs like pixfmt_rgba32.
#endif

View file

@ -1,157 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_CONV_ADAPTOR_VCGEN_INCLUDED
#define AGG_CONV_ADAPTOR_VCGEN_INCLUDED
#include "agg_basics.h"
namespace agg
{
//------------------------------------------------------------null_markers
struct null_markers
{
void remove_all() {}
void add_vertex(double, double, unsigned) {}
void prepare_src() {}
void rewind(unsigned) {}
unsigned vertex(double*, double*) { return path_cmd_stop; }
};
//------------------------------------------------------conv_adaptor_vcgen
template<class VertexSource,
class Generator,
class Markers=null_markers> class conv_adaptor_vcgen
{
enum status
{
initial,
accumulate,
generate
};
public:
explicit conv_adaptor_vcgen(VertexSource& source) :
m_source(&source),
m_status(initial)
{}
void attach(VertexSource& source) { m_source = &source; }
Generator& generator() { return m_generator; }
const Generator& generator() const { return m_generator; }
Markers& markers() { return m_markers; }
const Markers& markers() const { return m_markers; }
void rewind(unsigned path_id)
{
m_source->rewind(path_id);
m_status = initial;
}
unsigned vertex(double* x, double* y);
private:
// Prohibit copying
conv_adaptor_vcgen(const conv_adaptor_vcgen<VertexSource, Generator, Markers>&);
const conv_adaptor_vcgen<VertexSource, Generator, Markers>&
operator = (const conv_adaptor_vcgen<VertexSource, Generator, Markers>&);
VertexSource* m_source;
Generator m_generator;
Markers m_markers;
status m_status;
unsigned m_last_cmd;
double m_start_x;
double m_start_y;
};
//------------------------------------------------------------------------
template<class VertexSource, class Generator, class Markers>
unsigned conv_adaptor_vcgen<VertexSource, Generator, Markers>::vertex(double* x, double* y)
{
unsigned cmd = path_cmd_stop;
bool done = false;
while(!done)
{
switch(m_status)
{
case initial:
m_markers.remove_all();
m_last_cmd = m_source->vertex(&m_start_x, &m_start_y);
m_status = accumulate;
case accumulate:
if(is_stop(m_last_cmd)) return path_cmd_stop;
m_generator.remove_all();
m_generator.add_vertex(m_start_x, m_start_y, path_cmd_move_to);
m_markers.add_vertex(m_start_x, m_start_y, path_cmd_move_to);
for(;;)
{
cmd = m_source->vertex(x, y);
if(is_vertex(cmd))
{
m_last_cmd = cmd;
if(is_move_to(cmd))
{
m_start_x = *x;
m_start_y = *y;
break;
}
m_generator.add_vertex(*x, *y, cmd);
m_markers.add_vertex(*x, *y, path_cmd_line_to);
}
else
{
if(is_stop(cmd))
{
m_last_cmd = path_cmd_stop;
break;
}
if(is_end_poly(cmd))
{
m_generator.add_vertex(*x, *y, cmd);
break;
}
}
}
m_generator.rewind(0);
m_status = generate;
case generate:
cmd = m_generator.vertex(x, y);
if(is_stop(cmd))
{
m_status = accumulate;
break;
}
done = true;
break;
}
}
return cmd;
}
}
#endif

View file

@ -1,159 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_CONV_ADAPTOR_VPGEN_INCLUDED
#define AGG_CONV_ADAPTOR_VPGEN_INCLUDED
#include "agg_basics.h"
namespace agg
{
//======================================================conv_adaptor_vpgen
template<class VertexSource, class VPGen> class conv_adaptor_vpgen
{
public:
explicit conv_adaptor_vpgen(VertexSource& source) : m_source(&source) {}
void attach(VertexSource& source) { m_source = &source; }
VPGen& vpgen() { return m_vpgen; }
const VPGen& vpgen() const { return m_vpgen; }
void rewind(unsigned path_id);
unsigned vertex(double* x, double* y);
private:
conv_adaptor_vpgen(const conv_adaptor_vpgen<VertexSource, VPGen>&);
const conv_adaptor_vpgen<VertexSource, VPGen>&
operator = (const conv_adaptor_vpgen<VertexSource, VPGen>&);
VertexSource* m_source;
VPGen m_vpgen;
double m_start_x;
double m_start_y;
unsigned m_poly_flags;
int m_vertices;
};
//------------------------------------------------------------------------
template<class VertexSource, class VPGen>
void conv_adaptor_vpgen<VertexSource, VPGen>::rewind(unsigned path_id)
{
m_source->rewind(path_id);
m_vpgen.reset();
m_start_x = 0;
m_start_y = 0;
m_poly_flags = 0;
m_vertices = 0;
}
//------------------------------------------------------------------------
template<class VertexSource, class VPGen>
unsigned conv_adaptor_vpgen<VertexSource, VPGen>::vertex(double* x, double* y)
{
unsigned cmd = path_cmd_stop;
for(;;)
{
cmd = m_vpgen.vertex(x, y);
if(!is_stop(cmd)) break;
if(m_poly_flags && !m_vpgen.auto_unclose())
{
*x = 0.0;
*y = 0.0;
cmd = m_poly_flags;
m_poly_flags = 0;
break;
}
if(m_vertices < 0)
{
if(m_vertices < -1)
{
m_vertices = 0;
return path_cmd_stop;
}
m_vpgen.move_to(m_start_x, m_start_y);
m_vertices = 1;
continue;
}
double tx, ty;
cmd = m_source->vertex(&tx, &ty);
if(is_vertex(cmd))
{
if(is_move_to(cmd))
{
if(m_vpgen.auto_close() && m_vertices > 2)
{
m_vpgen.line_to(m_start_x, m_start_y);
m_poly_flags = path_cmd_end_poly | path_flags_close;
m_start_x = tx;
m_start_y = ty;
m_vertices = -1;
continue;
}
m_vpgen.move_to(tx, ty);
m_start_x = tx;
m_start_y = ty;
m_vertices = 1;
}
else
{
m_vpgen.line_to(tx, ty);
++m_vertices;
}
}
else
{
if(is_end_poly(cmd))
{
m_poly_flags = cmd;
if(is_closed(cmd) || m_vpgen.auto_close())
{
if(m_vpgen.auto_close()) m_poly_flags |= path_flags_close;
if(m_vertices > 2)
{
m_vpgen.line_to(m_start_x, m_start_y);
}
m_vertices = 0;
}
}
else
{
// path_cmd_stop
if(m_vpgen.auto_close() && m_vertices > 2)
{
m_vpgen.line_to(m_start_x, m_start_y);
m_poly_flags = path_cmd_end_poly | path_flags_close;
m_vertices = -2;
continue;
}
break;
}
}
}
return cmd;
}
}
#endif

View file

@ -1,48 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_CONV_BSPLINE_INCLUDED
#define AGG_CONV_BSPLINE_INCLUDED
#include "agg_basics.h"
#include "agg_vcgen_bspline.h"
#include "agg_conv_adaptor_vcgen.h"
namespace agg
{
//---------------------------------------------------------conv_bspline
template<class VertexSource>
struct conv_bspline : public conv_adaptor_vcgen<VertexSource, vcgen_bspline>
{
typedef conv_adaptor_vcgen<VertexSource, vcgen_bspline> base_type;
conv_bspline(VertexSource& vs) :
conv_adaptor_vcgen<VertexSource, vcgen_bspline>(vs) {}
void interpolation_step(double v) { base_type::generator().interpolation_step(v); }
double interpolation_step() const { return base_type::generator().interpolation_step(); }
private:
conv_bspline(const conv_bspline<VertexSource>&);
const conv_bspline<VertexSource>&
operator = (const conv_bspline<VertexSource>&);
};
}
#endif

View file

@ -1,63 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Polygon clipping converter
// There an optimized Liang-Basky algorithm is used.
// The algorithm doesn't optimize the degenerate edges, i.e. it will never
// break a closed polygon into two or more ones, instead, there will be
// degenerate edges coinciding with the respective clipping boundaries.
// This is a sub-optimal solution, because that optimization would require
// extra, rather expensive math while the rasterizer tolerates it quite well,
// without any considerable overhead.
//
//----------------------------------------------------------------------------
#ifndef AGG_CONV_CLIP_POLYGON_INCLUDED
#define AGG_CONV_CLIP_POLYGON_INCLUDED
#include "agg_basics.h"
#include "agg_conv_adaptor_vpgen.h"
#include "agg_vpgen_clip_polygon.h"
namespace agg
{
//=======================================================conv_clip_polygon
template<class VertexSource>
struct conv_clip_polygon : public conv_adaptor_vpgen<VertexSource, vpgen_clip_polygon>
{
typedef conv_adaptor_vpgen<VertexSource, vpgen_clip_polygon> base_type;
conv_clip_polygon(VertexSource& vs) :
conv_adaptor_vpgen<VertexSource, vpgen_clip_polygon>(vs) {}
void clip_box(double x1, double y1, double x2, double y2)
{
base_type::vpgen().clip_box(x1, y1, x2, y2);
}
double x1() const { return base_type::vpgen().x1(); }
double y1() const { return base_type::vpgen().y1(); }
double x2() const { return base_type::vpgen().x2(); }
double y2() const { return base_type::vpgen().y2(); }
private:
conv_clip_polygon(const conv_clip_polygon<VertexSource>&);
const conv_clip_polygon<VertexSource>&
operator = (const conv_clip_polygon<VertexSource>&);
};
}
#endif

View file

@ -1,63 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// polyline clipping converter
// There an optimized Liang-Basky algorithm is used.
// The algorithm doesn't optimize the degenerate edges, i.e. it will never
// break a closed polyline into two or more ones, instead, there will be
// degenerate edges coinciding with the respective clipping boundaries.
// This is a sub-optimal solution, because that optimization would require
// extra, rather expensive math while the rasterizer tolerates it quite well,
// without any considerable overhead.
//
//----------------------------------------------------------------------------
#ifndef AGG_CONV_CLIP_polyline_INCLUDED
#define AGG_CONV_CLIP_polyline_INCLUDED
#include "agg_basics.h"
#include "agg_conv_adaptor_vpgen.h"
#include "agg_vpgen_clip_polyline.h"
namespace agg
{
//=======================================================conv_clip_polyline
template<class VertexSource>
struct conv_clip_polyline : public conv_adaptor_vpgen<VertexSource, vpgen_clip_polyline>
{
typedef conv_adaptor_vpgen<VertexSource, vpgen_clip_polyline> base_type;
conv_clip_polyline(VertexSource& vs) :
conv_adaptor_vpgen<VertexSource, vpgen_clip_polyline>(vs) {}
void clip_box(double x1, double y1, double x2, double y2)
{
base_type::vpgen().clip_box(x1, y1, x2, y2);
}
double x1() const { return base_type::vpgen().x1(); }
double y1() const { return base_type::vpgen().y1(); }
double x2() const { return base_type::vpgen().x2(); }
double y2() const { return base_type::vpgen().y2(); }
private:
conv_clip_polyline(const conv_clip_polyline<VertexSource>&);
const conv_clip_polyline<VertexSource>&
operator = (const conv_clip_polyline<VertexSource>&);
};
}
#endif

View file

@ -1,125 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_CONV_CLOSE_POLYGON_INCLUDED
#define AGG_CONV_CLOSE_POLYGON_INCLUDED
#include "agg_basics.h"
namespace agg
{
//======================================================conv_close_polygon
template<class VertexSource> class conv_close_polygon
{
public:
explicit conv_close_polygon(VertexSource& vs) : m_source(&vs) {}
void attach(VertexSource& source) { m_source = &source; }
void rewind(unsigned path_id);
unsigned vertex(double* x, double* y);
private:
conv_close_polygon(const conv_close_polygon<VertexSource>&);
const conv_close_polygon<VertexSource>&
operator = (const conv_close_polygon<VertexSource>&);
VertexSource* m_source;
unsigned m_cmd[2];
double m_x[2];
double m_y[2];
unsigned m_vertex;
bool m_line_to;
};
//------------------------------------------------------------------------
template<class VertexSource>
void conv_close_polygon<VertexSource>::rewind(unsigned path_id)
{
m_source->rewind(path_id);
m_vertex = 2;
m_line_to = false;
}
//------------------------------------------------------------------------
template<class VertexSource>
unsigned conv_close_polygon<VertexSource>::vertex(double* x, double* y)
{
unsigned cmd = path_cmd_stop;
for(;;)
{
if(m_vertex < 2)
{
*x = m_x[m_vertex];
*y = m_y[m_vertex];
cmd = m_cmd[m_vertex];
++m_vertex;
break;
}
cmd = m_source->vertex(x, y);
if(is_end_poly(cmd))
{
cmd |= path_flags_close;
break;
}
if(is_stop(cmd))
{
if(m_line_to)
{
m_cmd[0] = path_cmd_end_poly | path_flags_close;
m_cmd[1] = path_cmd_stop;
m_vertex = 0;
m_line_to = false;
continue;
}
break;
}
if(is_move_to(cmd))
{
if(m_line_to)
{
m_x[0] = 0.0;
m_y[0] = 0.0;
m_cmd[0] = path_cmd_end_poly | path_flags_close;
m_x[1] = *x;
m_y[1] = *y;
m_cmd[1] = cmd;
m_vertex = 0;
m_line_to = false;
continue;
}
break;
}
if(is_vertex(cmd))
{
m_line_to = true;
break;
}
}
return cmd;
}
}
#endif

View file

@ -1,73 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_CONV_CONCAT_INCLUDED
#define AGG_CONV_CONCAT_INCLUDED
#include "agg_basics.h"
namespace agg
{
//=============================================================conv_concat
// Concatenation of two paths. Usually used to combine lines or curves
// with markers such as arrowheads
template<class VS1, class VS2> class conv_concat
{
public:
conv_concat(VS1& source1, VS2& source2) :
m_source1(&source1), m_source2(&source2), m_status(2) {}
void attach1(VS1& source) { m_source1 = &source; }
void attach2(VS2& source) { m_source2 = &source; }
void rewind(unsigned path_id)
{
m_source1->rewind(path_id);
m_source2->rewind(0);
m_status = 0;
}
unsigned vertex(double* x, double* y)
{
unsigned cmd;
if(m_status == 0)
{
cmd = m_source1->vertex(x, y);
if(!is_stop(cmd)) return cmd;
m_status = 1;
}
if(m_status == 1)
{
cmd = m_source2->vertex(x, y);
if(!is_stop(cmd)) return cmd;
m_status = 2;
}
return path_cmd_stop;
}
private:
conv_concat(const conv_concat<VS1, VS2>&);
const conv_concat<VS1, VS2>&
operator = (const conv_concat<VS1, VS2>&);
VS1* m_source1;
VS2* m_source2;
int m_status;
};
}
#endif

View file

@ -1,65 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// conv_stroke
//
//----------------------------------------------------------------------------
#ifndef AGG_CONV_CONTOUR_INCLUDED
#define AGG_CONV_CONTOUR_INCLUDED
#include "agg_basics.h"
#include "agg_vcgen_contour.h"
#include "agg_conv_adaptor_vcgen.h"
namespace agg
{
//-----------------------------------------------------------conv_contour
template<class VertexSource>
struct conv_contour : public conv_adaptor_vcgen<VertexSource, vcgen_contour>
{
typedef conv_adaptor_vcgen<VertexSource, vcgen_contour> base_type;
conv_contour(VertexSource& vs) :
conv_adaptor_vcgen<VertexSource, vcgen_contour>(vs)
{
}
void line_join(line_join_e lj) { base_type::generator().line_join(lj); }
void inner_join(inner_join_e ij) { base_type::generator().inner_join(ij); }
void width(double w) { base_type::generator().width(w); }
void miter_limit(double ml) { base_type::generator().miter_limit(ml); }
void miter_limit_theta(double t) { base_type::generator().miter_limit_theta(t); }
void inner_miter_limit(double ml) { base_type::generator().inner_miter_limit(ml); }
void approximation_scale(double as) { base_type::generator().approximation_scale(as); }
void auto_detect_orientation(bool v) { base_type::generator().auto_detect_orientation(v); }
line_join_e line_join() const { return base_type::generator().line_join(); }
inner_join_e inner_join() const { return base_type::generator().inner_join(); }
double width() const { return base_type::generator().width(); }
double miter_limit() const { return base_type::generator().miter_limit(); }
double inner_miter_limit() const { return base_type::generator().inner_miter_limit(); }
double approximation_scale() const { return base_type::generator().approximation_scale(); }
bool auto_detect_orientation() const { return base_type::generator().auto_detect_orientation(); }
private:
conv_contour(const conv_contour<VertexSource>&);
const conv_contour<VertexSource>&
operator = (const conv_contour<VertexSource>&);
};
}
#endif

View file

@ -1,201 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// classes conv_curve
//
//----------------------------------------------------------------------------
#ifndef AGG_CONV_CURVE_INCLUDED
#define AGG_CONV_CURVE_INCLUDED
#include "agg_basics.h"
#include "agg_curves.h"
namespace agg
{
//---------------------------------------------------------------conv_curve
// Curve converter class. Any path storage can have Bezier curves defined
// by their control points. There're two types of curves supported: curve3
// and curve4. Curve3 is a conic Bezier curve with 2 endpoints and 1 control
// point. Curve4 has 2 control points (4 points in total) and can be used
// to interpolate more complicated curves. Curve4, unlike curve3 can be used
// to approximate arcs, both circular and elliptical. Curves are approximated
// with straight lines and one of the approaches is just to store the whole
// sequence of vertices that approximate our curve. It takes additional
// memory, and at the same time the consecutive vertices can be calculated
// on demand.
//
// Initially, path storages are not suppose to keep all the vertices of the
// curves (although, nothing prevents us from doing so). Instead, path_storage
// keeps only vertices, needed to calculate a curve on demand. Those vertices
// are marked with special commands. So, if the path_storage contains curves
// (which are not real curves yet), and we render this storage directly,
// all we will see is only 2 or 3 straight line segments (for curve3 and
// curve4 respectively). If we need to see real curves drawn we need to
// include this class into the conversion pipeline.
//
// Class conv_curve recognizes commands path_cmd_curve3 and path_cmd_curve4
// and converts these vertices into a move_to/line_to sequence.
//-----------------------------------------------------------------------
template<class VertexSource,
class Curve3=curve3,
class Curve4=curve4> class conv_curve
{
public:
typedef Curve3 curve3_type;
typedef Curve4 curve4_type;
typedef conv_curve<VertexSource, Curve3, Curve4> self_type;
explicit conv_curve(VertexSource& source) :
m_source(&source), m_last_x(0.0), m_last_y(0.0) {}
void attach(VertexSource& source) { m_source = &source; }
void approximation_method(curve_approximation_method_e v)
{
m_curve3.approximation_method(v);
m_curve4.approximation_method(v);
}
curve_approximation_method_e approximation_method() const
{
return m_curve4.approximation_method();
}
void approximation_scale(double s)
{
m_curve3.approximation_scale(s);
m_curve4.approximation_scale(s);
}
double approximation_scale() const
{
return m_curve4.approximation_scale();
}
void angle_tolerance(double v)
{
m_curve3.angle_tolerance(v);
m_curve4.angle_tolerance(v);
}
double angle_tolerance() const
{
return m_curve4.angle_tolerance();
}
void cusp_limit(double v)
{
m_curve3.cusp_limit(v);
m_curve4.cusp_limit(v);
}
double cusp_limit() const
{
return m_curve4.cusp_limit();
}
void rewind(unsigned path_id);
unsigned vertex(double* x, double* y);
private:
conv_curve(const self_type&);
const self_type& operator = (const self_type&);
VertexSource* m_source;
double m_last_x;
double m_last_y;
curve3_type m_curve3;
curve4_type m_curve4;
};
//------------------------------------------------------------------------
template<class VertexSource, class Curve3, class Curve4>
void conv_curve<VertexSource, Curve3, Curve4>::rewind(unsigned path_id)
{
m_source->rewind(path_id);
m_last_x = 0.0;
m_last_y = 0.0;
m_curve3.reset();
m_curve4.reset();
}
//------------------------------------------------------------------------
template<class VertexSource, class Curve3, class Curve4>
unsigned conv_curve<VertexSource, Curve3, Curve4>::vertex(double* x, double* y)
{
if(!is_stop(m_curve3.vertex(x, y)))
{
m_last_x = *x;
m_last_y = *y;
return path_cmd_line_to;
}
if(!is_stop(m_curve4.vertex(x, y)))
{
m_last_x = *x;
m_last_y = *y;
return path_cmd_line_to;
}
double ct2_x = 0.0;
double ct2_y = 0.0;
double end_x = 0.0;
double end_y = 0.0;
unsigned cmd = m_source->vertex(x, y);
switch(cmd)
{
case path_cmd_curve3:
m_source->vertex(&end_x, &end_y);
m_curve3.init(m_last_x, m_last_y,
*x, *y,
end_x, end_y);
m_curve3.vertex(x, y); // First call returns path_cmd_move_to
m_curve3.vertex(x, y); // This is the first vertex of the curve
cmd = path_cmd_line_to;
break;
case path_cmd_curve4:
m_source->vertex(&ct2_x, &ct2_y);
m_source->vertex(&end_x, &end_y);
m_curve4.init(m_last_x, m_last_y,
*x, *y,
ct2_x, ct2_y,
end_x, end_y);
m_curve4.vertex(x, y); // First call returns path_cmd_move_to
m_curve4.vertex(x, y); // This is the first vertex of the curve
cmd = path_cmd_line_to;
break;
}
m_last_x = *x;
m_last_y = *y;
return cmd;
}
}
#endif

View file

@ -1,68 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// conv_dash
//
//----------------------------------------------------------------------------
#ifndef AGG_CONV_DASH_INCLUDED
#define AGG_CONV_DASH_INCLUDED
#include "agg_basics.h"
#include "agg_vcgen_dash.h"
#include "agg_conv_adaptor_vcgen.h"
namespace agg
{
//---------------------------------------------------------------conv_dash
template<class VertexSource, class Markers=null_markers>
struct conv_dash : public conv_adaptor_vcgen<VertexSource, vcgen_dash, Markers>
{
typedef Markers marker_type;
typedef conv_adaptor_vcgen<VertexSource, vcgen_dash, Markers> base_type;
conv_dash(VertexSource& vs) :
conv_adaptor_vcgen<VertexSource, vcgen_dash, Markers>(vs)
{
}
void remove_all_dashes()
{
base_type::generator().remove_all_dashes();
}
void add_dash(double dash_len, double gap_len)
{
base_type::generator().add_dash(dash_len, gap_len);
}
void dash_start(double ds)
{
base_type::generator().dash_start(ds);
}
void shorten(double s) { base_type::generator().shorten(s); }
double shorten() const { return base_type::generator().shorten(); }
private:
conv_dash(const conv_dash<VertexSource, Markers>&);
const conv_dash<VertexSource, Markers>&
operator = (const conv_dash<VertexSource, Markers>&);
};
}
#endif

View file

@ -1,432 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// General Polygon Clipper based on the GPC library by Alan Murta
// Union, Intersection, XOR, A-B, B-A
// Contact the author if you intend to use it in commercial applications!
// http://www.cs.man.ac.uk/aig/staff/alan/software/
// Alan Murta (email: gpc@cs.man.ac.uk)
//
//----------------------------------------------------------------------------
#ifndef AGG_CONV_GPC_INCLUDED
#define AGG_CONV_GPC_INCLUDED
#include <math.h>
#include "agg_basics.h"
#include "agg_array.h"
extern "C"
{
#include "gpc.h"
}
namespace agg
{
enum gpc_op_e
{
gpc_or,
gpc_and,
gpc_xor,
gpc_a_minus_b,
gpc_b_minus_a
};
//================================================================conv_gpc
template<class VSA, class VSB> class conv_gpc
{
enum status
{
status_move_to,
status_line_to,
status_stop
};
struct contour_header_type
{
int num_vertices;
int hole_flag;
gpc_vertex* vertices;
};
typedef pod_bvector<gpc_vertex, 8> vertex_array_type;
typedef pod_bvector<contour_header_type, 6> contour_header_array_type;
public:
typedef VSA source_a_type;
typedef VSB source_b_type;
typedef conv_gpc<source_a_type, source_b_type> self_type;
~conv_gpc()
{
free_gpc_data();
}
conv_gpc(source_a_type& a, source_b_type& b, gpc_op_e op = gpc_or) :
m_src_a(&a),
m_src_b(&b),
m_status(status_move_to),
m_vertex(-1),
m_contour(-1),
m_operation(op)
{
memset(&m_poly_a, 0, sizeof(m_poly_a));
memset(&m_poly_b, 0, sizeof(m_poly_b));
memset(&m_result, 0, sizeof(m_result));
}
void attach1(VSA& source) { m_src_a = &source; }
void attach2(VSB& source) { m_src_b = &source; }
void operation(gpc_op_e v) { m_operation = v; }
// Vertex Source Interface
void rewind(unsigned path_id);
unsigned vertex(double* x, double* y);
private:
conv_gpc(const conv_gpc<VSA, VSB>&);
const conv_gpc<VSA, VSB>& operator = (const conv_gpc<VSA, VSB>&);
//--------------------------------------------------------------------
void free_polygon(gpc_polygon& p);
void free_result();
void free_gpc_data();
void start_contour();
void add_vertex(double x, double y);
void end_contour(unsigned orientation);
void make_polygon(gpc_polygon& p);
void start_extracting();
bool next_contour();
bool next_vertex(double* x, double* y);
//--------------------------------------------------------------------
template<class VS> void add(VS& src, gpc_polygon& p)
{
unsigned cmd;
double x, y;
double start_x = 0.0;
double start_y = 0.0;
bool line_to = false;
unsigned orientation = 0;
m_contour_accumulator.remove_all();
while(!is_stop(cmd = src.vertex(&x, &y)))
{
if(is_vertex(cmd))
{
if(is_move_to(cmd))
{
if(line_to)
{
end_contour(orientation);
orientation = 0;
}
start_contour();
start_x = x;
start_y = y;
}
add_vertex(x, y);
line_to = true;
}
else
{
if(is_end_poly(cmd))
{
orientation = get_orientation(cmd);
if(line_to && is_closed(cmd))
{
add_vertex(start_x, start_y);
}
}
}
}
if(line_to)
{
end_contour(orientation);
}
make_polygon(p);
}
private:
//--------------------------------------------------------------------
source_a_type* m_src_a;
source_b_type* m_src_b;
status m_status;
int m_vertex;
int m_contour;
gpc_op_e m_operation;
vertex_array_type m_vertex_accumulator;
contour_header_array_type m_contour_accumulator;
gpc_polygon m_poly_a;
gpc_polygon m_poly_b;
gpc_polygon m_result;
};
//------------------------------------------------------------------------
template<class VSA, class VSB>
void conv_gpc<VSA, VSB>::free_polygon(gpc_polygon& p)
{
int i;
for(i = 0; i < p.num_contours; i++)
{
pod_allocator<gpc_vertex>::deallocate(p.contour[i].vertex,
p.contour[i].num_vertices);
}
pod_allocator<gpc_vertex_list>::deallocate(p.contour, p.num_contours);
memset(&p, 0, sizeof(gpc_polygon));
}
//------------------------------------------------------------------------
template<class VSA, class VSB>
void conv_gpc<VSA, VSB>::free_result()
{
if(m_result.contour)
{
gpc_free_polygon(&m_result);
}
memset(&m_result, 0, sizeof(m_result));
}
//------------------------------------------------------------------------
template<class VSA, class VSB>
void conv_gpc<VSA, VSB>::free_gpc_data()
{
free_polygon(m_poly_a);
free_polygon(m_poly_b);
free_result();
}
//------------------------------------------------------------------------
template<class VSA, class VSB>
void conv_gpc<VSA, VSB>::start_contour()
{
contour_header_type h;
memset(&h, 0, sizeof(h));
m_contour_accumulator.add(h);
m_vertex_accumulator.remove_all();
}
//------------------------------------------------------------------------
template<class VSA, class VSB>
inline void conv_gpc<VSA, VSB>::add_vertex(double x, double y)
{
gpc_vertex v;
v.x = x;
v.y = y;
m_vertex_accumulator.add(v);
}
//------------------------------------------------------------------------
template<class VSA, class VSB>
void conv_gpc<VSA, VSB>::end_contour(unsigned orientation)
{
if(m_contour_accumulator.size())
{
if(m_vertex_accumulator.size() > 2)
{
contour_header_type& h =
m_contour_accumulator[m_contour_accumulator.size() - 1];
h.num_vertices = m_vertex_accumulator.size();
h.hole_flag = 0;
// TO DO: Clarify the "holes"
//if(is_cw(orientation)) h.hole_flag = 1;
h.vertices = pod_allocator<gpc_vertex>::allocate(h.num_vertices);
gpc_vertex* d = h.vertices;
int i;
for(i = 0; i < h.num_vertices; i++)
{
const gpc_vertex& s = m_vertex_accumulator[i];
d->x = s.x;
d->y = s.y;
++d;
}
}
else
{
m_vertex_accumulator.remove_last();
}
}
}
//------------------------------------------------------------------------
template<class VSA, class VSB>
void conv_gpc<VSA, VSB>::make_polygon(gpc_polygon& p)
{
free_polygon(p);
if(m_contour_accumulator.size())
{
p.num_contours = m_contour_accumulator.size();
p.hole = 0;
p.contour = pod_allocator<gpc_vertex_list>::allocate(p.num_contours);
int i;
gpc_vertex_list* pv = p.contour;
for(i = 0; i < p.num_contours; i++)
{
const contour_header_type& h = m_contour_accumulator[i];
pv->num_vertices = h.num_vertices;
pv->vertex = h.vertices;
++pv;
}
}
}
//------------------------------------------------------------------------
template<class VSA, class VSB>
void conv_gpc<VSA, VSB>::start_extracting()
{
m_status = status_move_to;
m_contour = -1;
m_vertex = -1;
}
//------------------------------------------------------------------------
template<class VSA, class VSB>
bool conv_gpc<VSA, VSB>::next_contour()
{
if(++m_contour < m_result.num_contours)
{
m_vertex = -1;
return true;
}
return false;
}
//------------------------------------------------------------------------
template<class VSA, class VSB>
inline bool conv_gpc<VSA, VSB>::next_vertex(double* x, double* y)
{
const gpc_vertex_list& vlist = m_result.contour[m_contour];
if(++m_vertex < vlist.num_vertices)
{
const gpc_vertex& v = vlist.vertex[m_vertex];
*x = v.x;
*y = v.y;
return true;
}
return false;
}
//------------------------------------------------------------------------
template<class VSA, class VSB>
void conv_gpc<VSA, VSB>::rewind(unsigned path_id)
{
free_result();
m_src_a->rewind(path_id);
m_src_b->rewind(path_id);
add(*m_src_a, m_poly_a);
add(*m_src_b, m_poly_b);
switch(m_operation)
{
case gpc_or:
gpc_polygon_clip(GPC_UNION,
&m_poly_a,
&m_poly_b,
&m_result);
break;
case gpc_and:
gpc_polygon_clip(GPC_INT,
&m_poly_a,
&m_poly_b,
&m_result);
break;
case gpc_xor:
gpc_polygon_clip(GPC_XOR,
&m_poly_a,
&m_poly_b,
&m_result);
break;
case gpc_a_minus_b:
gpc_polygon_clip(GPC_DIFF,
&m_poly_a,
&m_poly_b,
&m_result);
break;
case gpc_b_minus_a:
gpc_polygon_clip(GPC_DIFF,
&m_poly_b,
&m_poly_a,
&m_result);
break;
}
start_extracting();
}
//------------------------------------------------------------------------
template<class VSA, class VSB>
unsigned conv_gpc<VSA, VSB>::vertex(double* x, double* y)
{
if(m_status == status_move_to)
{
if(next_contour())
{
if(next_vertex(x, y))
{
m_status = status_line_to;
return path_cmd_move_to;
}
m_status = status_stop;
return path_cmd_end_poly | path_flags_close;
}
}
else
{
if(next_vertex(x, y))
{
return path_cmd_line_to;
}
else
{
m_status = status_move_to;
}
return path_cmd_end_poly | path_flags_close;
}
return path_cmd_stop;
}
}
#endif

View file

@ -1,148 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// conv_marker
//
//----------------------------------------------------------------------------
#ifndef AGG_CONV_MARKER_INCLUDED
#define AGG_CONV_MARKER_INCLUDED
#include "agg_basics.h"
#include "agg_trans_affine.h"
namespace agg
{
//-------------------------------------------------------------conv_marker
template<class MarkerLocator, class MarkerShapes>
class conv_marker
{
public:
conv_marker(MarkerLocator& ml, MarkerShapes& ms);
trans_affine& transform() { return m_transform; }
const trans_affine& transform() const { return m_transform; }
void rewind(unsigned path_id);
unsigned vertex(double* x, double* y);
private:
conv_marker(const conv_marker<MarkerLocator, MarkerShapes>&);
const conv_marker<MarkerLocator, MarkerShapes>&
operator = (const conv_marker<MarkerLocator, MarkerShapes>&);
enum status_e
{
initial,
markers,
polygon,
stop
};
MarkerLocator* m_marker_locator;
MarkerShapes* m_marker_shapes;
trans_affine m_transform;
trans_affine m_mtx;
status_e m_status;
unsigned m_marker;
unsigned m_num_markers;
};
//------------------------------------------------------------------------
template<class MarkerLocator, class MarkerShapes>
conv_marker<MarkerLocator, MarkerShapes>::conv_marker(MarkerLocator& ml, MarkerShapes& ms) :
m_marker_locator(&ml),
m_marker_shapes(&ms),
m_status(initial),
m_marker(0),
m_num_markers(1)
{
}
//------------------------------------------------------------------------
template<class MarkerLocator, class MarkerShapes>
void conv_marker<MarkerLocator, MarkerShapes>::rewind(unsigned)
{
m_status = initial;
m_marker = 0;
m_num_markers = 1;
}
//------------------------------------------------------------------------
template<class MarkerLocator, class MarkerShapes>
unsigned conv_marker<MarkerLocator, MarkerShapes>::vertex(double* x, double* y)
{
unsigned cmd = path_cmd_move_to;
double x1, y1, x2, y2;
while(!is_stop(cmd))
{
switch(m_status)
{
case initial:
if(m_num_markers == 0)
{
cmd = path_cmd_stop;
break;
}
m_marker_locator->rewind(m_marker);
++m_marker;
m_num_markers = 0;
m_status = markers;
case markers:
if(is_stop(m_marker_locator->vertex(&x1, &y1)))
{
m_status = initial;
break;
}
if(is_stop(m_marker_locator->vertex(&x2, &y2)))
{
m_status = initial;
break;
}
++m_num_markers;
m_mtx = m_transform;
m_mtx *= trans_affine_rotation(atan2(y2 - y1, x2 - x1));
m_mtx *= trans_affine_translation(x1, y1);
m_marker_shapes->rewind(m_marker - 1);
m_status = polygon;
case polygon:
cmd = m_marker_shapes->vertex(x, y);
if(is_stop(cmd))
{
cmd = path_cmd_move_to;
m_status = markers;
break;
}
m_mtx.transform(x, y);
return cmd;
case stop:
cmd = path_cmd_stop;
break;
}
}
return cmd;
}
}
#endif

View file

@ -1,51 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_CONV_MARKER_ADAPTOR_INCLUDED
#define AGG_CONV_MARKER_ADAPTOR_INCLUDED
#include "agg_basics.h"
#include "agg_conv_adaptor_vcgen.h"
#include "agg_vcgen_vertex_sequence.h"
namespace agg
{
//=====================================================conv_marker_adaptor
template<class VertexSource, class Markers=null_markers>
struct conv_marker_adaptor :
public conv_adaptor_vcgen<VertexSource, vcgen_vertex_sequence, Markers>
{
typedef Markers marker_type;
typedef conv_adaptor_vcgen<VertexSource, vcgen_vertex_sequence, Markers> base_type;
conv_marker_adaptor(VertexSource& vs) :
conv_adaptor_vcgen<VertexSource, vcgen_vertex_sequence, Markers>(vs)
{
}
void shorten(double s) { base_type::generator().shorten(s); }
double shorten() const { return base_type::generator().shorten(); }
private:
conv_marker_adaptor(const conv_marker_adaptor<VertexSource, Markers>&);
const conv_marker_adaptor<VertexSource, Markers>&
operator = (const conv_marker_adaptor<VertexSource, Markers>&);
};
}
#endif

View file

@ -1,48 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_CONV_SEGMENTATOR_INCLUDED
#define AGG_CONV_SEGMENTATOR_INCLUDED
#include "agg_basics.h"
#include "agg_conv_adaptor_vpgen.h"
#include "agg_vpgen_segmentator.h"
namespace agg
{
//========================================================conv_segmentator
template<class VertexSource>
struct conv_segmentator : public conv_adaptor_vpgen<VertexSource, vpgen_segmentator>
{
typedef conv_adaptor_vpgen<VertexSource, vpgen_segmentator> base_type;
conv_segmentator(VertexSource& vs) :
conv_adaptor_vpgen<VertexSource, vpgen_segmentator>(vs) {}
void approximation_scale(double s) { base_type::vpgen().approximation_scale(s); }
double approximation_scale() const { return base_type::vpgen().approximation_scale(); }
private:
conv_segmentator(const conv_segmentator<VertexSource>&);
const conv_segmentator<VertexSource>&
operator = (const conv_segmentator<VertexSource>&);
};
}
#endif

View file

@ -1,50 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_CONV_SHORTEN_PATH_INCLUDED
#define AGG_CONV_SHORTEN_PATH_INCLUDED
#include "agg_basics.h"
#include "agg_conv_adaptor_vcgen.h"
#include "agg_vcgen_vertex_sequence.h"
namespace agg
{
//=======================================================conv_shorten_path
template<class VertexSource> class conv_shorten_path :
public conv_adaptor_vcgen<VertexSource, vcgen_vertex_sequence>
{
public:
typedef conv_adaptor_vcgen<VertexSource, vcgen_vertex_sequence> base_type;
conv_shorten_path(VertexSource& vs) :
conv_adaptor_vcgen<VertexSource, vcgen_vertex_sequence>(vs)
{
}
void shorten(double s) { base_type::generator().shorten(s); }
double shorten() const { return base_type::generator().shorten(); }
private:
conv_shorten_path(const conv_shorten_path<VertexSource>&);
const conv_shorten_path<VertexSource>&
operator = (const conv_shorten_path<VertexSource>&);
};
}
#endif

View file

@ -1,80 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Smooth polygon generator
//
//----------------------------------------------------------------------------
#ifndef AGG_CONV_SMOOTH_POLY1_INCLUDED
#define AGG_CONV_SMOOTH_POLY1_INCLUDED
#include "agg_basics.h"
#include "agg_vcgen_smooth_poly1.h"
#include "agg_conv_adaptor_vcgen.h"
#include "agg_conv_curve.h"
namespace agg
{
//-------------------------------------------------------conv_smooth_poly1
template<class VertexSource>
struct conv_smooth_poly1 :
public conv_adaptor_vcgen<VertexSource, vcgen_smooth_poly1>
{
typedef conv_adaptor_vcgen<VertexSource, vcgen_smooth_poly1> base_type;
conv_smooth_poly1(VertexSource& vs) :
conv_adaptor_vcgen<VertexSource, vcgen_smooth_poly1>(vs)
{
}
void smooth_value(double v) { base_type::generator().smooth_value(v); }
double smooth_value() const { return base_type::generator().smooth_value(); }
private:
conv_smooth_poly1(const conv_smooth_poly1<VertexSource>&);
const conv_smooth_poly1<VertexSource>&
operator = (const conv_smooth_poly1<VertexSource>&);
};
//-------------------------------------------------conv_smooth_poly1_curve
template<class VertexSource>
struct conv_smooth_poly1_curve :
public conv_curve<conv_smooth_poly1<VertexSource> >
{
conv_smooth_poly1_curve(VertexSource& vs) :
conv_curve<conv_smooth_poly1<VertexSource> >(m_smooth),
m_smooth(vs)
{
}
void smooth_value(double v) { m_smooth.generator().smooth_value(v); }
double smooth_value() const { return m_smooth.generator().smooth_value(); }
private:
conv_smooth_poly1_curve(const conv_smooth_poly1_curve<VertexSource>&);
const conv_smooth_poly1_curve<VertexSource>&
operator = (const conv_smooth_poly1_curve<VertexSource>&);
conv_smooth_poly1<VertexSource> m_smooth;
};
}
#endif

View file

@ -1,73 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// conv_stroke
//
//----------------------------------------------------------------------------
#ifndef AGG_CONV_STROKE_INCLUDED
#define AGG_CONV_STROKE_INCLUDED
#include "agg_basics.h"
#include "agg_vcgen_stroke.h"
#include "agg_conv_adaptor_vcgen.h"
namespace agg
{
//-------------------------------------------------------------conv_stroke
template<class VertexSource, class Markers=null_markers>
struct conv_stroke :
public conv_adaptor_vcgen<VertexSource, vcgen_stroke, Markers>
{
typedef Markers marker_type;
typedef conv_adaptor_vcgen<VertexSource, vcgen_stroke, Markers> base_type;
conv_stroke(VertexSource& vs) :
conv_adaptor_vcgen<VertexSource, vcgen_stroke, Markers>(vs)
{
}
void line_cap(line_cap_e lc) { base_type::generator().line_cap(lc); }
void line_join(line_join_e lj) { base_type::generator().line_join(lj); }
void inner_join(inner_join_e ij) { base_type::generator().inner_join(ij); }
line_cap_e line_cap() const { return base_type::generator().line_cap(); }
line_join_e line_join() const { return base_type::generator().line_join(); }
inner_join_e inner_join() const { return base_type::generator().inner_join(); }
void width(double w) { base_type::generator().width(w); }
void miter_limit(double ml) { base_type::generator().miter_limit(ml); }
void miter_limit_theta(double t) { base_type::generator().miter_limit_theta(t); }
void inner_miter_limit(double ml) { base_type::generator().inner_miter_limit(ml); }
void approximation_scale(double as) { base_type::generator().approximation_scale(as); }
double width() const { return base_type::generator().width(); }
double miter_limit() const { return base_type::generator().miter_limit(); }
double inner_miter_limit() const { return base_type::generator().inner_miter_limit(); }
double approximation_scale() const { return base_type::generator().approximation_scale(); }
void shorten(double s) { base_type::generator().shorten(s); }
double shorten() const { return base_type::generator().shorten(); }
private:
conv_stroke(const conv_stroke<VertexSource, Markers>&);
const conv_stroke<VertexSource, Markers>&
operator = (const conv_stroke<VertexSource, Markers>&);
};
}
#endif

View file

@ -1,68 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// class conv_transform
//
//----------------------------------------------------------------------------
#ifndef AGG_CONV_TRANSFORM_INCLUDED
#define AGG_CONV_TRANSFORM_INCLUDED
#include "agg_basics.h"
#include "agg_trans_affine.h"
namespace agg
{
//----------------------------------------------------------conv_transform
template<class VertexSource, class Transformer=trans_affine> class conv_transform
{
public:
conv_transform(VertexSource& source, const Transformer& tr) :
m_source(&source), m_trans(&tr) {}
void attach(VertexSource& source) { m_source = &source; }
void rewind(unsigned path_id)
{
m_source->rewind(path_id);
}
unsigned vertex(double* x, double* y)
{
unsigned cmd = m_source->vertex(x, y);
if(is_vertex(cmd))
{
m_trans->transform(x, y);
}
return cmd;
}
void transformer(const Transformer& tr)
{
m_trans = &tr;
}
private:
conv_transform(const conv_transform<VertexSource>&);
const conv_transform<VertexSource>&
operator = (const conv_transform<VertexSource>&);
VertexSource* m_source;
const Transformer* m_trans;
};
}
#endif

View file

@ -1,52 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_CONV_UNCLOSE_POLYGON_INCLUDED
#define AGG_CONV_UNCLOSE_POLYGON_INCLUDED
#include "agg_basics.h"
namespace agg
{
//====================================================conv_unclose_polygon
template<class VertexSource> class conv_unclose_polygon
{
public:
explicit conv_unclose_polygon(VertexSource& vs) : m_source(&vs) {}
void attach(VertexSource& source) { m_source = &source; }
void rewind(unsigned path_id)
{
m_source->rewind(path_id);
}
unsigned vertex(double* x, double* y)
{
unsigned cmd = m_source->vertex(x, y);
if(is_end_poly(cmd)) cmd &= ~path_flags_close;
return cmd;
}
private:
conv_unclose_polygon(const conv_unclose_polygon<VertexSource>&);
const conv_unclose_polygon<VertexSource>&
operator = (const conv_unclose_polygon<VertexSource>&);
VertexSource* m_source;
};
}
#endif

View file

@ -1,693 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
// Copyright (C) 2005 Tony Juricic (tonygeek@yahoo.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_CURVES_INCLUDED
#define AGG_CURVES_INCLUDED
#include "agg_array.h"
namespace agg
{
// See Implementation agg_curves.cpp
//--------------------------------------------curve_approximation_method_e
enum curve_approximation_method_e
{
curve_inc,
curve_div
};
//--------------------------------------------------------------curve3_inc
class curve3_inc
{
public:
curve3_inc() :
m_num_steps(0), m_step(0), m_scale(1.0) { }
curve3_inc(double x1, double y1,
double x2, double y2,
double x3, double y3) :
m_num_steps(0), m_step(0), m_scale(1.0)
{
init(x1, y1, x2, y2, x3, y3);
}
void reset() { m_num_steps = 0; m_step = -1; }
void init(double x1, double y1,
double x2, double y2,
double x3, double y3);
void approximation_method(curve_approximation_method_e) {}
curve_approximation_method_e approximation_method() const { return curve_inc; }
void approximation_scale(double s);
double approximation_scale() const;
void angle_tolerance(double) {}
double angle_tolerance() const { return 0.0; }
void cusp_limit(double) {}
double cusp_limit() const { return 0.0; }
void rewind(unsigned path_id);
unsigned vertex(double* x, double* y);
private:
int m_num_steps;
int m_step;
double m_scale;
double m_start_x;
double m_start_y;
double m_end_x;
double m_end_y;
double m_fx;
double m_fy;
double m_dfx;
double m_dfy;
double m_ddfx;
double m_ddfy;
double m_saved_fx;
double m_saved_fy;
double m_saved_dfx;
double m_saved_dfy;
};
//-------------------------------------------------------------curve3_div
class curve3_div
{
public:
curve3_div() :
m_approximation_scale(1.0),
m_angle_tolerance(0.0),
m_count(0)
{}
curve3_div(double x1, double y1,
double x2, double y2,
double x3, double y3) :
m_approximation_scale(1.0),
m_angle_tolerance(0.0),
m_count(0)
{
init(x1, y1, x2, y2, x3, y3);
}
void reset() { m_points.remove_all(); m_count = 0; }
void init(double x1, double y1,
double x2, double y2,
double x3, double y3);
void approximation_method(curve_approximation_method_e) {}
curve_approximation_method_e approximation_method() const { return curve_div; }
void approximation_scale(double s) { m_approximation_scale = s; }
double approximation_scale() const { return m_approximation_scale; }
void angle_tolerance(double a) { m_angle_tolerance = a; }
double angle_tolerance() const { return m_angle_tolerance; }
void cusp_limit(double) {}
double cusp_limit() const { return 0.0; }
void rewind(unsigned)
{
m_count = 0;
}
unsigned vertex(double* x, double* y)
{
if(m_count >= m_points.size()) return path_cmd_stop;
const point_d& p = m_points[m_count++];
*x = p.x;
*y = p.y;
return (m_count == 1) ? path_cmd_move_to : path_cmd_line_to;
}
private:
void bezier(double x1, double y1,
double x2, double y2,
double x3, double y3);
void recursive_bezier(double x1, double y1,
double x2, double y2,
double x3, double y3,
unsigned level);
double m_approximation_scale;
double m_distance_tolerance_square;
double m_angle_tolerance;
unsigned m_count;
pod_bvector<point_d> m_points;
};
//-------------------------------------------------------------curve4_points
struct curve4_points
{
double cp[8];
curve4_points() {}
curve4_points(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4)
{
cp[0] = x1; cp[1] = y1; cp[2] = x2; cp[3] = y2;
cp[4] = x3; cp[5] = y3; cp[6] = x4; cp[7] = y4;
}
void init(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4)
{
cp[0] = x1; cp[1] = y1; cp[2] = x2; cp[3] = y2;
cp[4] = x3; cp[5] = y3; cp[6] = x4; cp[7] = y4;
}
double operator [] (unsigned i) const { return cp[i]; }
double& operator [] (unsigned i) { return cp[i]; }
};
//-------------------------------------------------------------curve4_inc
class curve4_inc
{
public:
curve4_inc() :
m_num_steps(0), m_step(0), m_scale(1.0) { }
curve4_inc(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4) :
m_num_steps(0), m_step(0), m_scale(1.0)
{
init(x1, y1, x2, y2, x3, y3, x4, y4);
}
curve4_inc(const curve4_points& cp) :
m_num_steps(0), m_step(0), m_scale(1.0)
{
init(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]);
}
void reset() { m_num_steps = 0; m_step = -1; }
void init(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4);
void init(const curve4_points& cp)
{
init(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]);
}
void approximation_method(curve_approximation_method_e) {}
curve_approximation_method_e approximation_method() const { return curve_inc; }
void approximation_scale(double s);
double approximation_scale() const;
void angle_tolerance(double) {}
double angle_tolerance() const { return 0.0; }
void cusp_limit(double) {}
double cusp_limit() const { return 0.0; }
void rewind(unsigned path_id);
unsigned vertex(double* x, double* y);
private:
int m_num_steps;
int m_step;
double m_scale;
double m_start_x;
double m_start_y;
double m_end_x;
double m_end_y;
double m_fx;
double m_fy;
double m_dfx;
double m_dfy;
double m_ddfx;
double m_ddfy;
double m_dddfx;
double m_dddfy;
double m_saved_fx;
double m_saved_fy;
double m_saved_dfx;
double m_saved_dfy;
double m_saved_ddfx;
double m_saved_ddfy;
};
//-------------------------------------------------------catrom_to_bezier
inline curve4_points catrom_to_bezier(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4)
{
// Trans. matrix Catmull-Rom to Bezier
//
// 0 1 0 0
// -1/6 1 1/6 0
// 0 1/6 1 -1/6
// 0 0 1 0
//
return curve4_points(
x2,
y2,
(-x1 + 6*x2 + x3) / 6,
(-y1 + 6*y2 + y3) / 6,
( x2 + 6*x3 - x4) / 6,
( y2 + 6*y3 - y4) / 6,
x3,
y3);
}
//-----------------------------------------------------------------------
inline curve4_points
catrom_to_bezier(const curve4_points& cp)
{
return catrom_to_bezier(cp[0], cp[1], cp[2], cp[3],
cp[4], cp[5], cp[6], cp[7]);
}
//-----------------------------------------------------ubspline_to_bezier
inline curve4_points ubspline_to_bezier(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4)
{
// Trans. matrix Uniform BSpline to Bezier
//
// 1/6 4/6 1/6 0
// 0 4/6 2/6 0
// 0 2/6 4/6 0
// 0 1/6 4/6 1/6
//
return curve4_points(
(x1 + 4*x2 + x3) / 6,
(y1 + 4*y2 + y3) / 6,
(4*x2 + 2*x3) / 6,
(4*y2 + 2*y3) / 6,
(2*x2 + 4*x3) / 6,
(2*y2 + 4*y3) / 6,
(x2 + 4*x3 + x4) / 6,
(y2 + 4*y3 + y4) / 6);
}
//-----------------------------------------------------------------------
inline curve4_points
ubspline_to_bezier(const curve4_points& cp)
{
return ubspline_to_bezier(cp[0], cp[1], cp[2], cp[3],
cp[4], cp[5], cp[6], cp[7]);
}
//------------------------------------------------------hermite_to_bezier
inline curve4_points hermite_to_bezier(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4)
{
// Trans. matrix Hermite to Bezier
//
// 1 0 0 0
// 1 0 1/3 0
// 0 1 0 -1/3
// 0 1 0 0
//
return curve4_points(
x1,
y1,
(3*x1 + x3) / 3,
(3*y1 + y3) / 3,
(3*x2 - x4) / 3,
(3*y2 - y4) / 3,
x2,
y2);
}
//-----------------------------------------------------------------------
inline curve4_points
hermite_to_bezier(const curve4_points& cp)
{
return hermite_to_bezier(cp[0], cp[1], cp[2], cp[3],
cp[4], cp[5], cp[6], cp[7]);
}
//-------------------------------------------------------------curve4_div
class curve4_div
{
public:
curve4_div() :
m_approximation_scale(1.0),
m_angle_tolerance(0.0),
m_cusp_limit(0.0),
m_count(0)
{}
curve4_div(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4) :
m_approximation_scale(1.0),
m_angle_tolerance(0.0),
m_cusp_limit(0.0),
m_count(0)
{
init(x1, y1, x2, y2, x3, y3, x4, y4);
}
curve4_div(const curve4_points& cp) :
m_approximation_scale(1.0),
m_angle_tolerance(0.0),
m_count(0)
{
init(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]);
}
void reset() { m_points.remove_all(); m_count = 0; }
void init(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4);
void init(const curve4_points& cp)
{
init(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]);
}
void approximation_method(curve_approximation_method_e) {}
curve_approximation_method_e approximation_method() const
{
return curve_div;
}
void approximation_scale(double s) { m_approximation_scale = s; }
double approximation_scale() const { return m_approximation_scale; }
void angle_tolerance(double a) { m_angle_tolerance = a; }
double angle_tolerance() const { return m_angle_tolerance; }
void cusp_limit(double v)
{
m_cusp_limit = (v == 0.0) ? 0.0 : pi - v;
}
double cusp_limit() const
{
return (m_cusp_limit == 0.0) ? 0.0 : pi - m_cusp_limit;
}
void rewind(unsigned)
{
m_count = 0;
}
unsigned vertex(double* x, double* y)
{
if(m_count >= m_points.size()) return path_cmd_stop;
const point_d& p = m_points[m_count++];
*x = p.x;
*y = p.y;
return (m_count == 1) ? path_cmd_move_to : path_cmd_line_to;
}
private:
void bezier(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4);
void recursive_bezier(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4,
unsigned level);
double m_approximation_scale;
double m_distance_tolerance_square;
double m_angle_tolerance;
double m_cusp_limit;
unsigned m_count;
pod_bvector<point_d> m_points;
};
//-----------------------------------------------------------------curve3
class curve3
{
public:
curve3() : m_approximation_method(curve_div) {}
curve3(double x1, double y1,
double x2, double y2,
double x3, double y3) :
m_approximation_method(curve_div)
{
init(x1, y1, x2, y2, x3, y3);
}
void reset()
{
m_curve_inc.reset();
m_curve_div.reset();
}
void init(double x1, double y1,
double x2, double y2,
double x3, double y3)
{
if(m_approximation_method == curve_inc)
{
m_curve_inc.init(x1, y1, x2, y2, x3, y3);
}
else
{
m_curve_div.init(x1, y1, x2, y2, x3, y3);
}
}
void approximation_method(curve_approximation_method_e v)
{
m_approximation_method = v;
}
curve_approximation_method_e approximation_method() const
{
return m_approximation_method;
}
void approximation_scale(double s)
{
m_curve_inc.approximation_scale(s);
m_curve_div.approximation_scale(s);
}
double approximation_scale() const
{
return m_curve_inc.approximation_scale();
}
void angle_tolerance(double a)
{
m_curve_div.angle_tolerance(a);
}
double angle_tolerance() const
{
return m_curve_div.angle_tolerance();
}
void cusp_limit(double v)
{
m_curve_div.cusp_limit(v);
}
double cusp_limit() const
{
return m_curve_div.cusp_limit();
}
void rewind(unsigned path_id)
{
if(m_approximation_method == curve_inc)
{
m_curve_inc.rewind(path_id);
}
else
{
m_curve_div.rewind(path_id);
}
}
unsigned vertex(double* x, double* y)
{
if(m_approximation_method == curve_inc)
{
return m_curve_inc.vertex(x, y);
}
return m_curve_div.vertex(x, y);
}
private:
curve3_inc m_curve_inc;
curve3_div m_curve_div;
curve_approximation_method_e m_approximation_method;
};
//-----------------------------------------------------------------curve4
class curve4
{
public:
curve4() : m_approximation_method(curve_div) {}
curve4(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4) :
m_approximation_method(curve_div)
{
init(x1, y1, x2, y2, x3, y3, x4, y4);
}
curve4(const curve4_points& cp) :
m_approximation_method(curve_div)
{
init(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]);
}
void reset()
{
m_curve_inc.reset();
m_curve_div.reset();
}
void init(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4)
{
if(m_approximation_method == curve_inc)
{
m_curve_inc.init(x1, y1, x2, y2, x3, y3, x4, y4);
}
else
{
m_curve_div.init(x1, y1, x2, y2, x3, y3, x4, y4);
}
}
void init(const curve4_points& cp)
{
init(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]);
}
void approximation_method(curve_approximation_method_e v)
{
m_approximation_method = v;
}
curve_approximation_method_e approximation_method() const
{
return m_approximation_method;
}
void approximation_scale(double s)
{
m_curve_inc.approximation_scale(s);
m_curve_div.approximation_scale(s);
}
double approximation_scale() const { return m_curve_inc.approximation_scale(); }
void angle_tolerance(double v)
{
m_curve_div.angle_tolerance(v);
}
double angle_tolerance() const
{
return m_curve_div.angle_tolerance();
}
void cusp_limit(double v)
{
m_curve_div.cusp_limit(v);
}
double cusp_limit() const
{
return m_curve_div.cusp_limit();
}
void rewind(unsigned path_id)
{
if(m_approximation_method == curve_inc)
{
m_curve_inc.rewind(path_id);
}
else
{
m_curve_div.rewind(path_id);
}
}
unsigned vertex(double* x, double* y)
{
if(m_approximation_method == curve_inc)
{
return m_curve_inc.vertex(x, y);
}
return m_curve_div.vertex(x, y);
}
private:
curve4_inc m_curve_inc;
curve4_div m_curve_div;
curve_approximation_method_e m_approximation_method;
};
}
#endif

View file

@ -1,290 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// classes dda_line_interpolator, dda2_line_interpolator
//
//----------------------------------------------------------------------------
#ifndef AGG_DDA_LINE_INCLUDED
#define AGG_DDA_LINE_INCLUDED
#include <stdlib.h>
#include "agg_basics.h"
namespace agg
{
//===================================================dda_line_interpolator
template<int FractionShift, int YShift=0> class dda_line_interpolator
{
public:
//--------------------------------------------------------------------
dda_line_interpolator() {}
//--------------------------------------------------------------------
dda_line_interpolator(int y1, int y2, unsigned count) :
m_y(y1),
m_inc(((y2 - y1) << FractionShift) / int(count)),
m_dy(0)
{
}
//--------------------------------------------------------------------
void operator ++ ()
{
m_dy += m_inc;
}
//--------------------------------------------------------------------
void operator -- ()
{
m_dy -= m_inc;
}
//--------------------------------------------------------------------
void operator += (unsigned n)
{
m_dy += m_inc * n;
}
//--------------------------------------------------------------------
void operator -= (unsigned n)
{
m_dy -= m_inc * n;
}
//--------------------------------------------------------------------
int y() const { return m_y + (m_dy >> (FractionShift-YShift)); }
int dy() const { return m_dy; }
private:
int m_y;
int m_inc;
int m_dy;
};
//=================================================dda2_line_interpolator
class dda2_line_interpolator
{
public:
typedef int save_data_type;
enum save_size_e { save_size = 2 };
//--------------------------------------------------------------------
dda2_line_interpolator() {}
//-------------------------------------------- Forward-adjusted line
dda2_line_interpolator(int y1, int y2, int count) :
m_cnt(count <= 0 ? 1 : count),
m_lft((y2 - y1) / m_cnt),
m_rem((y2 - y1) % m_cnt),
m_mod(m_rem),
m_y(y1)
{
if(m_mod <= 0)
{
m_mod += count;
m_rem += count;
m_lft--;
}
m_mod -= count;
}
//-------------------------------------------- Backward-adjusted line
dda2_line_interpolator(int y1, int y2, int count, int) :
m_cnt(count <= 0 ? 1 : count),
m_lft((y2 - y1) / m_cnt),
m_rem((y2 - y1) % m_cnt),
m_mod(m_rem),
m_y(y1)
{
if(m_mod <= 0)
{
m_mod += count;
m_rem += count;
m_lft--;
}
}
//-------------------------------------------- Backward-adjusted line
dda2_line_interpolator(int y, int count) :
m_cnt(count <= 0 ? 1 : count),
m_lft(y / m_cnt),
m_rem(y % m_cnt),
m_mod(m_rem),
m_y(0)
{
if(m_mod <= 0)
{
m_mod += count;
m_rem += count;
m_lft--;
}
}
//--------------------------------------------------------------------
void save(save_data_type* data) const
{
data[0] = m_mod;
data[1] = m_y;
}
//--------------------------------------------------------------------
void load(const save_data_type* data)
{
m_mod = data[0];
m_y = data[1];
}
//--------------------------------------------------------------------
void operator++()
{
m_mod += m_rem;
m_y += m_lft;
if(m_mod > 0)
{
m_mod -= m_cnt;
m_y++;
}
}
//--------------------------------------------------------------------
void operator--()
{
if(m_mod <= m_rem)
{
m_mod += m_cnt;
m_y--;
}
m_mod -= m_rem;
m_y -= m_lft;
}
//--------------------------------------------------------------------
void adjust_forward()
{
m_mod -= m_cnt;
}
//--------------------------------------------------------------------
void adjust_backward()
{
m_mod += m_cnt;
}
//--------------------------------------------------------------------
int mod() const { return m_mod; }
int rem() const { return m_rem; }
int lft() const { return m_lft; }
//--------------------------------------------------------------------
int y() const { return m_y; }
private:
int m_cnt;
int m_lft;
int m_rem;
int m_mod;
int m_y;
};
//---------------------------------------------line_bresenham_interpolator
class line_bresenham_interpolator
{
public:
enum subpixel_scale_e
{
subpixel_shift = 8,
subpixel_scale = 1 << subpixel_shift,
subpixel_mask = subpixel_scale - 1
};
//--------------------------------------------------------------------
static int line_lr(int v) { return v >> subpixel_shift; }
//--------------------------------------------------------------------
line_bresenham_interpolator(int x1, int y1, int x2, int y2) :
m_x1_lr(line_lr(x1)),
m_y1_lr(line_lr(y1)),
m_x2_lr(line_lr(x2)),
m_y2_lr(line_lr(y2)),
m_ver(abs(m_x2_lr - m_x1_lr) < abs(m_y2_lr - m_y1_lr)),
m_len(m_ver ? abs(m_y2_lr - m_y1_lr) :
abs(m_x2_lr - m_x1_lr)),
m_inc(m_ver ? ((y2 > y1) ? 1 : -1) : ((x2 > x1) ? 1 : -1)),
m_interpolator(m_ver ? x1 : y1,
m_ver ? x2 : y2,
m_len)
{
}
//--------------------------------------------------------------------
bool is_ver() const { return m_ver; }
unsigned len() const { return m_len; }
int inc() const { return m_inc; }
//--------------------------------------------------------------------
void hstep()
{
++m_interpolator;
m_x1_lr += m_inc;
}
//--------------------------------------------------------------------
void vstep()
{
++m_interpolator;
m_y1_lr += m_inc;
}
//--------------------------------------------------------------------
int x1() const { return m_x1_lr; }
int y1() const { return m_y1_lr; }
int x2() const { return line_lr(m_interpolator.y()); }
int y2() const { return line_lr(m_interpolator.y()); }
int x2_hr() const { return m_interpolator.y(); }
int y2_hr() const { return m_interpolator.y(); }
private:
int m_x1_lr;
int m_y1_lr;
int m_x2_lr;
int m_y2_lr;
bool m_ver;
unsigned m_len;
int m_inc;
dda2_line_interpolator m_interpolator;
};
}
#endif

View file

@ -1,123 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// class ellipse
//
//----------------------------------------------------------------------------
#ifndef AGG_ELLIPSE_INCLUDED
#define AGG_ELLIPSE_INCLUDED
#include "agg_basics.h"
#include <math.h>
namespace agg
{
//----------------------------------------------------------------ellipse
class ellipse
{
public:
ellipse() :
m_x(0.0), m_y(0.0), m_rx(1.0), m_ry(1.0), m_scale(1.0),
m_num(4), m_step(0), m_cw(false) {}
ellipse(double x, double y, double rx, double ry,
unsigned num_steps=0, bool cw=false) :
m_x(x), m_y(y), m_rx(rx), m_ry(ry), m_scale(1.0),
m_num(num_steps), m_step(0), m_cw(cw)
{
if(m_num == 0) calc_num_steps();
}
void init(double x, double y, double rx, double ry,
unsigned num_steps=0, bool cw=false);
void approximation_scale(double scale);
void rewind(unsigned path_id);
unsigned vertex(double* x, double* y);
private:
void calc_num_steps();
double m_x;
double m_y;
double m_rx;
double m_ry;
double m_scale;
unsigned m_num;
unsigned m_step;
bool m_cw;
};
//------------------------------------------------------------------------
inline void ellipse::init(double x, double y, double rx, double ry,
unsigned num_steps, bool cw)
{
m_x = x;
m_y = y;
m_rx = rx;
m_ry = ry;
m_num = num_steps;
m_step = 0;
m_cw = cw;
if(m_num == 0) calc_num_steps();
}
//------------------------------------------------------------------------
inline void ellipse::approximation_scale(double scale)
{
m_scale = scale;
calc_num_steps();
}
//------------------------------------------------------------------------
inline void ellipse::calc_num_steps()
{
double ra = (fabs(m_rx) + fabs(m_ry)) / 2;
double da = acos(ra / (ra + 0.125 / m_scale)) * 2;
m_num = uround(2*pi / da);
}
//------------------------------------------------------------------------
inline void ellipse::rewind(unsigned)
{
m_step = 0;
}
//------------------------------------------------------------------------
inline unsigned ellipse::vertex(double* x, double* y)
{
if(m_step == m_num)
{
++m_step;
return path_cmd_end_poly | path_flags_close | path_flags_ccw;
}
if(m_step > m_num) return path_cmd_stop;
double angle = double(m_step) / double(m_num) * 2.0 * pi;
if(m_cw) angle = 2.0 * pi - angle;
*x = m_x + cos(angle) * m_rx;
*y = m_y + sin(angle) * m_ry;
m_step++;
return ((m_step == 1) ? path_cmd_move_to : path_cmd_line_to);
}
}
#endif

View file

@ -1,113 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Simple Bresenham interpolator for ellipsees
//
//----------------------------------------------------------------------------
#ifndef AGG_ELLIPSE_BRESENHAM_INCLUDED
#define AGG_ELLIPSE_BRESENHAM_INCLUDED
#include "agg_basics.h"
namespace agg
{
//------------------------------------------ellipse_bresenham_interpolator
class ellipse_bresenham_interpolator
{
public:
ellipse_bresenham_interpolator(int rx, int ry) :
m_rx2(rx * rx),
m_ry2(ry * ry),
m_two_rx2(m_rx2 << 1),
m_two_ry2(m_ry2 << 1),
m_dx(0),
m_dy(0),
m_inc_x(0),
m_inc_y(-ry * m_two_rx2),
m_cur_f(0)
{}
int dx() const { return m_dx; }
int dy() const { return m_dy; }
void operator++ ()
{
int mx, my, mxy, min_m;
int fx, fy, fxy;
mx = fx = m_cur_f + m_inc_x + m_ry2;
if(mx < 0) mx = -mx;
my = fy = m_cur_f + m_inc_y + m_rx2;
if(my < 0) my = -my;
mxy = fxy = m_cur_f + m_inc_x + m_ry2 + m_inc_y + m_rx2;
if(mxy < 0) mxy = -mxy;
min_m = mx;
bool flag = true;
if(min_m > my)
{
min_m = my;
flag = false;
}
m_dx = m_dy = 0;
if(min_m > mxy)
{
m_inc_x += m_two_ry2;
m_inc_y += m_two_rx2;
m_cur_f = fxy;
m_dx = 1;
m_dy = 1;
return;
}
if(flag)
{
m_inc_x += m_two_ry2;
m_cur_f = fx;
m_dx = 1;
return;
}
m_inc_y += m_two_rx2;
m_cur_f = fy;
m_dy = 1;
}
private:
int m_rx2;
int m_ry2;
int m_two_rx2;
int m_two_ry2;
int m_dx;
int m_dy;
int m_inc_x;
int m_inc_y;
int m_cur_f;
};
}
#endif

View file

@ -1,59 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_EMBEDDED_RASTER_FONTS_INCLUDED
#define AGG_EMBEDDED_RASTER_FONTS_INCLUDED
#include "agg_basics.h"
namespace agg
{
extern const int8u gse4x6[];
extern const int8u gse4x8[];
extern const int8u gse5x7[];
extern const int8u gse5x9[];
extern const int8u gse6x12[];
extern const int8u gse6x9[];
extern const int8u gse7x11[];
extern const int8u gse7x11_bold[];
extern const int8u gse7x15[];
extern const int8u gse7x15_bold[];
extern const int8u gse8x16[];
extern const int8u gse8x16_bold[];
extern const int8u mcs11_prop[];
extern const int8u mcs11_prop_condensed[];
extern const int8u mcs12_prop[];
extern const int8u mcs13_prop[];
extern const int8u mcs5x10_mono[];
extern const int8u mcs5x11_mono[];
extern const int8u mcs6x10_mono[];
extern const int8u mcs6x11_mono[];
extern const int8u mcs7x12_mono_high[];
extern const int8u mcs7x12_mono_low[];
extern const int8u verdana12[];
extern const int8u verdana12_bold[];
extern const int8u verdana13[];
extern const int8u verdana13_bold[];
extern const int8u verdana14[];
extern const int8u verdana14_bold[];
extern const int8u verdana16[];
extern const int8u verdana16_bold[];
extern const int8u verdana17[];
extern const int8u verdana17_bold[];
extern const int8u verdana18[];
extern const int8u verdana18_bold[];
}
#endif

View file

@ -1,409 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_FONT_CACHE_MANAGER_INCLUDED
#define AGG_FONT_CACHE_MANAGER_INCLUDED
#include <string.h>
#include "agg_array.h"
namespace agg
{
//---------------------------------------------------------glyph_data_type
enum glyph_data_type
{
glyph_data_invalid = 0,
glyph_data_mono = 1,
glyph_data_gray8 = 2,
glyph_data_outline = 3
};
//-------------------------------------------------------------glyph_cache
struct glyph_cache
{
unsigned glyph_index;
int8u* data;
unsigned data_size;
glyph_data_type data_type;
rect_i bounds;
double advance_x;
double advance_y;
};
//--------------------------------------------------------------font_cache
class font_cache
{
public:
enum block_size_e { block_size = 16384-16 };
//--------------------------------------------------------------------
font_cache() :
m_allocator(block_size),
m_font_signature(0)
{}
//--------------------------------------------------------------------
void signature(const char* font_signature)
{
m_font_signature = (char*)m_allocator.allocate(strlen(font_signature) + 1);
strcpy(m_font_signature, font_signature);
memset(m_glyphs, 0, sizeof(m_glyphs));
}
//--------------------------------------------------------------------
bool font_is(const char* font_signature) const
{
return strcmp(font_signature, m_font_signature) == 0;
}
//--------------------------------------------------------------------
const glyph_cache* find_glyph(unsigned glyph_code) const
{
unsigned msb = (glyph_code >> 8) & 0xFF;
if(m_glyphs[msb])
{
return m_glyphs[msb][glyph_code & 0xFF];
}
return 0;
}
//--------------------------------------------------------------------
glyph_cache* cache_glyph(unsigned glyph_code,
unsigned glyph_index,
unsigned data_size,
glyph_data_type data_type,
const rect_i& bounds,
double advance_x,
double advance_y)
{
unsigned msb = (glyph_code >> 8) & 0xFF;
if(m_glyphs[msb] == 0)
{
m_glyphs[msb] =
(glyph_cache**)m_allocator.allocate(sizeof(glyph_cache*) * 256,
sizeof(glyph_cache*));
memset(m_glyphs[msb], 0, sizeof(glyph_cache*) * 256);
}
unsigned lsb = glyph_code & 0xFF;
if(m_glyphs[msb][lsb]) return 0; // Already exists, do not overwrite
glyph_cache* glyph =
(glyph_cache*)m_allocator.allocate(sizeof(glyph_cache),
sizeof(double));
glyph->glyph_index = glyph_index;
glyph->data = m_allocator.allocate(data_size);
glyph->data_size = data_size;
glyph->data_type = data_type;
glyph->bounds = bounds;
glyph->advance_x = advance_x;
glyph->advance_y = advance_y;
return m_glyphs[msb][lsb] = glyph;
}
private:
block_allocator m_allocator;
glyph_cache** m_glyphs[256];
char* m_font_signature;
};
//---------------------------------------------------------font_cache_pool
class font_cache_pool
{
public:
//--------------------------------------------------------------------
~font_cache_pool()
{
unsigned i;
for(i = 0; i < m_num_fonts; ++i)
{
obj_allocator<font_cache>::deallocate(m_fonts[i]);
}
pod_allocator<font_cache*>::deallocate(m_fonts, m_max_fonts);
}
//--------------------------------------------------------------------
font_cache_pool(unsigned max_fonts=32) :
m_fonts(pod_allocator<font_cache*>::allocate(max_fonts)),
m_max_fonts(max_fonts),
m_num_fonts(0),
m_cur_font(0)
{}
//--------------------------------------------------------------------
void font(const char* font_signature, bool reset_cache = false)
{
int idx = find_font(font_signature);
if(idx >= 0)
{
if(reset_cache)
{
obj_allocator<font_cache>::deallocate(m_fonts[idx]);
m_fonts[idx] = obj_allocator<font_cache>::allocate();
m_fonts[idx]->signature(font_signature);
}
m_cur_font = m_fonts[idx];
}
else
{
if(m_num_fonts >= m_max_fonts)
{
obj_allocator<font_cache>::deallocate(m_fonts[0]);
memcpy(m_fonts,
m_fonts + 1,
(m_max_fonts - 1) * sizeof(font_cache*));
m_num_fonts = m_max_fonts - 1;
}
m_fonts[m_num_fonts] = obj_allocator<font_cache>::allocate();
m_fonts[m_num_fonts]->signature(font_signature);
m_cur_font = m_fonts[m_num_fonts];
++m_num_fonts;
}
}
//--------------------------------------------------------------------
const font_cache* font() const
{
return m_cur_font;
}
//--------------------------------------------------------------------
const glyph_cache* find_glyph(unsigned glyph_code) const
{
if(m_cur_font) return m_cur_font->find_glyph(glyph_code);
return 0;
}
//--------------------------------------------------------------------
glyph_cache* cache_glyph(unsigned glyph_code,
unsigned glyph_index,
unsigned data_size,
glyph_data_type data_type,
const rect_i& bounds,
double advance_x,
double advance_y)
{
if(m_cur_font)
{
return m_cur_font->cache_glyph(glyph_code,
glyph_index,
data_size,
data_type,
bounds,
advance_x,
advance_y);
}
return 0;
}
//--------------------------------------------------------------------
int find_font(const char* font_signature)
{
unsigned i;
for(i = 0; i < m_num_fonts; i++)
{
if(m_fonts[i]->font_is(font_signature)) return int(i);
}
return -1;
}
private:
font_cache** m_fonts;
unsigned m_max_fonts;
unsigned m_num_fonts;
font_cache* m_cur_font;
};
//------------------------------------------------------------------------
enum glyph_rendering
{
glyph_ren_native_mono,
glyph_ren_native_gray8,
glyph_ren_outline,
glyph_ren_agg_mono,
glyph_ren_agg_gray8
};
//------------------------------------------------------font_cache_manager
template<class FontEngine> class font_cache_manager
{
public:
typedef FontEngine font_engine_type;
typedef font_cache_manager<FontEngine> self_type;
typedef typename font_engine_type::path_adaptor_type path_adaptor_type;
typedef typename font_engine_type::gray8_adaptor_type gray8_adaptor_type;
typedef typename gray8_adaptor_type::embedded_scanline gray8_scanline_type;
typedef typename font_engine_type::mono_adaptor_type mono_adaptor_type;
typedef typename mono_adaptor_type::embedded_scanline mono_scanline_type;
//--------------------------------------------------------------------
font_cache_manager(font_engine_type& engine, unsigned max_fonts=32) :
m_fonts(max_fonts),
m_engine(engine),
m_change_stamp(-1),
m_prev_glyph(0),
m_last_glyph(0)
{}
//--------------------------------------------------------------------
void reset_last_glyph()
{
m_prev_glyph = m_last_glyph = 0;
}
//--------------------------------------------------------------------
const glyph_cache* glyph(unsigned glyph_code)
{
synchronize();
const glyph_cache* gl = m_fonts.find_glyph(glyph_code);
if(gl)
{
m_prev_glyph = m_last_glyph;
return m_last_glyph = gl;
}
else
{
if(m_engine.prepare_glyph(glyph_code))
{
m_prev_glyph = m_last_glyph;
m_last_glyph = m_fonts.cache_glyph(glyph_code,
m_engine.glyph_index(),
m_engine.data_size(),
m_engine.data_type(),
m_engine.bounds(),
m_engine.advance_x(),
m_engine.advance_y());
m_engine.write_glyph_to(m_last_glyph->data);
return m_last_glyph;
}
}
return 0;
}
//--------------------------------------------------------------------
void init_embedded_adaptors(const glyph_cache* gl,
double x, double y,
double scale=1.0)
{
if(gl)
{
switch(gl->data_type)
{
default: return;
case glyph_data_mono:
m_mono_adaptor.init(gl->data, gl->data_size, x, y);
break;
case glyph_data_gray8:
m_gray8_adaptor.init(gl->data, gl->data_size, x, y);
break;
case glyph_data_outline:
m_path_adaptor.init(gl->data, gl->data_size, x, y, scale);
break;
}
}
}
//--------------------------------------------------------------------
path_adaptor_type& path_adaptor() { return m_path_adaptor; }
gray8_adaptor_type& gray8_adaptor() { return m_gray8_adaptor; }
gray8_scanline_type& gray8_scanline() { return m_gray8_scanline; }
mono_adaptor_type& mono_adaptor() { return m_mono_adaptor; }
mono_scanline_type& mono_scanline() { return m_mono_scanline; }
//--------------------------------------------------------------------
const glyph_cache* perv_glyph() const { return m_prev_glyph; }
const glyph_cache* last_glyph() const { return m_last_glyph; }
//--------------------------------------------------------------------
bool add_kerning(double* x, double* y)
{
if(m_prev_glyph && m_last_glyph)
{
return m_engine.add_kerning(m_prev_glyph->glyph_index,
m_last_glyph->glyph_index,
x, y);
}
return false;
}
//--------------------------------------------------------------------
void precache(unsigned from, unsigned to)
{
for(; from <= to; ++from) glyph(from);
}
//--------------------------------------------------------------------
void reset_cache()
{
m_fonts.font(m_engine.font_signature(), true);
m_change_stamp = m_engine.change_stamp();
m_prev_glyph = m_last_glyph = 0;
}
private:
//--------------------------------------------------------------------
font_cache_manager(const self_type&);
const self_type& operator = (const self_type&);
//--------------------------------------------------------------------
void synchronize()
{
if(m_change_stamp != m_engine.change_stamp())
{
m_fonts.font(m_engine.font_signature());
m_change_stamp = m_engine.change_stamp();
m_prev_glyph = m_last_glyph = 0;
}
}
font_cache_pool m_fonts;
font_engine_type& m_engine;
int m_change_stamp;
double m_dx;
double m_dy;
const glyph_cache* m_prev_glyph;
const glyph_cache* m_last_glyph;
path_adaptor_type m_path_adaptor;
gray8_adaptor_type m_gray8_adaptor;
gray8_scanline_type m_gray8_scanline;
mono_adaptor_type m_mono_adaptor;
mono_scanline_type m_mono_scanline;
};
}
#endif

View file

@ -1,123 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_GAMMA_FUNCTIONS_INCLUDED
#define AGG_GAMMA_FUNCTIONS_INCLUDED
#include <math.h>
#include "agg_basics.h"
namespace agg
{
//===============================================================gamma_none
struct gamma_none
{
double operator()(double x) const { return x; }
};
//==============================================================gamma_power
class gamma_power
{
public:
gamma_power() : m_gamma(1.0) {}
gamma_power(double g) : m_gamma(g) {}
void gamma(double g) { m_gamma = g; }
double gamma() const { return m_gamma; }
double operator() (double x) const
{
return pow(x, m_gamma);
}
private:
double m_gamma;
};
//==========================================================gamma_threshold
class gamma_threshold
{
public:
gamma_threshold() : m_threshold(0.5) {}
gamma_threshold(double t) : m_threshold(t) {}
void threshold(double t) { m_threshold = t; }
double threshold() const { return m_threshold; }
double operator() (double x) const
{
return (x < m_threshold) ? 0.0 : 1.0;
}
private:
double m_threshold;
};
//============================================================gamma_linear
class gamma_linear
{
public:
gamma_linear() : m_start(0.0), m_end(1.0) {}
gamma_linear(double s, double e) : m_start(s), m_end(e) {}
void set(double s, double e) { m_start = s; m_end = e; }
void start(double s) { m_start = s; }
void end(double e) { m_end = e; }
double start() const { return m_start; }
double end() const { return m_end; }
double operator() (double x) const
{
if(x < m_start) return 0.0;
if(x > m_end) return 1.0;
return (x - m_start) / (m_end - m_start);
}
private:
double m_start;
double m_end;
};
//==========================================================gamma_multiply
class gamma_multiply
{
public:
gamma_multiply() : m_mul(1.0) {}
gamma_multiply(double v) : m_mul(v) {}
void value(double v) { m_mul = v; }
double value() const { return m_mul; }
double operator() (double x) const
{
double y = x * m_mul;
if(y > 1.0) y = 1.0;
return y;
}
private:
double m_mul;
};
}
#endif

View file

@ -1,121 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_GAMMA_LUT_INCLUDED
#define AGG_GAMMA_LUT_INCLUDED
#include <math.h>
#include "agg_basics.h"
namespace agg
{
template<class LoResT=int8u,
class HiResT=int8u,
unsigned GammaShift=8,
unsigned HiResShift=8> class gamma_lut
{
public:
typedef gamma_lut<LoResT, HiResT, GammaShift, HiResShift> self_type;
enum gamma_scale_e
{
gamma_shift = GammaShift,
gamma_size = 1 << gamma_shift,
gamma_mask = gamma_size - 1
};
enum hi_res_scale_e
{
hi_res_shift = HiResShift,
hi_res_size = 1 << hi_res_shift,
hi_res_mask = hi_res_size - 1
};
~gamma_lut()
{
pod_allocator<LoResT>::deallocate(m_inv_gamma, hi_res_size);
pod_allocator<HiResT>::deallocate(m_dir_gamma, gamma_size);
}
gamma_lut() :
m_gamma(1.0),
m_dir_gamma(pod_allocator<HiResT>::allocate(gamma_size)),
m_inv_gamma(pod_allocator<LoResT>::allocate(hi_res_size))
{
unsigned i;
for(i = 0; i < gamma_size; i++)
{
m_dir_gamma[i] = HiResT(i << (hi_res_shift - gamma_shift));
}
for(i = 0; i < hi_res_size; i++)
{
m_inv_gamma[i] = LoResT(i >> (hi_res_shift - gamma_shift));
}
}
gamma_lut(double g) :
m_gamma(1.0),
m_dir_gamma(pod_allocator<HiResT>::allocate(gamma_size)),
m_inv_gamma(pod_allocator<LoResT>::allocate(hi_res_size))
{
gamma(g);
}
void gamma(double g)
{
m_gamma = g;
unsigned i;
for(i = 0; i < gamma_size; i++)
{
m_dir_gamma[i] = (HiResT)
uround(pow(i / double(gamma_mask), m_gamma) * double(hi_res_mask));
}
double inv_g = 1.0 / g;
for(i = 0; i < hi_res_size; i++)
{
m_inv_gamma[i] = (LoResT)
uround(pow(i / double(hi_res_mask), inv_g) * double(gamma_mask));
}
}
double gamma() const
{
return m_gamma;
}
HiResT dir(LoResT v) const
{
return m_dir_gamma[unsigned(v)];
}
LoResT inv(HiResT v) const
{
return m_inv_gamma[unsigned(v)];
}
private:
gamma_lut(const self_type&);
const self_type& operator = (const self_type&);
double m_gamma;
HiResT* m_dir_gamma;
LoResT* m_inv_gamma;
};
}
#endif

View file

@ -1,155 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_GLYPH_RASTER_BIN_INCLUDED
#define AGG_GLYPH_RASTER_BIN_INCLUDED
#include <string.h>
#include "agg_basics.h"
namespace agg
{
//========================================================glyph_raster_bin
template<class ColorT> class glyph_raster_bin
{
public:
typedef ColorT color_type;
//--------------------------------------------------------------------
struct glyph_rect
{
int x1,y1,x2,y2;
double dx, dy;
};
//--------------------------------------------------------------------
glyph_raster_bin(const int8u* font) :
m_font(font),
m_big_endian(false)
{
int t = 1;
if(*(char*)&t == 0) m_big_endian = true;
memset(m_span, 0, sizeof(m_span));
}
//--------------------------------------------------------------------
const int8u* font() const { return m_font; }
void font(const int8u* f) { m_font = f; }
//--------------------------------------------------------------------
double height() const { return m_font[0]; }
double base_line() const { return m_font[1]; }
//--------------------------------------------------------------------
template<class CharT>
double width(const CharT* str) const
{
unsigned start_char = m_font[2];
unsigned num_chars = m_font[3];
unsigned w = 0;
while(*str)
{
unsigned glyph = *str;
const int8u* bits = m_font + 4 + num_chars * 2 +
value(m_font + 4 + (glyph - start_char) * 2);
w += *bits;
++str;
}
return w;
}
//--------------------------------------------------------------------
void prepare(glyph_rect* r, double x, double y, unsigned glyph, bool flip)
{
unsigned start_char = m_font[2];
unsigned num_chars = m_font[3];
m_bits = m_font + 4 + num_chars * 2 +
value(m_font + 4 + (glyph - start_char) * 2);
m_glyph_width = *m_bits++;
m_glyph_byte_width = (m_glyph_width + 7) >> 3;
r->x1 = int(x);
r->x2 = r->x1 + m_glyph_width - 1;
if(flip)
{
r->y1 = int(y) - m_font[0] + m_font[1];
r->y2 = r->y1 + m_font[0] - 1;
}
else
{
r->y1 = int(y) - m_font[1] + 1;
r->y2 = r->y1 + m_font[0] - 1;
}
r->dx = m_glyph_width;
r->dy = 0;
}
//--------------------------------------------------------------------
const cover_type* span(unsigned i)
{
i = m_font[0] - i - 1;
const int8u* bits = m_bits + i * m_glyph_byte_width;
unsigned j;
unsigned val = *bits;
unsigned nb = 0;
for(j = 0; j < m_glyph_width; ++j)
{
m_span[j] = (cover_type)((val & 0x80) ? cover_full : cover_none);
val <<= 1;
if(++nb >= 8)
{
val = *++bits;
nb = 0;
}
}
return m_span;
}
private:
//--------------------------------------------------------------------
int16u value(const int8u* p) const
{
int16u v;
if(m_big_endian)
{
*(int8u*)&v = p[1];
*((int8u*)&v + 1) = p[0];
}
else
{
*(int8u*)&v = p[0];
*((int8u*)&v + 1) = p[1];
}
return v;
}
//--------------------------------------------------------------------
const int8u* m_font;
bool m_big_endian;
cover_type m_span[32];
const int8u* m_bits;
unsigned m_glyph_width;
unsigned m_glyph_byte_width;
};
}
#endif

View file

@ -1,244 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_GRADIENT_LUT_INCLUDED
#define AGG_GRADIENT_LUT_INCLUDED
#include "agg_array.h"
#include "agg_dda_line.h"
#include "agg_color_rgba.h"
#include "agg_color_gray.h"
namespace agg
{
//======================================================color_interpolator
template<class ColorT> struct color_interpolator
{
public:
typedef ColorT color_type;
color_interpolator(const color_type& c1,
const color_type& c2,
unsigned len) :
m_c1(c1),
m_c2(c2),
m_len(len),
m_count(0)
{}
void operator ++ ()
{
++m_count;
}
color_type color() const
{
return m_c1.gradient(m_c2, double(m_count) / m_len);
}
private:
color_type m_c1;
color_type m_c2;
unsigned m_len;
unsigned m_count;
};
//========================================================================
// Fast specialization for rgba8
template<> struct color_interpolator<rgba8>
{
public:
typedef rgba8 color_type;
color_interpolator(const color_type& c1,
const color_type& c2,
unsigned len) :
r(c1.r, c2.r, len),
g(c1.g, c2.g, len),
b(c1.b, c2.b, len),
a(c1.a, c2.a, len)
{}
void operator ++ ()
{
++r; ++g; ++b; ++a;
}
color_type color() const
{
return color_type(r.y(), g.y(), b.y(), a.y());
}
private:
agg::dda_line_interpolator<14> r, g, b, a;
};
//========================================================================
// Fast specialization for gray8
template<> struct color_interpolator<gray8>
{
public:
typedef gray8 color_type;
color_interpolator(const color_type& c1,
const color_type& c2,
unsigned len) :
v(c1.v, c2.v, len),
a(c1.a, c2.a, len)
{}
void operator ++ ()
{
++v; ++a;
}
color_type color() const
{
return color_type(v.y(), a.y());
}
private:
agg::dda_line_interpolator<14> v,a;
};
//============================================================gradient_lut
template<class ColorInterpolator,
unsigned ColorLutSize=256> class gradient_lut
{
public:
typedef ColorInterpolator interpolator_type;
typedef typename interpolator_type::color_type color_type;
enum { color_lut_size = ColorLutSize };
//--------------------------------------------------------------------
gradient_lut() : m_color_lut(color_lut_size) {}
// Build Gradient Lut
// First, call remove_all(), then add_color() at least twice,
// then build_lut(). Argument "offset" in add_color must be
// in range [0...1] and defines a color stop as it is described
// in SVG specification, section Gradients and Patterns.
// The simplest linear gradient is:
// gradient_lut.add_color(0.0, start_color);
// gradient_lut.add_color(1.0, end_color);
//--------------------------------------------------------------------
void remove_all();
void add_color(double offset, const color_type& color);
void build_lut();
// Size-index Interface. This class can be used directly as the
// ColorF in span_gradient. All it needs is two access methods
// size() and operator [].
//--------------------------------------------------------------------
static unsigned size()
{
return color_lut_size;
}
const color_type& operator [] (unsigned i) const
{
return m_color_lut[i];
}
private:
//--------------------------------------------------------------------
struct color_point
{
double offset;
color_type color;
color_point() {}
color_point(double off, const color_type& c) :
offset(off), color(c)
{
if(offset < 0.0) offset = 0.0;
if(offset > 1.0) offset = 1.0;
}
};
typedef agg::pod_bvector<color_point, 4> color_profile_type;
typedef agg::pod_array<color_type> color_lut_type;
static bool offset_less(const color_point& a, const color_point& b)
{
return a.offset < b.offset;
}
static bool offset_equal(const color_point& a, const color_point& b)
{
return a.offset == b.offset;
}
//--------------------------------------------------------------------
color_profile_type m_color_profile;
color_lut_type m_color_lut;
};
//------------------------------------------------------------------------
template<class T, unsigned S>
void gradient_lut<T,S>::remove_all()
{
m_color_profile.remove_all();
}
//------------------------------------------------------------------------
template<class T, unsigned S>
void gradient_lut<T,S>::add_color(double offset, const color_type& color)
{
m_color_profile.add(color_point(offset, color));
}
//------------------------------------------------------------------------
template<class T, unsigned S>
void gradient_lut<T,S>::build_lut()
{
quick_sort(m_color_profile, offset_less);
m_color_profile.cut_at(remove_duplicates(m_color_profile, offset_equal));
if(m_color_profile.size() >= 2)
{
unsigned i;
unsigned start = uround(m_color_profile[0].offset * color_lut_size);
unsigned end;
color_type c = m_color_profile[0].color;
for(i = 0; i < start; i++)
{
m_color_lut[i] = c;
}
for(i = 1; i < m_color_profile.size(); i++)
{
end = uround(m_color_profile[i].offset * color_lut_size);
interpolator_type ci(m_color_profile[i-1].color,
m_color_profile[i ].color,
end - start + 1);
while(start < end)
{
m_color_lut[start] = ci.color();
++ci;
++start;
}
}
c = m_color_profile.last().color;
for(; end < m_color_lut.size(); end++)
{
m_color_lut[end] = c;
}
}
}
}
#endif

View file

@ -1,153 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Class gsv_text
//
//----------------------------------------------------------------------------
#ifndef AGG_GSV_TEXT_INCLUDED
#define AGG_GSV_TEXT_INCLUDED
#include "agg_array.h"
#include "agg_conv_stroke.h"
#include "agg_conv_transform.h"
namespace agg
{
//---------------------------------------------------------------gsv_text
//
// See Implementation agg_gsv_text.cpp
//
class gsv_text
{
enum status
{
initial,
next_char,
start_glyph,
glyph
};
public:
gsv_text();
void font(const void* font);
void flip(bool flip_y) { m_flip = flip_y; }
void load_font(const char* file);
void size(double height, double width=0.0);
void space(double space);
void line_space(double line_space);
void start_point(double x, double y);
void text(const char* text);
double text_width();
void rewind(unsigned path_id);
unsigned vertex(double* x, double* y);
private:
// not supposed to be copied
gsv_text(const gsv_text&);
const gsv_text& operator = (const gsv_text&);
int16u value(const int8u* p) const
{
int16u v;
if(m_big_endian)
{
*(int8u*)&v = p[1];
*((int8u*)&v + 1) = p[0];
}
else
{
*(int8u*)&v = p[0];
*((int8u*)&v + 1) = p[1];
}
return v;
}
private:
double m_x;
double m_y;
double m_start_x;
double m_width;
double m_height;
double m_space;
double m_line_space;
char m_chr[2];
char* m_text;
pod_array<char> m_text_buf;
char* m_cur_chr;
const void* m_font;
pod_array<char> m_loaded_font;
status m_status;
bool m_big_endian;
bool m_flip;
int8u* m_indices;
int8* m_glyphs;
int8* m_bglyph;
int8* m_eglyph;
double m_w;
double m_h;
};
//--------------------------------------------------------gsv_text_outline
template<class Transformer = trans_affine> class gsv_text_outline
{
public:
gsv_text_outline(gsv_text& text, const Transformer& trans) :
m_polyline(text),
m_trans(m_polyline, trans)
{
}
void width(double w)
{
m_polyline.width(w);
}
void transformer(const Transformer* trans)
{
m_trans->transformer(trans);
}
void rewind(unsigned path_id)
{
m_trans.rewind(path_id);
m_polyline.line_join(round_join);
m_polyline.line_cap(round_cap);
}
unsigned vertex(double* x, double* y)
{
return m_trans.vertex(x, y);
}
private:
conv_stroke<gsv_text> m_polyline;
conv_transform<conv_stroke<gsv_text>, Transformer> m_trans;
};
}
#endif

View file

@ -1,481 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_IMAGE_ACCESSORS_INCLUDED
#define AGG_IMAGE_ACCESSORS_INCLUDED
#include "agg_basics.h"
namespace agg
{
//-----------------------------------------------------image_accessor_clip
template<class PixFmt> class image_accessor_clip
{
public:
typedef PixFmt pixfmt_type;
typedef typename pixfmt_type::color_type color_type;
typedef typename pixfmt_type::order_type order_type;
typedef typename pixfmt_type::value_type value_type;
enum pix_width_e { pix_width = pixfmt_type::pix_width };
image_accessor_clip() {}
explicit image_accessor_clip(const pixfmt_type& pixf,
const color_type& bk) :
m_pixf(&pixf)
{
pixfmt_type::make_pix(m_bk_buf, bk);
}
void attach(const pixfmt_type& pixf)
{
m_pixf = &pixf;
}
void background_color(const color_type& bk)
{
pixfmt_type::make_pix(m_bk_buf, bk);
}
private:
AGG_INLINE const int8u* pixel() const
{
if(m_y >= 0 && m_y < (int)m_pixf->height() &&
m_x >= 0 && m_x < (int)m_pixf->width())
{
return m_pixf->pix_ptr(m_x, m_y);
}
return m_bk_buf;
}
public:
AGG_INLINE const int8u* span(int x, int y, unsigned len)
{
m_x = m_x0 = x;
m_y = y;
if(y >= 0 && y < (int)m_pixf->height() &&
x >= 0 && x+(int)len <= (int)m_pixf->width())
{
return m_pix_ptr = m_pixf->pix_ptr(x, y);
}
m_pix_ptr = 0;
return pixel();
}
AGG_INLINE const int8u* next_x()
{
if(m_pix_ptr) return m_pix_ptr += pix_width;
++m_x;
return pixel();
}
AGG_INLINE const int8u* next_y()
{
++m_y;
m_x = m_x0;
if(m_pix_ptr &&
m_y >= 0 && m_y < (int)m_pixf->height())
{
return m_pix_ptr = m_pixf->pix_ptr(m_x, m_y);
}
m_pix_ptr = 0;
return pixel();
}
private:
const pixfmt_type* m_pixf;
int8u m_bk_buf[4];
int m_x, m_x0, m_y;
const int8u* m_pix_ptr;
};
//--------------------------------------------------image_accessor_no_clip
template<class PixFmt> class image_accessor_no_clip
{
public:
typedef PixFmt pixfmt_type;
typedef typename pixfmt_type::color_type color_type;
typedef typename pixfmt_type::order_type order_type;
typedef typename pixfmt_type::value_type value_type;
enum pix_width_e { pix_width = pixfmt_type::pix_width };
image_accessor_no_clip() {}
explicit image_accessor_no_clip(const pixfmt_type& pixf) :
m_pixf(&pixf)
{}
void attach(const pixfmt_type& pixf)
{
m_pixf = &pixf;
}
AGG_INLINE const int8u* span(int x, int y, unsigned)
{
m_x = x;
m_y = y;
return m_pix_ptr = m_pixf->pix_ptr(x, y);
}
AGG_INLINE const int8u* next_x()
{
return m_pix_ptr += pix_width;
}
AGG_INLINE const int8u* next_y()
{
++m_y;
return m_pix_ptr = m_pixf->pix_ptr(m_x, m_y);
}
private:
const pixfmt_type* m_pixf;
int m_x, m_y;
const int8u* m_pix_ptr;
};
//----------------------------------------------------image_accessor_clone
template<class PixFmt> class image_accessor_clone
{
public:
typedef PixFmt pixfmt_type;
typedef typename pixfmt_type::color_type color_type;
typedef typename pixfmt_type::order_type order_type;
typedef typename pixfmt_type::value_type value_type;
enum pix_width_e { pix_width = pixfmt_type::pix_width };
image_accessor_clone() {}
explicit image_accessor_clone(const pixfmt_type& pixf) :
m_pixf(&pixf)
{}
void attach(const pixfmt_type& pixf)
{
m_pixf = &pixf;
}
private:
AGG_INLINE const int8u* pixel() const
{
register int x = m_x;
register int y = m_y;
if(x < 0) x = 0;
if(y < 0) y = 0;
if(x >= (int)m_pixf->width()) x = m_pixf->width() - 1;
if(y >= (int)m_pixf->height()) y = m_pixf->height() - 1;
return m_pixf->pix_ptr(x, y);
}
public:
AGG_INLINE const int8u* span(int x, int y, unsigned len)
{
m_x = m_x0 = x;
m_y = y;
if(y >= 0 && y < (int)m_pixf->height() &&
x >= 0 && x+len <= (int)m_pixf->width())
{
return m_pix_ptr = m_pixf->pix_ptr(x, y);
}
m_pix_ptr = 0;
return pixel();
}
AGG_INLINE const int8u* next_x()
{
if(m_pix_ptr) return m_pix_ptr += pix_width;
++m_x;
return pixel();
}
AGG_INLINE const int8u* next_y()
{
++m_y;
m_x = m_x0;
if(m_pix_ptr &&
m_y >= 0 && m_y < (int)m_pixf->height())
{
return m_pix_ptr = m_pixf->pix_ptr(m_x, m_y);
}
m_pix_ptr = 0;
return pixel();
}
private:
const pixfmt_type* m_pixf;
int m_x, m_x0, m_y;
const int8u* m_pix_ptr;
};
//-----------------------------------------------------image_accessor_wrap
template<class PixFmt, class WrapX, class WrapY> class image_accessor_wrap
{
public:
typedef PixFmt pixfmt_type;
typedef typename pixfmt_type::color_type color_type;
typedef typename pixfmt_type::order_type order_type;
typedef typename pixfmt_type::value_type value_type;
enum pix_width_e { pix_width = pixfmt_type::pix_width };
image_accessor_wrap() {}
explicit image_accessor_wrap(const pixfmt_type& pixf) :
m_pixf(&pixf),
m_wrap_x(pixf.width()),
m_wrap_y(pixf.height())
{}
void attach(const pixfmt_type& pixf)
{
m_pixf = &pixf;
}
AGG_INLINE const int8u* span(int x, int y, unsigned)
{
m_x = x;
m_row_ptr = m_pixf->row_ptr(m_wrap_y(y));
return m_row_ptr + m_wrap_x(x) * pix_width;
}
AGG_INLINE const int8u* next_x()
{
int x = ++m_wrap_x;
return m_row_ptr + x * pix_width;
}
AGG_INLINE const int8u* next_y()
{
m_row_ptr = m_pixf->row_ptr(++m_wrap_y);
return m_row_ptr + m_wrap_x(m_x) * pix_width;
}
private:
const pixfmt_type* m_pixf;
const int8u* m_row_ptr;
int m_x;
WrapX m_wrap_x;
WrapY m_wrap_y;
};
//--------------------------------------------------------wrap_mode_repeat
class wrap_mode_repeat
{
public:
wrap_mode_repeat() {}
wrap_mode_repeat(unsigned size) :
m_size(size),
m_add(size * (0x3FFFFFFF / size)),
m_value(0)
{}
AGG_INLINE unsigned operator() (int v)
{
return m_value = (unsigned(v) + m_add) % m_size;
}
AGG_INLINE unsigned operator++ ()
{
++m_value;
if(m_value >= m_size) m_value = 0;
return m_value;
}
private:
unsigned m_size;
unsigned m_add;
unsigned m_value;
};
//---------------------------------------------------wrap_mode_repeat_pow2
class wrap_mode_repeat_pow2
{
public:
wrap_mode_repeat_pow2() {}
wrap_mode_repeat_pow2(unsigned size) : m_value(0)
{
m_mask = 1;
while(m_mask < size) m_mask = (m_mask << 1) | 1;
m_mask >>= 1;
}
AGG_INLINE unsigned operator() (int v)
{
return m_value = unsigned(v) & m_mask;
}
AGG_INLINE unsigned operator++ ()
{
++m_value;
if(m_value > m_mask) m_value = 0;
return m_value;
}
private:
unsigned m_mask;
unsigned m_value;
};
//----------------------------------------------wrap_mode_repeat_auto_pow2
class wrap_mode_repeat_auto_pow2
{
public:
wrap_mode_repeat_auto_pow2() {}
wrap_mode_repeat_auto_pow2(unsigned size) :
m_size(size),
m_add(size * (0x3FFFFFFF / size)),
m_mask((m_size & (m_size-1)) ? 0 : m_size-1),
m_value(0)
{}
AGG_INLINE unsigned operator() (int v)
{
if(m_mask) return m_value = unsigned(v) & m_mask;
return m_value = (unsigned(v) + m_add) % m_size;
}
AGG_INLINE unsigned operator++ ()
{
++m_value;
if(m_value >= m_size) m_value = 0;
return m_value;
}
private:
unsigned m_size;
unsigned m_add;
unsigned m_mask;
unsigned m_value;
};
//-------------------------------------------------------wrap_mode_reflect
class wrap_mode_reflect
{
public:
wrap_mode_reflect() {}
wrap_mode_reflect(unsigned size) :
m_size(size),
m_size2(size * 2),
m_add(m_size2 * (0x3FFFFFFF / m_size2)),
m_value(0)
{}
AGG_INLINE unsigned operator() (int v)
{
m_value = (unsigned(v) + m_add) % m_size2;
if(m_value >= m_size) return m_size2 - m_value - 1;
return m_value;
}
AGG_INLINE unsigned operator++ ()
{
++m_value;
if(m_value >= m_size2) m_value = 0;
if(m_value >= m_size) return m_size2 - m_value - 1;
return m_value;
}
private:
unsigned m_size;
unsigned m_size2;
unsigned m_add;
unsigned m_value;
};
//--------------------------------------------------wrap_mode_reflect_pow2
class wrap_mode_reflect_pow2
{
public:
wrap_mode_reflect_pow2() {}
wrap_mode_reflect_pow2(unsigned size) : m_value(0)
{
m_mask = 1;
m_size = 1;
while(m_mask < size)
{
m_mask = (m_mask << 1) | 1;
m_size <<= 1;
}
}
AGG_INLINE unsigned operator() (int v)
{
m_value = unsigned(v) & m_mask;
if(m_value >= m_size) return m_mask - m_value;
return m_value;
}
AGG_INLINE unsigned operator++ ()
{
++m_value;
m_value &= m_mask;
if(m_value >= m_size) return m_mask - m_value;
return m_value;
}
private:
unsigned m_size;
unsigned m_mask;
unsigned m_value;
};
//---------------------------------------------wrap_mode_reflect_auto_pow2
class wrap_mode_reflect_auto_pow2
{
public:
wrap_mode_reflect_auto_pow2() {}
wrap_mode_reflect_auto_pow2(unsigned size) :
m_size(size),
m_size2(size * 2),
m_add(m_size2 * (0x3FFFFFFF / m_size2)),
m_mask((m_size2 & (m_size2-1)) ? 0 : m_size2-1),
m_value(0)
{}
AGG_INLINE unsigned operator() (int v)
{
m_value = m_mask ? unsigned(v) & m_mask :
(unsigned(v) + m_add) % m_size2;
if(m_value >= m_size) return m_size2 - m_value - 1;
return m_value;
}
AGG_INLINE unsigned operator++ ()
{
++m_value;
if(m_value >= m_size2) m_value = 0;
if(m_value >= m_size) return m_size2 - m_value - 1;
return m_value;
}
private:
unsigned m_size;
unsigned m_size2;
unsigned m_add;
unsigned m_mask;
unsigned m_value;
};
}
#endif

View file

@ -1,448 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Image transformation filters,
// Filtering classes (image_filter_lut, image_filter),
// Basic filter shape classes
//----------------------------------------------------------------------------
#ifndef AGG_IMAGE_FILTERS_INCLUDED
#define AGG_IMAGE_FILTERS_INCLUDED
#include "agg_array.h"
#include "agg_math.h"
namespace agg
{
// See Implementation agg_image_filters.cpp
enum image_filter_scale_e
{
image_filter_shift = 14, //----image_filter_shift
image_filter_scale = 1 << image_filter_shift, //----image_filter_scale
image_filter_mask = image_filter_scale - 1 //----image_filter_mask
};
enum image_subpixel_scale_e
{
image_subpixel_shift = 8, //----image_subpixel_shift
image_subpixel_scale = 1 << image_subpixel_shift, //----image_subpixel_scale
image_subpixel_mask = image_subpixel_scale - 1 //----image_subpixel_mask
};
//-----------------------------------------------------image_filter_lut
class image_filter_lut
{
public:
template<class FilterF> void calculate(const FilterF& filter,
bool normalization=true)
{
double r = filter.radius();
realloc_lut(r);
unsigned i;
unsigned pivot = diameter() << (image_subpixel_shift - 1);
for(i = 0; i < pivot; i++)
{
double x = double(i) / double(image_subpixel_scale);
double y = filter.calc_weight(x);
m_weight_array[pivot + i] =
m_weight_array[pivot - i] = (int16)iround(y * image_filter_scale);
}
unsigned end = (diameter() << image_subpixel_shift) - 1;
m_weight_array[0] = m_weight_array[end];
if(normalization)
{
normalize();
}
}
image_filter_lut() : m_radius(0), m_diameter(0), m_start(0) {}
template<class FilterF> image_filter_lut(const FilterF& filter,
bool normalization=true)
{
calculate(filter, normalization);
}
double radius() const { return m_radius; }
unsigned diameter() const { return m_diameter; }
int start() const { return m_start; }
const int16* weight_array() const { return &m_weight_array[0]; }
void normalize();
private:
void realloc_lut(double radius);
image_filter_lut(const image_filter_lut&);
const image_filter_lut& operator = (const image_filter_lut&);
double m_radius;
unsigned m_diameter;
int m_start;
pod_array<int16> m_weight_array;
};
//--------------------------------------------------------image_filter
template<class FilterF> class image_filter : public image_filter_lut
{
public:
image_filter()
{
calculate(m_filter_function);
}
private:
FilterF m_filter_function;
};
//-----------------------------------------------image_filter_bilinear
struct image_filter_bilinear
{
static double radius() { return 1.0; }
static double calc_weight(double x)
{
return 1.0 - x;
}
};
//-----------------------------------------------image_filter_hanning
struct image_filter_hanning
{
static double radius() { return 1.0; }
static double calc_weight(double x)
{
return 0.5 + 0.5 * cos(pi * x);
}
};
//-----------------------------------------------image_filter_hamming
struct image_filter_hamming
{
static double radius() { return 1.0; }
static double calc_weight(double x)
{
return 0.54 + 0.46 * cos(pi * x);
}
};
//-----------------------------------------------image_filter_hermite
struct image_filter_hermite
{
static double radius() { return 1.0; }
static double calc_weight(double x)
{
return (2.0 * x - 3.0) * x * x + 1.0;
}
};
//------------------------------------------------image_filter_quadric
struct image_filter_quadric
{
static double radius() { return 1.5; }
static double calc_weight(double x)
{
double t;
if(x < 0.5) return 0.75 - x * x;
if(x < 1.5) {t = x - 1.5; return 0.5 * t * t;}
return 0.0;
}
};
//------------------------------------------------image_filter_bicubic
class image_filter_bicubic
{
static double pow3(double x)
{
return (x <= 0.0) ? 0.0 : x * x * x;
}
public:
static double radius() { return 2.0; }
static double calc_weight(double x)
{
return
(1.0/6.0) *
(pow3(x + 2) - 4 * pow3(x + 1) + 6 * pow3(x) - 4 * pow3(x - 1));
}
};
//-------------------------------------------------image_filter_kaiser
class image_filter_kaiser
{
double a;
double i0a;
double epsilon;
public:
image_filter_kaiser(double b = 6.33) :
a(b), epsilon(1e-12)
{
i0a = 1.0 / bessel_i0(b);
}
static double radius() { return 1.0; }
double calc_weight(double x) const
{
return bessel_i0(a * sqrt(1. - x * x)) * i0a;
}
private:
double bessel_i0(double x) const
{
int i;
double sum, y, t;
sum = 1.;
y = x * x / 4.;
t = y;
for(i = 2; t > epsilon; i++)
{
sum += t;
t *= (double)y / (i * i);
}
return sum;
}
};
//----------------------------------------------image_filter_catrom
struct image_filter_catrom
{
static double radius() { return 2.0; }
static double calc_weight(double x)
{
if(x < 1.0) return 0.5 * (2.0 + x * x * (-5.0 + x * 3.0));
if(x < 2.0) return 0.5 * (4.0 + x * (-8.0 + x * (5.0 - x)));
return 0.;
}
};
//---------------------------------------------image_filter_mitchell
class image_filter_mitchell
{
double p0, p2, p3;
double q0, q1, q2, q3;
public:
image_filter_mitchell(double b = 1.0/3.0, double c = 1.0/3.0) :
p0((6.0 - 2.0 * b) / 6.0),
p2((-18.0 + 12.0 * b + 6.0 * c) / 6.0),
p3((12.0 - 9.0 * b - 6.0 * c) / 6.0),
q0((8.0 * b + 24.0 * c) / 6.0),
q1((-12.0 * b - 48.0 * c) / 6.0),
q2((6.0 * b + 30.0 * c) / 6.0),
q3((-b - 6.0 * c) / 6.0)
{}
static double radius() { return 2.0; }
double calc_weight(double x) const
{
if(x < 1.0) return p0 + x * x * (p2 + x * p3);
if(x < 2.0) return q0 + x * (q1 + x * (q2 + x * q3));
return 0.0;
}
};
//----------------------------------------------image_filter_spline16
struct image_filter_spline16
{
static double radius() { return 2.0; }
static double calc_weight(double x)
{
if(x < 1.0)
{
return ((x - 9.0/5.0 ) * x - 1.0/5.0 ) * x + 1.0;
}
return ((-1.0/3.0 * (x-1) + 4.0/5.0) * (x-1) - 7.0/15.0 ) * (x-1);
}
};
//---------------------------------------------image_filter_spline36
struct image_filter_spline36
{
static double radius() { return 3.0; }
static double calc_weight(double x)
{
if(x < 1.0)
{
return ((13.0/11.0 * x - 453.0/209.0) * x - 3.0/209.0) * x + 1.0;
}
if(x < 2.0)
{
return ((-6.0/11.0 * (x-1) + 270.0/209.0) * (x-1) - 156.0/ 209.0) * (x-1);
}
return ((1.0/11.0 * (x-2) - 45.0/209.0) * (x-2) + 26.0/209.0) * (x-2);
}
};
//----------------------------------------------image_filter_gaussian
struct image_filter_gaussian
{
static double radius() { return 2.0; }
static double calc_weight(double x)
{
return exp(-2.0 * x * x) * sqrt(2.0 / pi);
}
};
//------------------------------------------------image_filter_bessel
struct image_filter_bessel
{
static double radius() { return 3.2383; }
static double calc_weight(double x)
{
return (x == 0.0) ? pi / 4.0 : besj(pi * x, 1) / (2.0 * x);
}
};
//-------------------------------------------------image_filter_sinc
class image_filter_sinc
{
public:
image_filter_sinc(double r) : m_radius(r < 2.0 ? 2.0 : r) {}
double radius() const { return m_radius; }
double calc_weight(double x) const
{
if(x == 0.0) return 1.0;
x *= pi;
return sin(x) / x;
}
private:
double m_radius;
};
//-----------------------------------------------image_filter_lanczos
class image_filter_lanczos
{
public:
image_filter_lanczos(double r) : m_radius(r < 2.0 ? 2.0 : r) {}
double radius() const { return m_radius; }
double calc_weight(double x) const
{
if(x == 0.0) return 1.0;
if(x > m_radius) return 0.0;
x *= pi;
double xr = x / m_radius;
return (sin(x) / x) * (sin(xr) / xr);
}
private:
double m_radius;
};
//----------------------------------------------image_filter_blackman
class image_filter_blackman
{
public:
image_filter_blackman(double r) : m_radius(r < 2.0 ? 2.0 : r) {}
double radius() const { return m_radius; }
double calc_weight(double x) const
{
if(x == 0.0) return 1.0;
if(x > m_radius) return 0.0;
x *= pi;
double xr = x / m_radius;
return (sin(x) / x) * (0.42 + 0.5*cos(xr) + 0.08*cos(2*xr));
}
private:
double m_radius;
};
//------------------------------------------------image_filter_sinc36
class image_filter_sinc36 : public image_filter_sinc
{ public: image_filter_sinc36() : image_filter_sinc(3.0){} };
//------------------------------------------------image_filter_sinc64
class image_filter_sinc64 : public image_filter_sinc
{ public: image_filter_sinc64() : image_filter_sinc(4.0){} };
//-----------------------------------------------image_filter_sinc100
class image_filter_sinc100 : public image_filter_sinc
{ public: image_filter_sinc100() : image_filter_sinc(5.0){} };
//-----------------------------------------------image_filter_sinc144
class image_filter_sinc144 : public image_filter_sinc
{ public: image_filter_sinc144() : image_filter_sinc(6.0){} };
//-----------------------------------------------image_filter_sinc196
class image_filter_sinc196 : public image_filter_sinc
{ public: image_filter_sinc196() : image_filter_sinc(7.0){} };
//-----------------------------------------------image_filter_sinc256
class image_filter_sinc256 : public image_filter_sinc
{ public: image_filter_sinc256() : image_filter_sinc(8.0){} };
//---------------------------------------------image_filter_lanczos36
class image_filter_lanczos36 : public image_filter_lanczos
{ public: image_filter_lanczos36() : image_filter_lanczos(3.0){} };
//---------------------------------------------image_filter_lanczos64
class image_filter_lanczos64 : public image_filter_lanczos
{ public: image_filter_lanczos64() : image_filter_lanczos(4.0){} };
//--------------------------------------------image_filter_lanczos100
class image_filter_lanczos100 : public image_filter_lanczos
{ public: image_filter_lanczos100() : image_filter_lanczos(5.0){} };
//--------------------------------------------image_filter_lanczos144
class image_filter_lanczos144 : public image_filter_lanczos
{ public: image_filter_lanczos144() : image_filter_lanczos(6.0){} };
//--------------------------------------------image_filter_lanczos196
class image_filter_lanczos196 : public image_filter_lanczos
{ public: image_filter_lanczos196() : image_filter_lanczos(7.0){} };
//--------------------------------------------image_filter_lanczos256
class image_filter_lanczos256 : public image_filter_lanczos
{ public: image_filter_lanczos256() : image_filter_lanczos(8.0){} };
//--------------------------------------------image_filter_blackman36
class image_filter_blackman36 : public image_filter_blackman
{ public: image_filter_blackman36() : image_filter_blackman(3.0){} };
//--------------------------------------------image_filter_blackman64
class image_filter_blackman64 : public image_filter_blackman
{ public: image_filter_blackman64() : image_filter_blackman(4.0){} };
//-------------------------------------------image_filter_blackman100
class image_filter_blackman100 : public image_filter_blackman
{ public: image_filter_blackman100() : image_filter_blackman(5.0){} };
//-------------------------------------------image_filter_blackman144
class image_filter_blackman144 : public image_filter_blackman
{ public: image_filter_blackman144() : image_filter_blackman(6.0){} };
//-------------------------------------------image_filter_blackman196
class image_filter_blackman196 : public image_filter_blackman
{ public: image_filter_blackman196() : image_filter_blackman(7.0){} };
//-------------------------------------------image_filter_blackman256
class image_filter_blackman256 : public image_filter_blackman
{ public: image_filter_blackman256() : image_filter_blackman(8.0){} };
}
#endif

View file

@ -1,189 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_LINE_AA_BASICS_INCLUDED
#define AGG_LINE_AA_BASICS_INCLUDED
#include <stdlib.h>
#include "agg_basics.h"
namespace agg
{
// See Implementation agg_line_aa_basics.cpp
//-------------------------------------------------------------------------
enum line_subpixel_scale_e
{
line_subpixel_shift = 8, //----line_subpixel_shift
line_subpixel_scale = 1 << line_subpixel_shift, //----line_subpixel_scale
line_subpixel_mask = line_subpixel_scale - 1, //----line_subpixel_mask
line_max_coord = (1 << 28) - 1, //----line_max_coord
line_max_length = 1 << (line_subpixel_shift + 10) //----line_max_length
};
//-------------------------------------------------------------------------
enum line_mr_subpixel_scale_e
{
line_mr_subpixel_shift = 4, //----line_mr_subpixel_shift
line_mr_subpixel_scale = 1 << line_mr_subpixel_shift, //----line_mr_subpixel_scale
line_mr_subpixel_mask = line_mr_subpixel_scale - 1 //----line_mr_subpixel_mask
};
//------------------------------------------------------------------line_mr
AGG_INLINE int line_mr(int x)
{
return x >> (line_subpixel_shift - line_mr_subpixel_shift);
}
//-------------------------------------------------------------------line_hr
AGG_INLINE int line_hr(int x)
{
return x << (line_subpixel_shift - line_mr_subpixel_shift);
}
//---------------------------------------------------------------line_dbl_hr
AGG_INLINE int line_dbl_hr(int x)
{
return x << line_subpixel_shift;
}
//---------------------------------------------------------------line_coord
struct line_coord
{
AGG_INLINE static int conv(double x)
{
return iround(x * line_subpixel_scale);
}
};
//-----------------------------------------------------------line_coord_sat
struct line_coord_sat
{
AGG_INLINE static int conv(double x)
{
return saturation<line_max_coord>::iround(x * line_subpixel_scale);
}
};
//==========================================================line_parameters
struct line_parameters
{
//---------------------------------------------------------------------
line_parameters() {}
line_parameters(int x1_, int y1_, int x2_, int y2_, int len_) :
x1(x1_), y1(y1_), x2(x2_), y2(y2_),
dx(abs(x2_ - x1_)),
dy(abs(y2_ - y1_)),
sx((x2_ > x1_) ? 1 : -1),
sy((y2_ > y1_) ? 1 : -1),
vertical(dy >= dx),
inc(vertical ? sy : sx),
len(len_),
octant((sy & 4) | (sx & 2) | int(vertical))
{
}
//---------------------------------------------------------------------
unsigned orthogonal_quadrant() const { return s_orthogonal_quadrant[octant]; }
unsigned diagonal_quadrant() const { return s_diagonal_quadrant[octant]; }
//---------------------------------------------------------------------
bool same_orthogonal_quadrant(const line_parameters& lp) const
{
return s_orthogonal_quadrant[octant] == s_orthogonal_quadrant[lp.octant];
}
//---------------------------------------------------------------------
bool same_diagonal_quadrant(const line_parameters& lp) const
{
return s_diagonal_quadrant[octant] == s_diagonal_quadrant[lp.octant];
}
//---------------------------------------------------------------------
void divide(line_parameters& lp1, line_parameters& lp2) const
{
int xmid = (x1 + x2) >> 1;
int ymid = (y1 + y2) >> 1;
int len2 = len >> 1;
lp1 = *this;
lp2 = *this;
lp1.x2 = xmid;
lp1.y2 = ymid;
lp1.len = len2;
lp1.dx = abs(lp1.x2 - lp1.x1);
lp1.dy = abs(lp1.y2 - lp1.y1);
lp2.x1 = xmid;
lp2.y1 = ymid;
lp2.len = len2;
lp2.dx = abs(lp2.x2 - lp2.x1);
lp2.dy = abs(lp2.y2 - lp2.y1);
}
//---------------------------------------------------------------------
int x1, y1, x2, y2, dx, dy, sx, sy;
bool vertical;
int inc;
int len;
int octant;
//---------------------------------------------------------------------
static const int8u s_orthogonal_quadrant[8];
static const int8u s_diagonal_quadrant[8];
};
// See Implementation agg_line_aa_basics.cpp
//----------------------------------------------------------------bisectrix
void bisectrix(const line_parameters& l1,
const line_parameters& l2,
int* x, int* y);
//-------------------------------------------fix_degenerate_bisectrix_start
void inline fix_degenerate_bisectrix_start(const line_parameters& lp,
int* x, int* y)
{
int d = iround((double(*x - lp.x2) * double(lp.y2 - lp.y1) -
double(*y - lp.y2) * double(lp.x2 - lp.x1)) / lp.len);
if(d < line_subpixel_scale/2)
{
*x = lp.x1 + (lp.y2 - lp.y1);
*y = lp.y1 - (lp.x2 - lp.x1);
}
}
//---------------------------------------------fix_degenerate_bisectrix_end
void inline fix_degenerate_bisectrix_end(const line_parameters& lp,
int* x, int* y)
{
int d = iround((double(*x - lp.x2) * double(lp.y2 - lp.y1) -
double(*y - lp.y2) * double(lp.x2 - lp.x1)) / lp.len);
if(d < line_subpixel_scale/2)
{
*x = lp.x2 + (lp.y2 - lp.y1);
*y = lp.y2 - (lp.x2 - lp.x1);
}
}
}
#endif

View file

@ -1,437 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
// Bessel function (besj) was adapted for use in AGG library by Andy Wilk
// Contact: castor.vulgaris@gmail.com
//----------------------------------------------------------------------------
#ifndef AGG_MATH_INCLUDED
#define AGG_MATH_INCLUDED
#include <math.h>
#include "agg_basics.h"
namespace agg
{
//------------------------------------------------------vertex_dist_epsilon
// Coinciding points maximal distance (Epsilon)
const double vertex_dist_epsilon = 1e-14;
//-----------------------------------------------------intersection_epsilon
// See calc_intersection
const double intersection_epsilon = 1.0e-30;
//------------------------------------------------------------cross_product
AGG_INLINE double cross_product(double x1, double y1,
double x2, double y2,
double x, double y)
{
return (x - x2) * (y2 - y1) - (y - y2) * (x2 - x1);
}
//--------------------------------------------------------point_in_triangle
AGG_INLINE bool point_in_triangle(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x, double y)
{
bool cp1 = cross_product(x1, y1, x2, y2, x, y) < 0.0;
bool cp2 = cross_product(x2, y2, x3, y3, x, y) < 0.0;
bool cp3 = cross_product(x3, y3, x1, y1, x, y) < 0.0;
return cp1 == cp2 && cp2 == cp3 && cp3 == cp1;
}
//-----------------------------------------------------------calc_distance
AGG_INLINE double calc_distance(double x1, double y1, double x2, double y2)
{
double dx = x2-x1;
double dy = y2-y1;
return sqrt(dx * dx + dy * dy);
}
//--------------------------------------------------------calc_sq_distance
AGG_INLINE double calc_sq_distance(double x1, double y1, double x2, double y2)
{
double dx = x2-x1;
double dy = y2-y1;
return dx * dx + dy * dy;
}
//------------------------------------------------calc_line_point_distance
AGG_INLINE double calc_line_point_distance(double x1, double y1,
double x2, double y2,
double x, double y)
{
double dx = x2-x1;
double dy = y2-y1;
double d = sqrt(dx * dx + dy * dy);
if(d < vertex_dist_epsilon)
{
return calc_distance(x1, y1, x, y);
}
return ((x - x2) * dy - (y - y2) * dx) / d;
}
//-------------------------------------------------------calc_line_point_u
AGG_INLINE double calc_segment_point_u(double x1, double y1,
double x2, double y2,
double x, double y)
{
double dx = x2 - x1;
double dy = y2 - y1;
if(dx == 0 && dy == 0)
{
return 0;
}
double pdx = x - x1;
double pdy = y - y1;
return (pdx * dx + pdy * dy) / (dx * dx + dy * dy);
}
//---------------------------------------------calc_line_point_sq_distance
AGG_INLINE double calc_segment_point_sq_distance(double x1, double y1,
double x2, double y2,
double x, double y,
double u)
{
if(u <= 0)
{
return calc_sq_distance(x, y, x1, y1);
}
else
if(u >= 1)
{
return calc_sq_distance(x, y, x2, y2);
}
return calc_sq_distance(x, y, x1 + u * (x2 - x1), y1 + u * (y2 - y1));
}
//---------------------------------------------calc_line_point_sq_distance
AGG_INLINE double calc_segment_point_sq_distance(double x1, double y1,
double x2, double y2,
double x, double y)
{
return
calc_segment_point_sq_distance(
x1, y1, x2, y2, x, y,
calc_segment_point_u(x1, y1, x2, y2, x, y));
}
//-------------------------------------------------------calc_intersection
AGG_INLINE bool calc_intersection(double ax, double ay, double bx, double by,
double cx, double cy, double dx, double dy,
double* x, double* y)
{
double num = (ay-cy) * (dx-cx) - (ax-cx) * (dy-cy);
double den = (bx-ax) * (dy-cy) - (by-ay) * (dx-cx);
if(fabs(den) < intersection_epsilon) return false;
double r = num / den;
*x = ax + r * (bx-ax);
*y = ay + r * (by-ay);
return true;
}
//-----------------------------------------------------intersection_exists
AGG_INLINE bool intersection_exists(double x1, double y1, double x2, double y2,
double x3, double y3, double x4, double y4)
{
// It's less expensive but you can't control the
// boundary conditions: Less or LessEqual
double dx1 = x2 - x1;
double dy1 = y2 - y1;
double dx2 = x4 - x3;
double dy2 = y4 - y3;
return ((x3 - x2) * dy1 - (y3 - y2) * dx1 < 0.0) !=
((x4 - x2) * dy1 - (y4 - y2) * dx1 < 0.0) &&
((x1 - x4) * dy2 - (y1 - y4) * dx2 < 0.0) !=
((x2 - x4) * dy2 - (y2 - y4) * dx2 < 0.0);
// It's is more expensive but more flexible
// in terms of boundary conditions.
//--------------------
//double den = (x2-x1) * (y4-y3) - (y2-y1) * (x4-x3);
//if(fabs(den) < intersection_epsilon) return false;
//double nom1 = (x4-x3) * (y1-y3) - (y4-y3) * (x1-x3);
//double nom2 = (x2-x1) * (y1-y3) - (y2-y1) * (x1-x3);
//double ua = nom1 / den;
//double ub = nom2 / den;
//return ua >= 0.0 && ua <= 1.0 && ub >= 0.0 && ub <= 1.0;
}
//--------------------------------------------------------calc_orthogonal
AGG_INLINE void calc_orthogonal(double thickness,
double x1, double y1,
double x2, double y2,
double* x, double* y)
{
double dx = x2 - x1;
double dy = y2 - y1;
double d = sqrt(dx*dx + dy*dy);
*x = thickness * dy / d;
*y = -thickness * dx / d;
}
//--------------------------------------------------------dilate_triangle
AGG_INLINE void dilate_triangle(double x1, double y1,
double x2, double y2,
double x3, double y3,
double *x, double* y,
double d)
{
double dx1=0.0;
double dy1=0.0;
double dx2=0.0;
double dy2=0.0;
double dx3=0.0;
double dy3=0.0;
double loc = cross_product(x1, y1, x2, y2, x3, y3);
if(fabs(loc) > intersection_epsilon)
{
if(cross_product(x1, y1, x2, y2, x3, y3) > 0.0)
{
d = -d;
}
calc_orthogonal(d, x1, y1, x2, y2, &dx1, &dy1);
calc_orthogonal(d, x2, y2, x3, y3, &dx2, &dy2);
calc_orthogonal(d, x3, y3, x1, y1, &dx3, &dy3);
}
*x++ = x1 + dx1; *y++ = y1 + dy1;
*x++ = x2 + dx1; *y++ = y2 + dy1;
*x++ = x2 + dx2; *y++ = y2 + dy2;
*x++ = x3 + dx2; *y++ = y3 + dy2;
*x++ = x3 + dx3; *y++ = y3 + dy3;
*x++ = x1 + dx3; *y++ = y1 + dy3;
}
//------------------------------------------------------calc_triangle_area
AGG_INLINE double calc_triangle_area(double x1, double y1,
double x2, double y2,
double x3, double y3)
{
return (x1*y2 - x2*y1 + x2*y3 - x3*y2 + x3*y1 - x1*y3) * 0.5;
}
//-------------------------------------------------------calc_polygon_area
template<class Storage> double calc_polygon_area(const Storage& st)
{
unsigned i;
double sum = 0.0;
double x = st[0].x;
double y = st[0].y;
double xs = x;
double ys = y;
for(i = 1; i < st.size(); i++)
{
const typename Storage::value_type& v = st[i];
sum += x * v.y - y * v.x;
x = v.x;
y = v.y;
}
return (sum + x * ys - y * xs) * 0.5;
}
//------------------------------------------------------------------------
// Tables for fast sqrt
extern int16u g_sqrt_table[1024];
extern int8 g_elder_bit_table[256];
//---------------------------------------------------------------fast_sqrt
//Fast integer Sqrt - really fast: no cycles, divisions or multiplications
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable : 4035) //Disable warning "no return value"
#endif
AGG_INLINE unsigned fast_sqrt(unsigned val)
{
#if defined(_M_IX86) && defined(_MSC_VER) && !defined(AGG_NO_ASM)
//For Ix86 family processors this assembler code is used.
//The key command here is bsr - determination the number of the most
//significant bit of the value. For other processors
//(and maybe compilers) the pure C "#else" section is used.
__asm
{
mov ebx, val
mov edx, 11
bsr ecx, ebx
sub ecx, 9
jle less_than_9_bits
shr ecx, 1
adc ecx, 0
sub edx, ecx
shl ecx, 1
shr ebx, cl
less_than_9_bits:
xor eax, eax
mov ax, g_sqrt_table[ebx*2]
mov ecx, edx
shr eax, cl
}
#else
//This code is actually pure C and portable to most
//arcitectures including 64bit ones.
unsigned t = val;
int bit=0;
unsigned shift = 11;
//The following piece of code is just an emulation of the
//Ix86 assembler command "bsr" (see above). However on old
//Intels (like Intel MMX 233MHz) this code is about twice
//faster (sic!) then just one "bsr". On PIII and PIV the
//bsr is optimized quite well.
bit = t >> 24;
if(bit)
{
bit = g_elder_bit_table[bit] + 24;
}
else
{
bit = (t >> 16) & 0xFF;
if(bit)
{
bit = g_elder_bit_table[bit] + 16;
}
else
{
bit = (t >> 8) & 0xFF;
if(bit)
{
bit = g_elder_bit_table[bit] + 8;
}
else
{
bit = g_elder_bit_table[t];
}
}
}
//This code calculates the sqrt.
bit -= 9;
if(bit > 0)
{
bit = (bit >> 1) + (bit & 1);
shift -= bit;
val >>= (bit << 1);
}
return g_sqrt_table[val] >> shift;
#endif
}
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
//--------------------------------------------------------------------besj
// Function BESJ calculates Bessel function of first kind of order n
// Arguments:
// n - an integer (>=0), the order
// x - value at which the Bessel function is required
//--------------------
// C++ Mathematical Library
// Convereted from equivalent FORTRAN library
// Converetd by Gareth Walker for use by course 392 computational project
// All functions tested and yield the same results as the corresponding
// FORTRAN versions.
//
// If you have any problems using these functions please report them to
// M.Muldoon@UMIST.ac.uk
//
// Documentation available on the web
// http://www.ma.umist.ac.uk/mrm/Teaching/392/libs/392.html
// Version 1.0 8/98
// 29 October, 1999
//--------------------
// Adapted for use in AGG library by Andy Wilk (castor.vulgaris@gmail.com)
//------------------------------------------------------------------------
inline double besj(double x, int n)
{
if(n < 0)
{
return 0;
}
double d = 1E-6;
double b = 0;
if(fabs(x) <= d)
{
if(n != 0) return 0;
return 1;
}
double b1 = 0; // b1 is the value from the previous iteration
// Set up a starting order for recurrence
int m1 = (int)fabs(x) + 6;
if(fabs(x) > 5)
{
m1 = (int)(fabs(1.4 * x + 60 / x));
}
int m2 = (int)(n + 2 + fabs(x) / 4);
if (m1 > m2)
{
m2 = m1;
}
// Apply recurrence down from curent max order
for(;;)
{
double c3 = 0;
double c2 = 1E-30;
double c4 = 0;
int m8 = 1;
if (m2 / 2 * 2 == m2)
{
m8 = -1;
}
int imax = m2 - 2;
for (int i = 1; i <= imax; i++)
{
double c6 = 2 * (m2 - i) * c2 / x - c3;
c3 = c2;
c2 = c6;
if(m2 - i - 1 == n)
{
b = c6;
}
m8 = -1 * m8;
if (m8 > 0)
{
c4 = c4 + 2 * c6;
}
}
double c6 = 2 * c2 / x - c3;
if(n == 0)
{
b = c6;
}
c4 += c6;
b /= c4;
if(fabs(b - b1) < d)
{
return b;
}
b1 = b;
m2 += 3;
}
}
}
#endif

View file

@ -1,526 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Stroke math
//
//----------------------------------------------------------------------------
#ifndef AGG_STROKE_MATH_INCLUDED
#define AGG_STROKE_MATH_INCLUDED
#include "agg_math.h"
#include "agg_vertex_sequence.h"
namespace agg
{
//-------------------------------------------------------------line_cap_e
enum line_cap_e
{
butt_cap,
square_cap,
round_cap
};
//------------------------------------------------------------line_join_e
enum line_join_e
{
miter_join = 0,
miter_join_revert = 1,
round_join = 2,
bevel_join = 3,
miter_join_round = 4
};
//-----------------------------------------------------------inner_join_e
enum inner_join_e
{
inner_bevel,
inner_miter,
inner_jag,
inner_round
};
//------------------------------------------------------------math_stroke
template<class VertexConsumer> class math_stroke
{
public:
typedef typename VertexConsumer::value_type coord_type;
math_stroke();
void line_cap(line_cap_e lc) { m_line_cap = lc; }
void line_join(line_join_e lj) { m_line_join = lj; }
void inner_join(inner_join_e ij) { m_inner_join = ij; }
line_cap_e line_cap() const { return m_line_cap; }
line_join_e line_join() const { return m_line_join; }
inner_join_e inner_join() const { return m_inner_join; }
void width(double w);
void miter_limit(double ml) { m_miter_limit = ml; }
void miter_limit_theta(double t);
void inner_miter_limit(double ml) { m_inner_miter_limit = ml; }
void approximation_scale(double as) { m_approx_scale = as; }
double width() const { return m_width * 2.0; }
double miter_limit() const { return m_miter_limit; }
double inner_miter_limit() const { return m_inner_miter_limit; }
double approximation_scale() const { return m_approx_scale; }
void calc_cap(VertexConsumer& vc,
const vertex_dist& v0,
const vertex_dist& v1,
double len);
void calc_join(VertexConsumer& vc,
const vertex_dist& v0,
const vertex_dist& v1,
const vertex_dist& v2,
double len1,
double len2);
private:
AGG_INLINE void add_vertex(VertexConsumer& vc, double x, double y)
{
vc.add(coord_type(x, y));
}
void calc_arc(VertexConsumer& vc,
double x, double y,
double dx1, double dy1,
double dx2, double dy2);
void calc_miter(VertexConsumer& vc,
const vertex_dist& v0,
const vertex_dist& v1,
const vertex_dist& v2,
double dx1, double dy1,
double dx2, double dy2,
line_join_e lj,
double mlimit,
double dbevel);
double m_width;
double m_width_abs;
double m_width_eps;
int m_width_sign;
double m_miter_limit;
double m_inner_miter_limit;
double m_approx_scale;
line_cap_e m_line_cap;
line_join_e m_line_join;
inner_join_e m_inner_join;
};
//-----------------------------------------------------------------------
template<class VC> math_stroke<VC>::math_stroke() :
m_width(0.5),
m_width_abs(0.5),
m_width_eps(0.5/1024.0),
m_width_sign(1),
m_miter_limit(4.0),
m_inner_miter_limit(1.01),
m_approx_scale(1.0),
m_line_cap(butt_cap),
m_line_join(miter_join),
m_inner_join(inner_miter)
{
}
//-----------------------------------------------------------------------
template<class VC> void math_stroke<VC>::width(double w)
{
m_width = w * 0.5;
if(m_width < 0)
{
m_width_abs = -m_width;
m_width_sign = -1;
}
else
{
m_width_abs = m_width;
m_width_sign = 1;
}
m_width_eps = m_width / 1024.0;
}
//-----------------------------------------------------------------------
template<class VC> void math_stroke<VC>::miter_limit_theta(double t)
{
m_miter_limit = 1.0 / sin(t * 0.5) ;
}
//-----------------------------------------------------------------------
template<class VC>
void math_stroke<VC>::calc_arc(VC& vc,
double x, double y,
double dx1, double dy1,
double dx2, double dy2)
{
double a1 = atan2(dy1 * m_width_sign, dx1 * m_width_sign);
double a2 = atan2(dy2 * m_width_sign, dx2 * m_width_sign);
double da = a1 - a2;
int i, n;
da = acos(m_width_abs / (m_width_abs + 0.125 / m_approx_scale)) * 2;
add_vertex(vc, x + dx1, y + dy1);
if(m_width_sign > 0)
{
if(a1 > a2) a2 += 2 * pi;
n = int((a2 - a1) / da);
da = (a2 - a1) / (n + 1);
a1 += da;
for(i = 0; i < n; i++)
{
add_vertex(vc, x + cos(a1) * m_width, y + sin(a1) * m_width);
a1 += da;
}
}
else
{
if(a1 < a2) a2 -= 2 * pi;
n = int((a1 - a2) / da);
da = (a1 - a2) / (n + 1);
a1 -= da;
for(i = 0; i < n; i++)
{
add_vertex(vc, x + cos(a1) * m_width, y + sin(a1) * m_width);
a1 -= da;
}
}
add_vertex(vc, x + dx2, y + dy2);
}
//-----------------------------------------------------------------------
template<class VC>
void math_stroke<VC>::calc_miter(VC& vc,
const vertex_dist& v0,
const vertex_dist& v1,
const vertex_dist& v2,
double dx1, double dy1,
double dx2, double dy2,
line_join_e lj,
double mlimit,
double dbevel)
{
double xi = v1.x;
double yi = v1.y;
double di = 1;
double lim = m_width_abs * mlimit;
bool miter_limit_exceeded = true; // Assume the worst
bool intersection_failed = true; // Assume the worst
if(calc_intersection(v0.x + dx1, v0.y - dy1,
v1.x + dx1, v1.y - dy1,
v1.x + dx2, v1.y - dy2,
v2.x + dx2, v2.y - dy2,
&xi, &yi))
{
// Calculation of the intersection succeeded
//---------------------
di = calc_distance(v1.x, v1.y, xi, yi);
if(di <= lim)
{
// Inside the miter limit
//---------------------
add_vertex(vc, xi, yi);
miter_limit_exceeded = false;
}
intersection_failed = false;
}
else
{
// Calculation of the intersection failed, most probably
// the three points lie one straight line.
// First check if v0 and v2 lie on the opposite sides of vector:
// (v1.x, v1.y) -> (v1.x+dx1, v1.y-dy1), that is, the perpendicular
// to the line determined by vertices v0 and v1.
// This condition determines whether the next line segments continues
// the previous one or goes back.
//----------------
double x2 = v1.x + dx1;
double y2 = v1.y - dy1;
if((cross_product(v0.x, v0.y, v1.x, v1.y, x2, y2) < 0.0) ==
(cross_product(v1.x, v1.y, v2.x, v2.y, x2, y2) < 0.0))
{
// This case means that the next segment continues
// the previous one (straight line)
//-----------------
add_vertex(vc, v1.x + dx1, v1.y - dy1);
miter_limit_exceeded = false;
}
}
if(miter_limit_exceeded)
{
// Miter limit exceeded
//------------------------
switch(lj)
{
case miter_join_revert:
// For the compatibility with SVG, PDF, etc,
// we use a simple bevel join instead of
// "smart" bevel
//-------------------
add_vertex(vc, v1.x + dx1, v1.y - dy1);
add_vertex(vc, v1.x + dx2, v1.y - dy2);
break;
case miter_join_round:
calc_arc(vc, v1.x, v1.y, dx1, -dy1, dx2, -dy2);
break;
default:
// If no miter-revert, calculate new dx1, dy1, dx2, dy2
//----------------
if(intersection_failed)
{
mlimit *= m_width_sign;
add_vertex(vc, v1.x + dx1 + dy1 * mlimit,
v1.y - dy1 + dx1 * mlimit);
add_vertex(vc, v1.x + dx2 - dy2 * mlimit,
v1.y - dy2 - dx2 * mlimit);
}
else
{
double x1 = v1.x + dx1;
double y1 = v1.y - dy1;
double x2 = v1.x + dx2;
double y2 = v1.y - dy2;
di = (lim - dbevel) / (di - dbevel);
add_vertex(vc, x1 + (xi - x1) * di,
y1 + (yi - y1) * di);
add_vertex(vc, x2 + (xi - x2) * di,
y2 + (yi - y2) * di);
}
break;
}
}
}
//--------------------------------------------------------stroke_calc_cap
template<class VC>
void math_stroke<VC>::calc_cap(VC& vc,
const vertex_dist& v0,
const vertex_dist& v1,
double len)
{
vc.remove_all();
double dx1 = (v1.y - v0.y) / len;
double dy1 = (v1.x - v0.x) / len;
double dx2 = 0;
double dy2 = 0;
dx1 *= m_width;
dy1 *= m_width;
if(m_line_cap != round_cap)
{
if(m_line_cap == square_cap)
{
dx2 = dy1 * m_width_sign;
dy2 = dx1 * m_width_sign;
}
add_vertex(vc, v0.x - dx1 - dx2, v0.y + dy1 - dy2);
add_vertex(vc, v0.x + dx1 - dx2, v0.y - dy1 - dy2);
}
else
{
double da = acos(m_width_abs / (m_width_abs + 0.125 / m_approx_scale)) * 2;
double a1;
int i;
int n = int(pi / da);
da = pi / (n + 1);
add_vertex(vc, v0.x - dx1, v0.y + dy1);
if(m_width_sign > 0)
{
a1 = atan2(dy1, -dx1);
a1 += da;
for(i = 0; i < n; i++)
{
add_vertex(vc, v0.x + cos(a1) * m_width,
v0.y + sin(a1) * m_width);
a1 += da;
}
}
else
{
a1 = atan2(-dy1, dx1);
a1 -= da;
for(i = 0; i < n; i++)
{
add_vertex(vc, v0.x + cos(a1) * m_width,
v0.y + sin(a1) * m_width);
a1 -= da;
}
}
add_vertex(vc, v0.x + dx1, v0.y - dy1);
}
}
//-----------------------------------------------------------------------
template<class VC>
void math_stroke<VC>::calc_join(VC& vc,
const vertex_dist& v0,
const vertex_dist& v1,
const vertex_dist& v2,
double len1,
double len2)
{
double dx1 = m_width * (v1.y - v0.y) / len1;
double dy1 = m_width * (v1.x - v0.x) / len1;
double dx2 = m_width * (v2.y - v1.y) / len2;
double dy2 = m_width * (v2.x - v1.x) / len2;
vc.remove_all();
double cp = cross_product(v0.x, v0.y, v1.x, v1.y, v2.x, v2.y);
if(cp != 0 && (cp > 0) == (m_width > 0))
{
// Inner join
//---------------
double limit = ((len1 < len2) ? len1 : len2) / m_width_abs;
if(limit < m_inner_miter_limit)
{
limit = m_inner_miter_limit;
}
switch(m_inner_join)
{
default: // inner_bevel
add_vertex(vc, v1.x + dx1, v1.y - dy1);
add_vertex(vc, v1.x + dx2, v1.y - dy2);
break;
case inner_miter:
calc_miter(vc,
v0, v1, v2, dx1, dy1, dx2, dy2,
miter_join_revert,
limit, 0);
break;
case inner_jag:
case inner_round:
cp = (dx1-dx2) * (dx1-dx2) + (dy1-dy2) * (dy1-dy2);
if(cp < len1 * len1 && cp < len2 * len2)
{
calc_miter(vc,
v0, v1, v2, dx1, dy1, dx2, dy2,
miter_join_revert,
limit, 0);
}
else
{
if(m_inner_join == inner_jag)
{
add_vertex(vc, v1.x + dx1, v1.y - dy1);
add_vertex(vc, v1.x, v1.y );
add_vertex(vc, v1.x + dx2, v1.y - dy2);
}
else
{
add_vertex(vc, v1.x + dx1, v1.y - dy1);
add_vertex(vc, v1.x, v1.y );
calc_arc(vc, v1.x, v1.y, dx2, -dy2, dx1, -dy1);
add_vertex(vc, v1.x, v1.y );
add_vertex(vc, v1.x + dx2, v1.y - dy2);
}
}
break;
}
}
else
{
// Outer join
//---------------
// Calculate the distance between v1 and
// the central point of the bevel line segment
//---------------
double dx = (dx1 + dx2) / 2;
double dy = (dy1 + dy2) / 2;
double dbevel = sqrt(dx * dx + dy * dy);
if(m_line_join == round_join || m_line_join == bevel_join)
{
// This is an optimization that reduces the number of points
// in cases of almost collinear segments. If there's no
// visible difference between bevel and miter joins we'd rather
// use miter join because it adds only one point instead of two.
//
// Here we calculate the middle point between the bevel points
// and then, the distance between v1 and this middle point.
// At outer joins this distance always less than stroke width,
// because it's actually the height of an isosceles triangle of
// v1 and its two bevel points. If the difference between this
// width and this value is small (no visible bevel) we can
// add just one point.
//
// The constant in the expression makes the result approximately
// the same as in round joins and caps. You can safely comment
// out this entire "if".
//-------------------
if(m_approx_scale * (m_width_abs - dbevel) < m_width_eps)
{
if(calc_intersection(v0.x + dx1, v0.y - dy1,
v1.x + dx1, v1.y - dy1,
v1.x + dx2, v1.y - dy2,
v2.x + dx2, v2.y - dy2,
&dx, &dy))
{
add_vertex(vc, dx, dy);
}
else
{
add_vertex(vc, v1.x + dx1, v1.y - dy1);
}
return;
}
}
switch(m_line_join)
{
case miter_join:
case miter_join_revert:
case miter_join_round:
calc_miter(vc,
v0, v1, v2, dx1, dy1, dx2, dy2,
m_line_join,
m_miter_limit,
dbevel);
break;
case round_join:
calc_arc(vc, v1.x, v1.y, dx1, -dy1, dx2, -dy2);
break;
default: // Bevel join
add_vertex(vc, v1.x + dx1, v1.y - dy1);
add_vertex(vc, v1.x + dx2, v1.y - dy2);
break;
}
}
}
}
#endif

View file

@ -1,65 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_PATH_LENGTH_INCLUDED
#define AGG_PATH_LENGTH_INCLUDED
#include "agg_math.h"
namespace agg
{
template<class VertexSource>
double path_length(VertexSource& vs, unsigned path_id = 0)
{
double len = 0.0;
double start_x = 0.0;
double start_y = 0.0;
double x1 = 0.0;
double y1 = 0.0;
double x2 = 0.0;
double y2 = 0.0;
bool first = true;
unsigned cmd;
vs.rewind(path_id);
while(!is_stop(cmd = vs.vertex(&x2, &y2)))
{
if(is_vertex(cmd))
{
if(first || is_move_to(cmd))
{
start_x = x2;
start_y = y2;
}
else
{
len += calc_distance(x1, y1, x2, y2);
}
x1 = x2;
y1 = y2;
first = false;
}
else
{
if(is_close(cmd) && !first)
{
len += calc_distance(x1, y1, start_x, start_y);
}
}
}
return len;
}
}
#endif

File diff suppressed because it is too large Load diff

View file

@ -1,295 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_PATH_STORAGE_INTEGER_INCLUDED
#define AGG_PATH_STORAGE_INTEGER_INCLUDED
#include <string.h>
#include "agg_array.h"
namespace agg
{
//---------------------------------------------------------vertex_integer
template<class T, unsigned CoordShift=6> struct vertex_integer
{
enum path_cmd
{
cmd_move_to = 0,
cmd_line_to = 1,
cmd_curve3 = 2,
cmd_curve4 = 3
};
enum coord_scale_e
{
coord_shift = CoordShift,
coord_scale = 1 << coord_shift
};
T x,y;
vertex_integer() {}
vertex_integer(T x_, T y_, unsigned flag) :
x(((x_ << 1) & ~1) | (flag & 1)),
y(((y_ << 1) & ~1) | (flag >> 1)) {}
unsigned vertex(double* x_, double* y_,
double dx=0, double dy=0,
double scale=1.0) const
{
*x_ = dx + (double(x >> 1) / coord_scale) * scale;
*y_ = dy + (double(y >> 1) / coord_scale) * scale;
switch(((y & 1) << 1) | (x & 1))
{
case cmd_move_to: return path_cmd_move_to;
case cmd_line_to: return path_cmd_line_to;
case cmd_curve3: return path_cmd_curve3;
case cmd_curve4: return path_cmd_curve4;
}
return path_cmd_stop;
}
};
//---------------------------------------------------path_storage_integer
template<class T, unsigned CoordShift=6> class path_storage_integer
{
public:
typedef T value_type;
typedef vertex_integer<T, CoordShift> vertex_integer_type;
//--------------------------------------------------------------------
path_storage_integer() : m_storage(), m_vertex_idx(0), m_closed(true) {}
//--------------------------------------------------------------------
void remove_all() { m_storage.remove_all(); }
//--------------------------------------------------------------------
void move_to(T x, T y)
{
m_storage.add(vertex_integer_type(x, y, vertex_integer_type::cmd_move_to));
}
//--------------------------------------------------------------------
void line_to(T x, T y)
{
m_storage.add(vertex_integer_type(x, y, vertex_integer_type::cmd_line_to));
}
//--------------------------------------------------------------------
void curve3(T x_ctrl, T y_ctrl,
T x_to, T y_to)
{
m_storage.add(vertex_integer_type(x_ctrl, y_ctrl, vertex_integer_type::cmd_curve3));
m_storage.add(vertex_integer_type(x_to, y_to, vertex_integer_type::cmd_curve3));
}
//--------------------------------------------------------------------
void curve4(T x_ctrl1, T y_ctrl1,
T x_ctrl2, T y_ctrl2,
T x_to, T y_to)
{
m_storage.add(vertex_integer_type(x_ctrl1, y_ctrl1, vertex_integer_type::cmd_curve4));
m_storage.add(vertex_integer_type(x_ctrl2, y_ctrl2, vertex_integer_type::cmd_curve4));
m_storage.add(vertex_integer_type(x_to, y_to, vertex_integer_type::cmd_curve4));
}
//--------------------------------------------------------------------
void close_polygon() {}
//--------------------------------------------------------------------
unsigned size() const { return m_storage.size(); }
unsigned vertex(unsigned idx, double* x, double* y) const
{
return m_storage[idx].vertex(x, y);
}
//--------------------------------------------------------------------
unsigned byte_size() const { return m_storage.size() * sizeof(vertex_integer_type); }
void serialize(int8u* ptr) const
{
unsigned i;
for(i = 0; i < m_storage.size(); i++)
{
memcpy(ptr, &m_storage[i], sizeof(vertex_integer_type));
ptr += sizeof(vertex_integer_type);
}
}
//--------------------------------------------------------------------
void rewind(unsigned)
{
m_vertex_idx = 0;
m_closed = true;
}
//--------------------------------------------------------------------
unsigned vertex(double* x, double* y)
{
if(m_storage.size() < 2 || m_vertex_idx > m_storage.size())
{
*x = 0;
*y = 0;
return path_cmd_stop;
}
if(m_vertex_idx == m_storage.size())
{
*x = 0;
*y = 0;
++m_vertex_idx;
return path_cmd_end_poly | path_flags_close;
}
unsigned cmd = m_storage[m_vertex_idx].vertex(x, y);
if(is_move_to(cmd) && !m_closed)
{
*x = 0;
*y = 0;
m_closed = true;
return path_cmd_end_poly | path_flags_close;
}
m_closed = false;
++m_vertex_idx;
return cmd;
}
//--------------------------------------------------------------------
rect_d bounding_rect() const
{
rect_d bounds(1e100, 1e100, -1e100, -1e100);
if(m_storage.size() == 0)
{
bounds.x1 = bounds.y1 = bounds.x2 = bounds.y2 = 0.0;
}
else
{
unsigned i;
for(i = 0; i < m_storage.size(); i++)
{
double x, y;
m_storage[i].vertex(&x, &y);
if(x < bounds.x1) bounds.x1 = x;
if(y < bounds.y1) bounds.y1 = y;
if(x > bounds.x2) bounds.x2 = x;
if(y > bounds.y2) bounds.y2 = y;
}
}
return bounds;
}
private:
pod_bvector<vertex_integer_type, 6> m_storage;
unsigned m_vertex_idx;
bool m_closed;
};
//-----------------------------------------serialized_integer_path_adaptor
template<class T, unsigned CoordShift=6> class serialized_integer_path_adaptor
{
public:
typedef vertex_integer<T, CoordShift> vertex_integer_type;
//--------------------------------------------------------------------
serialized_integer_path_adaptor() :
m_data(0),
m_end(0),
m_ptr(0),
m_dx(0.0),
m_dy(0.0),
m_scale(1.0),
m_vertices(0)
{}
//--------------------------------------------------------------------
serialized_integer_path_adaptor(const int8u* data, unsigned size,
double dx, double dy) :
m_data(data),
m_end(data + size),
m_ptr(data),
m_dx(dx),
m_dy(dy),
m_vertices(0)
{}
//--------------------------------------------------------------------
void init(const int8u* data, unsigned size,
double dx, double dy, double scale=1.0)
{
m_data = data;
m_end = data + size;
m_ptr = data;
m_dx = dx;
m_dy = dy;
m_scale = scale;
m_vertices = 0;
}
//--------------------------------------------------------------------
void rewind(unsigned)
{
m_ptr = m_data;
m_vertices = 0;
}
//--------------------------------------------------------------------
unsigned vertex(double* x, double* y)
{
if(m_data == 0 || m_ptr > m_end)
{
*x = 0;
*y = 0;
return path_cmd_stop;
}
if(m_ptr == m_end)
{
*x = 0;
*y = 0;
m_ptr += sizeof(vertex_integer_type);
return path_cmd_end_poly | path_flags_close;
}
vertex_integer_type v;
memcpy(&v, m_ptr, sizeof(vertex_integer_type));
unsigned cmd = v.vertex(x, y, m_dx, m_dy, m_scale);
if(is_move_to(cmd) && m_vertices > 2)
{
*x = 0;
*y = 0;
m_vertices = 0;
return path_cmd_end_poly | path_flags_close;
}
++m_vertices;
m_ptr += sizeof(vertex_integer_type);
return cmd;
}
private:
const int8u* m_data;
const int8u* m_end;
const int8u* m_ptr;
double m_dx;
double m_dy;
double m_scale;
unsigned m_vertices;
};
}
#endif

View file

@ -1,122 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_PATTERN_FILTERS_RGBA8_INCLUDED
#define AGG_PATTERN_FILTERS_RGBA8_INCLUDED
#include "agg_basics.h"
#include "agg_line_aa_basics.h"
#include "agg_color_rgba.h"
namespace agg
{
//=======================================================pattern_filter_nn
template<class ColorT> struct pattern_filter_nn
{
typedef ColorT color_type;
static unsigned dilation() { return 0; }
static void AGG_INLINE pixel_low_res(color_type const* const* buf,
color_type* p, int x, int y)
{
*p = buf[y][x];
}
static void AGG_INLINE pixel_high_res(color_type const* const* buf,
color_type* p, int x, int y)
{
*p = buf[y >> line_subpixel_shift]
[x >> line_subpixel_shift];
}
};
typedef pattern_filter_nn<rgba8> pattern_filter_nn_rgba8;
typedef pattern_filter_nn<rgba16> pattern_filter_nn_rgba16;
//===========================================pattern_filter_bilinear_rgba
template<class ColorT> struct pattern_filter_bilinear_rgba
{
typedef ColorT color_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
static unsigned dilation() { return 1; }
static AGG_INLINE void pixel_low_res(color_type const* const* buf,
color_type* p, int x, int y)
{
*p = buf[y][x];
}
static AGG_INLINE void pixel_high_res(color_type const* const* buf,
color_type* p, int x, int y)
{
calc_type r, g, b, a;
r = g = b = a = line_subpixel_scale * line_subpixel_scale / 2;
calc_type weight;
int x_lr = x >> line_subpixel_shift;
int y_lr = y >> line_subpixel_shift;
x &= line_subpixel_mask;
y &= line_subpixel_mask;
const color_type* ptr = buf[y_lr] + x_lr;
weight = (line_subpixel_scale - x) *
(line_subpixel_scale - y);
r += weight * ptr->r;
g += weight * ptr->g;
b += weight * ptr->b;
a += weight * ptr->a;
++ptr;
weight = x * (line_subpixel_scale - y);
r += weight * ptr->r;
g += weight * ptr->g;
b += weight * ptr->b;
a += weight * ptr->a;
ptr = buf[y_lr + 1] + x_lr;
weight = (line_subpixel_scale - x) * y;
r += weight * ptr->r;
g += weight * ptr->g;
b += weight * ptr->b;
a += weight * ptr->a;
++ptr;
weight = x * y;
r += weight * ptr->r;
g += weight * ptr->g;
b += weight * ptr->b;
a += weight * ptr->a;
p->r = (value_type)(r >> line_subpixel_shift * 2);
p->g = (value_type)(g >> line_subpixel_shift * 2);
p->b = (value_type)(b >> line_subpixel_shift * 2);
p->a = (value_type)(a >> line_subpixel_shift * 2);
}
};
typedef pattern_filter_bilinear_rgba<rgba8> pattern_filter_bilinear_rgba8;
typedef pattern_filter_bilinear_rgba<rgba16> pattern_filter_bilinear_rgba16;
}
#endif

View file

@ -1,240 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_PIXFMT_AMASK_ADAPTOR_INCLUDED
#define AGG_PIXFMT_AMASK_ADAPTOR_INCLUDED
#include <string.h>
#include "agg_array.h"
#include "agg_rendering_buffer.h"
namespace agg
{
//==================================================pixfmt_amask_adaptor
template<class PixFmt, class AlphaMask> class pixfmt_amask_adaptor
{
public:
typedef PixFmt pixfmt_type;
typedef typename pixfmt_type::color_type color_type;
typedef typename pixfmt_type::row_data row_data;
typedef AlphaMask amask_type;
typedef typename amask_type::cover_type cover_type;
private:
enum span_extra_tail_e { span_extra_tail = 256 };
void realloc_span(unsigned len)
{
if(len > m_span.size())
{
m_span.resize(len + span_extra_tail);
}
}
void init_span(unsigned len)
{
realloc_span(len);
memset(&m_span[0], amask_type::cover_full, len * sizeof(cover_type));
}
void init_span(unsigned len, const cover_type* covers)
{
realloc_span(len);
memcpy(&m_span[0], covers, len * sizeof(cover_type));
}
public:
pixfmt_amask_adaptor(pixfmt_type& pixf, const amask_type& mask) :
m_pixf(&pixf), m_mask(&mask), m_span()
{}
void attach_pixfmt(pixfmt_type& pixf) { m_pixf = &pixf; }
void attach_alpha_mask(const amask_type& mask) { m_mask = &mask; }
//--------------------------------------------------------------------
template<class PixFmt2>
bool attach_pixfmt(PixFmt2& pixf, int x1, int y1, int x2, int y2)
{
return m_pixf->attach(pixf, x1, y1, x2, y2);
}
//--------------------------------------------------------------------
unsigned width() const { return m_pixf->width(); }
unsigned height() const { return m_pixf->height(); }
//--------------------------------------------------------------------
color_type pixel(int x, int y)
{
return m_pixf->pixel(x, y);
}
//--------------------------------------------------------------------
void copy_pixel(int x, int y, const color_type& c)
{
m_pixf->blend_pixel(x, y, c, m_mask->pixel(x, y));
}
//--------------------------------------------------------------------
void blend_pixel(int x, int y, const color_type& c, cover_type cover)
{
m_pixf->blend_pixel(x, y, c, m_mask->combine_pixel(x, y, cover));
}
//--------------------------------------------------------------------
void copy_hline(int x, int y,
unsigned len,
const color_type& c)
{
realloc_span(len);
m_mask->fill_hspan(x, y, &m_span[0], len);
m_pixf->blend_solid_hspan(x, y, len, c, &m_span[0]);
}
//--------------------------------------------------------------------
void blend_hline(int x, int y,
unsigned len,
const color_type& c,
cover_type cover)
{
init_span(len);
m_mask->combine_hspan(x, y, &m_span[0], len);
m_pixf->blend_solid_hspan(x, y, len, c, &m_span[0]);
}
//--------------------------------------------------------------------
void copy_vline(int x, int y,
unsigned len,
const color_type& c)
{
realloc_span(len);
m_mask->fill_vspan(x, y, &m_span[0], len);
m_pixf->blend_solid_vspan(x, y, len, c, &m_span[0]);
}
//--------------------------------------------------------------------
void blend_vline(int x, int y,
unsigned len,
const color_type& c,
cover_type cover)
{
init_span(len);
m_mask->combine_vspan(x, y, &m_span[0], len);
m_pixf->blend_solid_vspan(x, y, len, c, &m_span[0]);
}
//--------------------------------------------------------------------
void copy_from(const rendering_buffer& from,
int xdst, int ydst,
int xsrc, int ysrc,
unsigned len)
{
m_pixf->copy_from(from, xdst, ydst, xsrc, ysrc, len);
}
//--------------------------------------------------------------------
void blend_solid_hspan(int x, int y,
unsigned len,
const color_type& c,
const cover_type* covers)
{
init_span(len, covers);
m_mask->combine_hspan(x, y, &m_span[0], len);
m_pixf->blend_solid_hspan(x, y, len, c, &m_span[0]);
}
//--------------------------------------------------------------------
void blend_solid_vspan(int x, int y,
unsigned len,
const color_type& c,
const cover_type* covers)
{
init_span(len, covers);
m_mask->combine_vspan(x, y, &m_span[0], len);
m_pixf->blend_solid_vspan(x, y, len, c, &m_span[0]);
}
//--------------------------------------------------------------------
void copy_color_hspan(int x, int y, unsigned len, const color_type* colors)
{
realloc_span(len);
m_mask->fill_hspan(x, y, &m_span[0], len);
m_pixf->blend_color_hspan(x, y, len, colors, &m_span[0], cover_full);
}
//--------------------------------------------------------------------
void copy_color_vspan(int x, int y, unsigned len, const color_type* colors)
{
realloc_span(len);
m_mask->fill_vspan(x, y, &m_span[0], len);
m_pixf->blend_color_vspan(x, y, len, colors, &m_span[0], cover_full);
}
//--------------------------------------------------------------------
void blend_color_hspan(int x, int y,
unsigned len,
const color_type* colors,
const cover_type* covers,
cover_type cover = cover_full)
{
if(covers)
{
init_span(len, covers);
m_mask->combine_hspan(x, y, &m_span[0], len);
}
else
{
realloc_span(len);
m_mask->fill_hspan(x, y, &m_span[0], len);
}
m_pixf->blend_color_hspan(x, y, len, colors, &m_span[0], cover);
}
//--------------------------------------------------------------------
void blend_color_vspan(int x, int y,
unsigned len,
const color_type* colors,
const cover_type* covers,
cover_type cover = cover_full)
{
if(covers)
{
init_span(len, covers);
m_mask->combine_vspan(x, y, &m_span[0], len);
}
else
{
realloc_span(len);
m_mask->fill_vspan(x, y, &m_span[0], len);
}
m_pixf->blend_color_vspan(x, y, len, colors, &m_span[0], cover);
}
private:
pixfmt_type* m_pixf;
const amask_type* m_mask;
pod_array<cover_type> m_span;
};
}
#endif

View file

@ -1,670 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Adaptation for high precision colors has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
#ifndef AGG_PIXFMT_GRAY_INCLUDED
#define AGG_PIXFMT_GRAY_INCLUDED
#include <string.h>
#include "agg_basics.h"
#include "agg_color_gray.h"
#include "agg_rendering_buffer.h"
namespace agg
{
//============================================================blender_gray
template<class ColorT> struct blender_gray
{
typedef ColorT color_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e { base_shift = color_type::base_shift };
static AGG_INLINE void blend_pix(value_type* p, unsigned cv,
unsigned alpha, unsigned cover=0)
{
*p = (value_type)((((cv - calc_type(*p)) * alpha) + (calc_type(*p) << base_shift)) >> base_shift);
}
};
//======================================================blender_gray_pre
template<class ColorT> struct blender_gray_pre
{
typedef ColorT color_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e { base_shift = color_type::base_shift };
static AGG_INLINE void blend_pix(value_type* p, unsigned cv,
unsigned alpha, unsigned cover)
{
alpha = color_type::base_mask - alpha;
cover = (cover + 1) << (base_shift - 8);
*p = (value_type)((*p * alpha + cv * cover) >> base_shift);
}
static AGG_INLINE void blend_pix(value_type* p, unsigned cv,
unsigned alpha)
{
*p = (value_type)(((*p * (color_type::base_mask - alpha)) >> base_shift) + cv);
}
};
//=====================================================apply_gamma_dir_gray
template<class ColorT, class GammaLut> class apply_gamma_dir_gray
{
public:
typedef typename ColorT::value_type value_type;
apply_gamma_dir_gray(const GammaLut& gamma) : m_gamma(gamma) {}
AGG_INLINE void operator () (value_type* p)
{
*p = m_gamma.dir(*p);
}
private:
const GammaLut& m_gamma;
};
//=====================================================apply_gamma_inv_gray
template<class ColorT, class GammaLut> class apply_gamma_inv_gray
{
public:
typedef typename ColorT::value_type value_type;
apply_gamma_inv_gray(const GammaLut& gamma) : m_gamma(gamma) {}
AGG_INLINE void operator () (value_type* p)
{
*p = m_gamma.inv(*p);
}
private:
const GammaLut& m_gamma;
};
//=================================================pixfmt_alpha_blend_gray
template<class Blender, class RenBuf, unsigned Step=1, unsigned Offset=0>
class pixfmt_alpha_blend_gray
{
public:
typedef RenBuf rbuf_type;
typedef typename rbuf_type::row_data row_data;
typedef Blender blender_type;
typedef typename blender_type::color_type color_type;
typedef int order_type; // A fake one
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e
{
base_shift = color_type::base_shift,
base_scale = color_type::base_scale,
base_mask = color_type::base_mask,
pix_width = sizeof(value_type),
pix_step = Step,
pix_offset = Offset
};
private:
//--------------------------------------------------------------------
static AGG_INLINE void copy_or_blend_pix(value_type* p,
const color_type& c,
unsigned cover)
{
if (c.a)
{
calc_type alpha = (calc_type(c.a) * (cover + 1)) >> 8;
if(alpha == base_mask)
{
*p = c.v;
}
else
{
Blender::blend_pix(p, c.v, alpha, cover);
}
}
}
static AGG_INLINE void copy_or_blend_pix(value_type* p,
const color_type& c)
{
if (c.a)
{
if(c.a == base_mask)
{
*p = c.v;
}
else
{
Blender::blend_pix(p, c.v, c.a);
}
}
}
public:
//--------------------------------------------------------------------
explicit pixfmt_alpha_blend_gray(rbuf_type& rb) :
m_rbuf(&rb)
{}
void attach(rbuf_type& rb) { m_rbuf = &rb; }
//--------------------------------------------------------------------
template<class PixFmt>
bool attach(PixFmt& pixf, int x1, int y1, int x2, int y2)
{
rect_i r(x1, y1, x2, y2);
if(r.clip(rect_i(0, 0, pixf.width()-1, pixf.height()-1)))
{
int stride = pixf.stride();
m_rbuf->attach(pixf.pix_ptr(r.x1, stride < 0 ? r.y2 : r.y1),
(r.x2 - r.x1) + 1,
(r.y2 - r.y1) + 1,
stride);
return true;
}
return false;
}
//--------------------------------------------------------------------
AGG_INLINE unsigned width() const { return m_rbuf->width(); }
AGG_INLINE unsigned height() const { return m_rbuf->height(); }
AGG_INLINE int stride() const { return m_rbuf->stride(); }
//--------------------------------------------------------------------
int8u* row_ptr(int y) { return m_rbuf->row_ptr(y); }
const int8u* row_ptr(int y) const { return m_rbuf->row_ptr(y); }
row_data row(int y) const { return m_rbuf->row(y); }
const int8u* pix_ptr(int x, int y) const
{
return m_rbuf->row_ptr(y) + x * Step + Offset;
}
int8u* pix_ptr(int x, int y)
{
return m_rbuf->row_ptr(y) + x * Step + Offset;
}
//--------------------------------------------------------------------
AGG_INLINE static void make_pix(int8u* p, const color_type& c)
{
*(value_type*)p = c.v;
}
//--------------------------------------------------------------------
AGG_INLINE color_type pixel(int x, int y) const
{
value_type* p = (value_type*)m_rbuf->row_ptr(y) + x * Step + Offset;
return color_type(*p);
}
//--------------------------------------------------------------------
AGG_INLINE void copy_pixel(int x, int y, const color_type& c)
{
*((value_type*)m_rbuf->row_ptr(x, y, 1) + x * Step + Offset) = c.v;
}
//--------------------------------------------------------------------
AGG_INLINE void blend_pixel(int x, int y, const color_type& c, int8u cover)
{
copy_or_blend_pix((value_type*)
m_rbuf->row_ptr(x, y, 1) + x * Step + Offset,
c,
cover);
}
//--------------------------------------------------------------------
AGG_INLINE void copy_hline(int x, int y,
unsigned len,
const color_type& c)
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y, len) + x * Step + Offset;
do
{
*p = c.v;
p += Step;
}
while(--len);
}
//--------------------------------------------------------------------
AGG_INLINE void copy_vline(int x, int y,
unsigned len,
const color_type& c)
{
do
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x * Step + Offset;
*p = c.v;
}
while(--len);
}
//--------------------------------------------------------------------
void blend_hline(int x, int y,
unsigned len,
const color_type& c,
int8u cover)
{
if (c.a)
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y, len) + x * Step + Offset;
calc_type alpha = (calc_type(c.a) * (cover + 1)) >> 8;
if(alpha == base_mask)
{
do
{
*p = c.v;
p += Step;
}
while(--len);
}
else
{
do
{
Blender::blend_pix(p, c.v, alpha, cover);
p += Step;
}
while(--len);
}
}
}
//--------------------------------------------------------------------
void blend_vline(int x, int y,
unsigned len,
const color_type& c,
int8u cover)
{
if (c.a)
{
value_type* p;
calc_type alpha = (calc_type(c.a) * (cover + 1)) >> 8;
if(alpha == base_mask)
{
do
{
p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x * Step + Offset;
*p = c.v;
}
while(--len);
}
else
{
do
{
p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x * Step + Offset;
Blender::blend_pix(p, c.v, alpha, cover);
}
while(--len);
}
}
}
//--------------------------------------------------------------------
void blend_solid_hspan(int x, int y,
unsigned len,
const color_type& c,
const int8u* covers)
{
if (c.a)
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y, len) + x * Step + Offset;
do
{
calc_type alpha = (calc_type(c.a) * (calc_type(*covers) + 1)) >> 8;
if(alpha == base_mask)
{
*p = c.v;
}
else
{
Blender::blend_pix(p, c.v, alpha, *covers);
}
p += Step;
++covers;
}
while(--len);
}
}
//--------------------------------------------------------------------
void blend_solid_vspan(int x, int y,
unsigned len,
const color_type& c,
const int8u* covers)
{
if (c.a)
{
do
{
calc_type alpha = (calc_type(c.a) * (calc_type(*covers) + 1)) >> 8;
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x * Step + Offset;
if(alpha == base_mask)
{
*p = c.v;
}
else
{
Blender::blend_pix(p, c.v, alpha, *covers);
}
++covers;
}
while(--len);
}
}
//--------------------------------------------------------------------
void copy_color_hspan(int x, int y,
unsigned len,
const color_type* colors)
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y, len) + x * Step + Offset;
do
{
*p = colors->v;
p += Step;
++colors;
}
while(--len);
}
//--------------------------------------------------------------------
void copy_color_vspan(int x, int y,
unsigned len,
const color_type* colors)
{
do
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x * Step + Offset;
*p = colors->v;
++colors;
}
while(--len);
}
//--------------------------------------------------------------------
void blend_color_hspan(int x, int y,
unsigned len,
const color_type* colors,
const int8u* covers,
int8u cover)
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y, len) + x * Step + Offset;
if(covers)
{
do
{
copy_or_blend_pix(p, *colors++, *covers++);
p += Step;
}
while(--len);
}
else
{
if(cover == 255)
{
do
{
if(colors->a == base_mask)
{
*p = colors->v;
}
else
{
copy_or_blend_pix(p, *colors);
}
p += Step;
++colors;
}
while(--len);
}
else
{
do
{
copy_or_blend_pix(p, *colors++, cover);
p += Step;
}
while(--len);
}
}
}
//--------------------------------------------------------------------
void blend_color_vspan(int x, int y,
unsigned len,
const color_type* colors,
const int8u* covers,
int8u cover)
{
value_type* p;
if(covers)
{
do
{
p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x * Step + Offset;
copy_or_blend_pix(p, *colors++, *covers++);
}
while(--len);
}
else
{
if(cover == 255)
{
do
{
p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x * Step + Offset;
if(colors->a == base_mask)
{
*p = colors->v;
}
else
{
copy_or_blend_pix(p, *colors);
}
++colors;
}
while(--len);
}
else
{
do
{
p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x * Step + Offset;
copy_or_blend_pix(p, *colors++, cover);
}
while(--len);
}
}
}
//--------------------------------------------------------------------
template<class Function> void for_each_pixel(Function f)
{
unsigned y;
for(y = 0; y < height(); ++y)
{
row_data r = m_rbuf->row(y);
if(r.ptr)
{
unsigned len = r.x2 - r.x1 + 1;
value_type* p = (value_type*)
m_rbuf->row_ptr(r.x1, y, len) + r.x1 * Step + Offset;
do
{
f(p);
p += Step;
}
while(--len);
}
}
}
//--------------------------------------------------------------------
template<class GammaLut> void apply_gamma_dir(const GammaLut& g)
{
for_each_pixel(apply_gamma_dir_gray<color_type, GammaLut>(g));
}
//--------------------------------------------------------------------
template<class GammaLut> void apply_gamma_inv(const GammaLut& g)
{
for_each_pixel(apply_gamma_inv_gray<color_type, GammaLut>(g));
}
//--------------------------------------------------------------------
template<class RenBuf2>
void copy_from(const RenBuf2& from,
int xdst, int ydst,
int xsrc, int ysrc,
unsigned len)
{
const int8u* p = from.row_ptr(ysrc);
if(p)
{
memmove(m_rbuf->row_ptr(xdst, ydst, len) + xdst * pix_width,
p + xsrc * pix_width,
len * pix_width);
}
}
//--------------------------------------------------------------------
template<class SrcPixelFormatRenderer>
void blend_from_color(const SrcPixelFormatRenderer& from,
const color_type& color,
int xdst, int ydst,
int xsrc, int ysrc,
unsigned len,
int8u cover)
{
typedef typename SrcPixelFormatRenderer::value_type src_value_type;
const src_value_type* psrc = (src_value_type*)from.row_ptr(ysrc);
if(psrc)
{
value_type* pdst =
(value_type*)m_rbuf->row_ptr(xdst, ydst, len) + xdst;
do
{
copy_or_blend_pix(pdst,
color,
(*psrc * cover + base_mask) >> base_shift);
++psrc;
++pdst;
}
while(--len);
}
}
//--------------------------------------------------------------------
template<class SrcPixelFormatRenderer>
void blend_from_lut(const SrcPixelFormatRenderer& from,
const color_type* color_lut,
int xdst, int ydst,
int xsrc, int ysrc,
unsigned len,
int8u cover)
{
typedef typename SrcPixelFormatRenderer::value_type src_value_type;
const src_value_type* psrc = (src_value_type*)from.row_ptr(ysrc);
if(psrc)
{
value_type* pdst =
(value_type*)m_rbuf->row_ptr(xdst, ydst, len) + xdst;
do
{
copy_or_blend_pix(pdst, color_lut[*psrc], cover);
++psrc;
++pdst;
}
while(--len);
}
}
private:
rbuf_type* m_rbuf;
};
typedef blender_gray<gray8> blender_gray8;
typedef blender_gray_pre<gray8> blender_gray8_pre;
typedef blender_gray<gray16> blender_gray16;
typedef blender_gray_pre<gray16> blender_gray16_pre;
typedef pixfmt_alpha_blend_gray<blender_gray8, rendering_buffer> pixfmt_gray8; //----pixfmt_gray8
typedef pixfmt_alpha_blend_gray<blender_gray8_pre, rendering_buffer> pixfmt_gray8_pre; //----pixfmt_gray8_pre
typedef pixfmt_alpha_blend_gray<blender_gray16, rendering_buffer> pixfmt_gray16; //----pixfmt_gray16
typedef pixfmt_alpha_blend_gray<blender_gray16_pre, rendering_buffer> pixfmt_gray16_pre; //----pixfmt_gray16_pre
}
#endif

View file

@ -1,860 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Adaptation for high precision colors has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
#ifndef AGG_PIXFMT_RGB_INCLUDED
#define AGG_PIXFMT_RGB_INCLUDED
#include <string.h>
#include "agg_basics.h"
#include "agg_color_rgba.h"
#include "agg_rendering_buffer.h"
namespace agg
{
//=====================================================apply_gamma_dir_rgb
template<class ColorT, class Order, class GammaLut> class apply_gamma_dir_rgb
{
public:
typedef typename ColorT::value_type value_type;
apply_gamma_dir_rgb(const GammaLut& gamma) : m_gamma(gamma) {}
AGG_INLINE void operator () (value_type* p)
{
p[Order::R] = m_gamma.dir(p[Order::R]);
p[Order::G] = m_gamma.dir(p[Order::G]);
p[Order::B] = m_gamma.dir(p[Order::B]);
}
private:
const GammaLut& m_gamma;
};
//=====================================================apply_gamma_inv_rgb
template<class ColorT, class Order, class GammaLut> class apply_gamma_inv_rgb
{
public:
typedef typename ColorT::value_type value_type;
apply_gamma_inv_rgb(const GammaLut& gamma) : m_gamma(gamma) {}
AGG_INLINE void operator () (value_type* p)
{
p[Order::R] = m_gamma.inv(p[Order::R]);
p[Order::G] = m_gamma.inv(p[Order::G]);
p[Order::B] = m_gamma.inv(p[Order::B]);
}
private:
const GammaLut& m_gamma;
};
//=========================================================blender_rgb
template<class ColorT, class Order> struct blender_rgb
{
typedef ColorT color_type;
typedef Order order_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e { base_shift = color_type::base_shift };
//--------------------------------------------------------------------
static AGG_INLINE void blend_pix(value_type* p,
unsigned cr, unsigned cg, unsigned cb,
unsigned alpha,
unsigned cover=0)
{
p[Order::R] += (value_type)(((cr - p[Order::R]) * alpha) >> base_shift);
p[Order::G] += (value_type)(((cg - p[Order::G]) * alpha) >> base_shift);
p[Order::B] += (value_type)(((cb - p[Order::B]) * alpha) >> base_shift);
}
};
//======================================================blender_rgb_pre
template<class ColorT, class Order> struct blender_rgb_pre
{
typedef ColorT color_type;
typedef Order order_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e { base_shift = color_type::base_shift };
//--------------------------------------------------------------------
static AGG_INLINE void blend_pix(value_type* p,
unsigned cr, unsigned cg, unsigned cb,
unsigned alpha,
unsigned cover)
{
alpha = color_type::base_mask - alpha;
cover = (cover + 1) << (base_shift - 8);
p[Order::R] = (value_type)((p[Order::R] * alpha + cr * cover) >> base_shift);
p[Order::G] = (value_type)((p[Order::G] * alpha + cg * cover) >> base_shift);
p[Order::B] = (value_type)((p[Order::B] * alpha + cb * cover) >> base_shift);
}
//--------------------------------------------------------------------
static AGG_INLINE void blend_pix(value_type* p,
unsigned cr, unsigned cg, unsigned cb,
unsigned alpha)
{
alpha = color_type::base_mask - alpha;
p[Order::R] = (value_type)(((p[Order::R] * alpha) >> base_shift) + cr);
p[Order::G] = (value_type)(((p[Order::G] * alpha) >> base_shift) + cg);
p[Order::B] = (value_type)(((p[Order::B] * alpha) >> base_shift) + cb);
}
};
//===================================================blender_rgb_gamma
template<class ColorT, class Order, class Gamma> class blender_rgb_gamma
{
public:
typedef ColorT color_type;
typedef Order order_type;
typedef Gamma gamma_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e { base_shift = color_type::base_shift };
//--------------------------------------------------------------------
blender_rgb_gamma() : m_gamma(0) {}
void gamma(const gamma_type& g) { m_gamma = &g; }
//--------------------------------------------------------------------
AGG_INLINE void blend_pix(value_type* p,
unsigned cr, unsigned cg, unsigned cb,
unsigned alpha,
unsigned cover=0)
{
calc_type r = m_gamma->dir(p[Order::R]);
calc_type g = m_gamma->dir(p[Order::G]);
calc_type b = m_gamma->dir(p[Order::B]);
p[Order::R] = m_gamma->inv((((m_gamma->dir(cr) - r) * alpha) >> base_shift) + r);
p[Order::G] = m_gamma->inv((((m_gamma->dir(cg) - g) * alpha) >> base_shift) + g);
p[Order::B] = m_gamma->inv((((m_gamma->dir(cb) - b) * alpha) >> base_shift) + b);
}
private:
const gamma_type* m_gamma;
};
//==================================================pixfmt_alpha_blend_rgb
template<class Blender, class RenBuf> class pixfmt_alpha_blend_rgb
{
public:
typedef RenBuf rbuf_type;
typedef Blender blender_type;
typedef typename rbuf_type::row_data row_data;
typedef typename blender_type::color_type color_type;
typedef typename blender_type::order_type order_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e
{
base_shift = color_type::base_shift,
base_scale = color_type::base_scale,
base_mask = color_type::base_mask,
pix_width = sizeof(value_type) * 3
};
private:
//--------------------------------------------------------------------
AGG_INLINE void copy_or_blend_pix(value_type* p,
const color_type& c,
unsigned cover)
{
if (c.a)
{
calc_type alpha = (calc_type(c.a) * (cover + 1)) >> 8;
if(alpha == base_mask)
{
p[order_type::R] = c.r;
p[order_type::G] = c.g;
p[order_type::B] = c.b;
}
else
{
m_blender.blend_pix(p, c.r, c.g, c.b, alpha, cover);
}
}
}
//--------------------------------------------------------------------
AGG_INLINE void copy_or_blend_pix(value_type* p,
const color_type& c)
{
if (c.a)
{
if(c.a == base_mask)
{
p[order_type::R] = c.r;
p[order_type::G] = c.g;
p[order_type::B] = c.b;
}
else
{
m_blender.blend_pix(p, c.r, c.g, c.b, c.a);
}
}
}
public:
//--------------------------------------------------------------------
explicit pixfmt_alpha_blend_rgb(rbuf_type& rb) :
m_rbuf(&rb)
{}
void attach(rbuf_type& rb) { m_rbuf = &rb; }
//--------------------------------------------------------------------
template<class PixFmt>
bool attach(PixFmt& pixf, int x1, int y1, int x2, int y2)
{
rect_i r(x1, y1, x2, y2);
if(r.clip(rect_i(0, 0, pixf.width()-1, pixf.height()-1)))
{
int stride = pixf.stride();
m_rbuf->attach(pixf.pix_ptr(r.x1, stride < 0 ? r.y2 : r.y1),
(r.x2 - r.x1) + 1,
(r.y2 - r.y1) + 1,
stride);
return true;
}
return false;
}
//--------------------------------------------------------------------
Blender& blender() { return m_blender; }
//--------------------------------------------------------------------
AGG_INLINE unsigned width() const { return m_rbuf->width(); }
AGG_INLINE unsigned height() const { return m_rbuf->height(); }
AGG_INLINE int stride() const { return m_rbuf->stride(); }
//--------------------------------------------------------------------
AGG_INLINE int8u* row_ptr(int y) { return m_rbuf->row_ptr(y); }
AGG_INLINE const int8u* row_ptr(int y) const { return m_rbuf->row_ptr(y); }
AGG_INLINE row_data row(int y) const { return m_rbuf->row(y); }
//--------------------------------------------------------------------
AGG_INLINE int8u* pix_ptr(int x, int y)
{
return m_rbuf->row_ptr(y) + x * pix_width;
}
AGG_INLINE const int8u* pix_ptr(int x, int y) const
{
return m_rbuf->row_ptr(y) + x * pix_width;
}
//--------------------------------------------------------------------
AGG_INLINE static void make_pix(int8u* p, const color_type& c)
{
((value_type*)p)[order_type::R] = c.r;
((value_type*)p)[order_type::G] = c.g;
((value_type*)p)[order_type::B] = c.b;
}
//--------------------------------------------------------------------
AGG_INLINE color_type pixel(int x, int y) const
{
value_type* p = (value_type*)m_rbuf->row_ptr(y) + x + x + x;
return color_type(p[order_type::R],
p[order_type::G],
p[order_type::B]);
}
//--------------------------------------------------------------------
AGG_INLINE void copy_pixel(int x, int y, const color_type& c)
{
value_type* p = (value_type*)m_rbuf->row_ptr(x, y, 1) + x + x + x;
p[order_type::R] = c.r;
p[order_type::G] = c.g;
p[order_type::B] = c.b;
}
//--------------------------------------------------------------------
AGG_INLINE void blend_pixel(int x, int y, const color_type& c, int8u cover)
{
copy_or_blend_pix((value_type*)m_rbuf->row_ptr(x, y, 1) + x + x + x, c, cover);
}
//--------------------------------------------------------------------
AGG_INLINE void copy_hline(int x, int y,
unsigned len,
const color_type& c)
{
value_type* p = (value_type*)m_rbuf->row_ptr(x, y, len) + x + x + x;
do
{
p[order_type::R] = c.r;
p[order_type::G] = c.g;
p[order_type::B] = c.b;
p += 3;
}
while(--len);
}
//--------------------------------------------------------------------
AGG_INLINE void copy_vline(int x, int y,
unsigned len,
const color_type& c)
{
do
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x + x + x;
p[order_type::R] = c.r;
p[order_type::G] = c.g;
p[order_type::B] = c.b;
}
while(--len);
}
//--------------------------------------------------------------------
void blend_hline(int x, int y,
unsigned len,
const color_type& c,
int8u cover)
{
if (c.a)
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y, len) + x + x + x;
calc_type alpha = (calc_type(c.a) * (calc_type(cover) + 1)) >> 8;
if(alpha == base_mask)
{
do
{
p[order_type::R] = c.r;
p[order_type::G] = c.g;
p[order_type::B] = c.b;
p += 3;
}
while(--len);
}
else
{
do
{
m_blender.blend_pix(p, c.r, c.g, c.b, alpha, cover);
p += 3;
}
while(--len);
}
}
}
//--------------------------------------------------------------------
void blend_vline(int x, int y,
unsigned len,
const color_type& c,
int8u cover)
{
if (c.a)
{
value_type* p;
calc_type alpha = (calc_type(c.a) * (cover + 1)) >> 8;
if(alpha == base_mask)
{
do
{
p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x + x + x;
p[order_type::R] = c.r;
p[order_type::G] = c.g;
p[order_type::B] = c.b;
}
while(--len);
}
else
{
do
{
p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x + x + x;
m_blender.blend_pix(p, c.r, c.g, c.b, alpha, cover);
}
while(--len);
}
}
}
//--------------------------------------------------------------------
void blend_solid_hspan(int x, int y,
unsigned len,
const color_type& c,
const int8u* covers)
{
if (c.a)
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y, len) + x + x + x;
do
{
calc_type alpha = (calc_type(c.a) * (calc_type(*covers) + 1)) >> 8;
if(alpha == base_mask)
{
p[order_type::R] = c.r;
p[order_type::G] = c.g;
p[order_type::B] = c.b;
}
else
{
m_blender.blend_pix(p, c.r, c.g, c.b, alpha, *covers);
}
p += 3;
++covers;
}
while(--len);
}
}
//--------------------------------------------------------------------
void blend_solid_vspan(int x, int y,
unsigned len,
const color_type& c,
const int8u* covers)
{
if (c.a)
{
do
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x + x + x;
calc_type alpha = (calc_type(c.a) * (calc_type(*covers) + 1)) >> 8;
if(alpha == base_mask)
{
p[order_type::R] = c.r;
p[order_type::G] = c.g;
p[order_type::B] = c.b;
}
else
{
m_blender.blend_pix(p, c.r, c.g, c.b, alpha, *covers);
}
++covers;
}
while(--len);
}
}
//--------------------------------------------------------------------
void copy_color_hspan(int x, int y,
unsigned len,
const color_type* colors)
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y, len) + x + x + x;
do
{
p[order_type::R] = colors->r;
p[order_type::G] = colors->g;
p[order_type::B] = colors->b;
++colors;
p += 3;
}
while(--len);
}
//--------------------------------------------------------------------
void copy_color_vspan(int x, int y,
unsigned len,
const color_type* colors)
{
do
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x + x + x;
p[order_type::R] = colors->r;
p[order_type::G] = colors->g;
p[order_type::B] = colors->b;
++colors;
}
while(--len);
}
//--------------------------------------------------------------------
void blend_color_hspan(int x, int y,
unsigned len,
const color_type* colors,
const int8u* covers,
int8u cover)
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y, len) + x + x + x;
if(covers)
{
do
{
copy_or_blend_pix(p, *colors++, *covers++);
p += 3;
}
while(--len);
}
else
{
if(cover == 255)
{
do
{
copy_or_blend_pix(p, *colors++);
p += 3;
}
while(--len);
}
else
{
do
{
copy_or_blend_pix(p, *colors++, cover);
p += 3;
}
while(--len);
}
}
}
//--------------------------------------------------------------------
void blend_color_vspan(int x, int y,
unsigned len,
const color_type* colors,
const int8u* covers,
int8u cover)
{
value_type* p;
if(covers)
{
do
{
p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x + x + x;
copy_or_blend_pix(p, *colors++, *covers++);
}
while(--len);
}
else
{
if(cover == 255)
{
do
{
p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x + x + x;
copy_or_blend_pix(p, *colors++);
}
while(--len);
}
else
{
do
{
p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x + x + x;
copy_or_blend_pix(p, *colors++, cover);
}
while(--len);
}
}
}
//--------------------------------------------------------------------
template<class Function> void for_each_pixel(Function f)
{
unsigned y;
for(y = 0; y < height(); ++y)
{
row_data r = m_rbuf->row(y);
if(r.ptr)
{
unsigned len = r.x2 - r.x1 + 1;
value_type* p = (value_type*)
m_rbuf->row_ptr(r.x1, y, len) + r.x1 * 3;
do
{
f(p);
p += 3;
}
while(--len);
}
}
}
//--------------------------------------------------------------------
template<class GammaLut> void apply_gamma_dir(const GammaLut& g)
{
for_each_pixel(apply_gamma_dir_rgb<color_type, order_type, GammaLut>(g));
}
//--------------------------------------------------------------------
template<class GammaLut> void apply_gamma_inv(const GammaLut& g)
{
for_each_pixel(apply_gamma_inv_rgb<color_type, order_type, GammaLut>(g));
}
//--------------------------------------------------------------------
template<class RenBuf2>
void copy_from(const RenBuf2& from,
int xdst, int ydst,
int xsrc, int ysrc,
unsigned len)
{
const int8u* p = from.row_ptr(ysrc);
if(p)
{
memmove(m_rbuf->row_ptr(xdst, ydst, len) + xdst * pix_width,
p + xsrc * pix_width,
len * pix_width);
}
}
//--------------------------------------------------------------------
template<class SrcPixelFormatRenderer>
void blend_from(const SrcPixelFormatRenderer& from,
int xdst, int ydst,
int xsrc, int ysrc,
unsigned len,
int8u cover)
{
typedef typename SrcPixelFormatRenderer::order_type src_order;
const value_type* psrc = (const value_type*)from.row_ptr(ysrc);
if(psrc)
{
psrc += xsrc * 4;
value_type* pdst =
(value_type*)m_rbuf->row_ptr(xdst, ydst, len) + xdst * 3;
if(cover == 255)
{
do
{
value_type alpha = psrc[src_order::A];
if(alpha)
{
if(alpha == base_mask)
{
pdst[order_type::R] = psrc[src_order::R];
pdst[order_type::G] = psrc[src_order::G];
pdst[order_type::B] = psrc[src_order::B];
}
else
{
m_blender.blend_pix(pdst,
psrc[src_order::R],
psrc[src_order::G],
psrc[src_order::B],
alpha);
}
}
psrc += 4;
pdst += 3;
}
while(--len);
}
else
{
color_type color;
do
{
color.r = psrc[src_order::R];
color.g = psrc[src_order::G];
color.b = psrc[src_order::B];
color.a = psrc[src_order::A];
copy_or_blend_pix(pdst, color, cover);
psrc += 4;
pdst += 3;
}
while(--len);
}
}
}
//--------------------------------------------------------------------
template<class SrcPixelFormatRenderer>
void blend_from_color(const SrcPixelFormatRenderer& from,
const color_type& color,
int xdst, int ydst,
int xsrc, int ysrc,
unsigned len,
int8u cover)
{
typedef typename SrcPixelFormatRenderer::value_type src_value_type;
const src_value_type* psrc = (src_value_type*)from.row_ptr(ysrc);
if(psrc)
{
value_type* pdst =
(value_type*)m_rbuf->row_ptr(xdst, ydst, len) + xdst * 3;
do
{
copy_or_blend_pix(pdst,
color,
(*psrc * cover + base_mask) >> base_shift);
++psrc;
pdst += 3;
}
while(--len);
}
}
//--------------------------------------------------------------------
template<class SrcPixelFormatRenderer>
void blend_from_lut(const SrcPixelFormatRenderer& from,
const color_type* color_lut,
int xdst, int ydst,
int xsrc, int ysrc,
unsigned len,
int8u cover)
{
typedef typename SrcPixelFormatRenderer::value_type src_value_type;
const src_value_type* psrc = (src_value_type*)from.row_ptr(ysrc);
if(psrc)
{
value_type* pdst =
(value_type*)m_rbuf->row_ptr(xdst, ydst, len) + xdst * 3;
if(cover == 255)
{
do
{
const color_type& color = color_lut[*psrc];
m_blender.blend_pix(pdst,
color.r, color.g, color.b, color.a);
++psrc;
pdst += 3;
}
while(--len);
}
else
{
do
{
copy_or_blend_pix(pdst, color_lut[*psrc], cover);
++psrc;
pdst += 3;
}
while(--len);
}
}
}
private:
rbuf_type* m_rbuf;
Blender m_blender;
};
typedef pixfmt_alpha_blend_rgb<blender_rgb<rgba8, order_rgb>, rendering_buffer> pixfmt_rgb24; //----pixfmt_rgb24
typedef pixfmt_alpha_blend_rgb<blender_rgb<rgba8, order_bgr>, rendering_buffer> pixfmt_bgr24; //----pixfmt_bgr24
typedef pixfmt_alpha_blend_rgb<blender_rgb<rgba16, order_rgb>, rendering_buffer> pixfmt_rgb48; //----pixfmt_rgb48
typedef pixfmt_alpha_blend_rgb<blender_rgb<rgba16, order_bgr>, rendering_buffer> pixfmt_bgr48; //----pixfmt_bgr48
typedef pixfmt_alpha_blend_rgb<blender_rgb_pre<rgba8, order_rgb>, rendering_buffer> pixfmt_rgb24_pre; //----pixfmt_rgb24_pre
typedef pixfmt_alpha_blend_rgb<blender_rgb_pre<rgba8, order_bgr>, rendering_buffer> pixfmt_bgr24_pre; //----pixfmt_bgr24_pre
typedef pixfmt_alpha_blend_rgb<blender_rgb_pre<rgba16, order_rgb>, rendering_buffer> pixfmt_rgb48_pre; //----pixfmt_rgb48_pre
typedef pixfmt_alpha_blend_rgb<blender_rgb_pre<rgba16, order_bgr>, rendering_buffer> pixfmt_bgr48_pre; //----pixfmt_bgr48_pre
//-----------------------------------------------------pixfmt_rgb24_gamma
template<class Gamma> class pixfmt_rgb24_gamma :
public pixfmt_alpha_blend_rgb<blender_rgb_gamma<rgba8, order_rgb, Gamma>, rendering_buffer>
{
public:
pixfmt_rgb24_gamma(rendering_buffer& rb, const Gamma& g) :
pixfmt_alpha_blend_rgb<blender_rgb_gamma<rgba8, order_rgb, Gamma>, rendering_buffer>(rb)
{
this->blender().gamma(g);
}
};
//-----------------------------------------------------pixfmt_bgr24_gamma
template<class Gamma> class pixfmt_bgr24_gamma :
public pixfmt_alpha_blend_rgb<blender_rgb_gamma<rgba8, order_bgr, Gamma>, rendering_buffer>
{
public:
pixfmt_bgr24_gamma(rendering_buffer& rb, const Gamma& g) :
pixfmt_alpha_blend_rgb<blender_rgb_gamma<rgba8, order_bgr, Gamma>, rendering_buffer>(rb)
{
this->blender().gamma(g);
}
};
//-----------------------------------------------------pixfmt_rgb48_gamma
template<class Gamma> class pixfmt_rgb48_gamma :
public pixfmt_alpha_blend_rgb<blender_rgb_gamma<rgba16, order_rgb, Gamma>, rendering_buffer>
{
public:
pixfmt_rgb48_gamma(rendering_buffer& rb, const Gamma& g) :
pixfmt_alpha_blend_rgb<blender_rgb_gamma<rgba16, order_rgb, Gamma>, rendering_buffer>(rb)
{
this->blender().gamma(g);
}
};
//-----------------------------------------------------pixfmt_bgr48_gamma
template<class Gamma> class pixfmt_bgr48_gamma :
public pixfmt_alpha_blend_rgb<blender_rgb_gamma<rgba16, order_bgr, Gamma>, rendering_buffer>
{
public:
pixfmt_bgr48_gamma(rendering_buffer& rb, const Gamma& g) :
pixfmt_alpha_blend_rgb<blender_rgb_gamma<rgba16, order_bgr, Gamma>, rendering_buffer>(rb)
{
this->blender().gamma(g);
}
};
}
#endif

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -1,157 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_PIXFMT_TRANSPOSER_INCLUDED
#define AGG_PIXFMT_TRANSPOSER_INCLUDED
#include "agg_basics.h"
namespace agg
{
//=======================================================pixfmt_transposer
template<class PixFmt> class pixfmt_transposer
{
public:
typedef PixFmt pixfmt_type;
typedef typename pixfmt_type::color_type color_type;
typedef typename pixfmt_type::row_data row_data;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
//--------------------------------------------------------------------
pixfmt_transposer() : m_pixf(0) {}
explicit pixfmt_transposer(pixfmt_type& pixf) : m_pixf(&pixf) {}
void attach(pixfmt_type& pixf) { m_pixf = &pixf; }
//--------------------------------------------------------------------
AGG_INLINE unsigned width() const { return m_pixf->height(); }
AGG_INLINE unsigned height() const { return m_pixf->width(); }
//--------------------------------------------------------------------
AGG_INLINE color_type pixel(int x, int y) const
{
return m_pixf->pixel(y, x);
}
//--------------------------------------------------------------------
AGG_INLINE void copy_pixel(int x, int y, const color_type& c)
{
m_pixf->copy_pixel(y, x, c);
}
//--------------------------------------------------------------------
AGG_INLINE void blend_pixel(int x, int y,
const color_type& c,
int8u cover)
{
m_pixf->blend_pixel(y, x, c, cover);
}
//--------------------------------------------------------------------
AGG_INLINE void copy_hline(int x, int y,
unsigned len,
const color_type& c)
{
m_pixf->copy_vline(y, x, len, c);
}
//--------------------------------------------------------------------
AGG_INLINE void copy_vline(int x, int y,
unsigned len,
const color_type& c)
{
m_pixf->copy_hline(y, x, len, c);
}
//--------------------------------------------------------------------
AGG_INLINE void blend_hline(int x, int y,
unsigned len,
const color_type& c,
int8u cover)
{
m_pixf->blend_vline(y, x, len, c, cover);
}
//--------------------------------------------------------------------
AGG_INLINE void blend_vline(int x, int y,
unsigned len,
const color_type& c,
int8u cover)
{
m_pixf->blend_hline(y, x, len, c, cover);
}
//--------------------------------------------------------------------
AGG_INLINE void blend_solid_hspan(int x, int y,
unsigned len,
const color_type& c,
const int8u* covers)
{
m_pixf->blend_solid_vspan(y, x, len, c, covers);
}
//--------------------------------------------------------------------
AGG_INLINE void blend_solid_vspan(int x, int y,
unsigned len,
const color_type& c,
const int8u* covers)
{
m_pixf->blend_solid_hspan(y, x, len, c, covers);
}
//--------------------------------------------------------------------
AGG_INLINE void copy_color_hspan(int x, int y,
unsigned len,
const color_type* colors)
{
m_pixf->copy_color_vspan(y, x, len, colors);
}
//--------------------------------------------------------------------
AGG_INLINE void copy_color_vspan(int x, int y,
unsigned len,
const color_type* colors)
{
m_pixf->copy_color_hspan(y, x, len, colors);
}
//--------------------------------------------------------------------
AGG_INLINE void blend_color_hspan(int x, int y,
unsigned len,
const color_type* colors,
const int8u* covers,
int8u cover)
{
m_pixf->blend_color_vspan(y, x, len, colors, covers, cover);
}
//--------------------------------------------------------------------
AGG_INLINE void blend_color_vspan(int x, int y,
unsigned len,
const color_type* colors,
const int8u* covers,
int8u cover)
{
m_pixf->blend_color_hspan(y, x, len, colors, covers, cover);
}
private:
pixfmt_type* m_pixf;
};
}
#endif

View file

@ -1,764 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
//
// The author gratefully acknowleges the support of David Turner,
// Robert Wilhelm, and Werner Lemberg - the authors of the FreeType
// libray - in producing this work. See http://www.freetype.org for details.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Adaptation for 32-bit screen coordinates has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
#ifndef AGG_RASTERIZER_CELLS_AA_INCLUDED
#define AGG_RASTERIZER_CELLS_AA_INCLUDED
#include <exception>
#include <string.h>
#include <math.h>
#include "agg_math.h"
#include "agg_array.h"
namespace agg
{
//-----------------------------------------------------rasterizer_cells_aa
// An internal class that implements the main rasterization algorithm.
// Used in the rasterizer. Should not be used direcly.
template<class Cell> class rasterizer_cells_aa
{
enum cell_block_scale_e
{
cell_block_shift = 12,
cell_block_size = 1 << cell_block_shift,
cell_block_mask = cell_block_size - 1,
cell_block_pool = 256,
cell_block_limit = 4096
};
struct sorted_y
{
unsigned start;
unsigned num;
};
public:
typedef Cell cell_type;
typedef rasterizer_cells_aa<Cell> self_type;
~rasterizer_cells_aa();
rasterizer_cells_aa();
void reset();
void style(const cell_type& style_cell);
void line(int x1, int y1, int x2, int y2);
int min_x() const { return m_min_x; }
int min_y() const { return m_min_y; }
int max_x() const { return m_max_x; }
int max_y() const { return m_max_y; }
void sort_cells();
unsigned total_cells() const
{
return m_num_cells;
}
unsigned scanline_num_cells(unsigned y) const
{
return m_sorted_y[y - m_min_y].num;
}
const cell_type* const* scanline_cells(unsigned y) const
{
return m_sorted_cells.data() + m_sorted_y[y - m_min_y].start;
}
bool sorted() const { return m_sorted; }
private:
rasterizer_cells_aa(const self_type&);
const self_type& operator = (const self_type&);
void set_curr_cell(int x, int y);
void add_curr_cell();
void render_hline(int ey, int x1, int y1, int x2, int y2);
void allocate_block();
private:
unsigned m_num_blocks;
unsigned m_max_blocks;
unsigned m_curr_block;
unsigned m_num_cells;
cell_type** m_cells;
cell_type* m_curr_cell_ptr;
pod_vector<cell_type*> m_sorted_cells;
pod_vector<sorted_y> m_sorted_y;
cell_type m_curr_cell;
cell_type m_style_cell;
int m_min_x;
int m_min_y;
int m_max_x;
int m_max_y;
bool m_sorted;
};
//------------------------------------------------------------------------
template<class Cell>
rasterizer_cells_aa<Cell>::~rasterizer_cells_aa()
{
if(m_num_blocks)
{
cell_type** ptr = m_cells + m_num_blocks - 1;
while(m_num_blocks--)
{
pod_allocator<cell_type>::deallocate(*ptr, cell_block_size);
ptr--;
}
pod_allocator<cell_type*>::deallocate(m_cells, m_max_blocks);
}
}
//------------------------------------------------------------------------
template<class Cell>
rasterizer_cells_aa<Cell>::rasterizer_cells_aa() :
m_num_blocks(0),
m_max_blocks(0),
m_curr_block(0),
m_num_cells(0),
m_cells(0),
m_curr_cell_ptr(0),
m_sorted_cells(),
m_sorted_y(),
m_min_x(0x7FFFFFFF),
m_min_y(0x7FFFFFFF),
m_max_x(-0x7FFFFFFF),
m_max_y(-0x7FFFFFFF),
m_sorted(false)
{
m_style_cell.initial();
m_curr_cell.initial();
}
//------------------------------------------------------------------------
template<class Cell>
void rasterizer_cells_aa<Cell>::reset()
{
m_num_cells = 0;
m_curr_block = 0;
m_curr_cell.initial();
m_style_cell.initial();
m_sorted = false;
m_min_x = 0x7FFFFFFF;
m_min_y = 0x7FFFFFFF;
m_max_x = -0x7FFFFFFF;
m_max_y = -0x7FFFFFFF;
}
//------------------------------------------------------------------------
template<class Cell>
AGG_INLINE void rasterizer_cells_aa<Cell>::add_curr_cell()
{
if(m_curr_cell.area | m_curr_cell.cover)
{
if((m_num_cells & cell_block_mask) == 0)
{
if(m_num_blocks >= cell_block_limit) {
/* If this exception is thrown too often, one can
increase cell_block_limit */
throw "Agg rendering complexity exceeded. "
"Consider downsampling or decimating your data.";
}
allocate_block();
}
*m_curr_cell_ptr++ = m_curr_cell;
++m_num_cells;
}
}
//------------------------------------------------------------------------
template<class Cell>
AGG_INLINE void rasterizer_cells_aa<Cell>::set_curr_cell(int x, int y)
{
if(m_curr_cell.not_equal(x, y, m_style_cell))
{
add_curr_cell();
m_curr_cell.style(m_style_cell);
m_curr_cell.x = x;
m_curr_cell.y = y;
m_curr_cell.cover = 0;
m_curr_cell.area = 0;
}
}
//------------------------------------------------------------------------
template<class Cell>
AGG_INLINE void rasterizer_cells_aa<Cell>::render_hline(int ey,
int x1, int y1,
int x2, int y2)
{
int ex1 = x1 >> poly_subpixel_shift;
int ex2 = x2 >> poly_subpixel_shift;
int fx1 = x1 & poly_subpixel_mask;
int fx2 = x2 & poly_subpixel_mask;
int delta, p, first, dx;
int incr, lift, mod, rem;
//trivial case. Happens often
if(y1 == y2)
{
set_curr_cell(ex2, ey);
return;
}
//everything is located in a single cell. That is easy!
if(ex1 == ex2)
{
delta = y2 - y1;
m_curr_cell.cover += delta;
m_curr_cell.area += (fx1 + fx2) * delta;
return;
}
//ok, we'll have to render a run of adjacent cells on the same
//hline...
p = (poly_subpixel_scale - fx1) * (y2 - y1);
first = poly_subpixel_scale;
incr = 1;
dx = x2 - x1;
if(dx < 0)
{
p = fx1 * (y2 - y1);
first = 0;
incr = -1;
dx = -dx;
}
delta = p / dx;
mod = p % dx;
if(mod < 0)
{
delta--;
mod += dx;
}
m_curr_cell.cover += delta;
m_curr_cell.area += (fx1 + first) * delta;
ex1 += incr;
set_curr_cell(ex1, ey);
y1 += delta;
if(ex1 != ex2)
{
p = poly_subpixel_scale * (y2 - y1 + delta);
lift = p / dx;
rem = p % dx;
if (rem < 0)
{
lift--;
rem += dx;
}
mod -= dx;
while (ex1 != ex2)
{
delta = lift;
mod += rem;
if(mod >= 0)
{
mod -= dx;
delta++;
}
m_curr_cell.cover += delta;
m_curr_cell.area += poly_subpixel_scale * delta;
y1 += delta;
ex1 += incr;
set_curr_cell(ex1, ey);
}
}
delta = y2 - y1;
m_curr_cell.cover += delta;
m_curr_cell.area += (fx2 + poly_subpixel_scale - first) * delta;
}
//------------------------------------------------------------------------
template<class Cell>
AGG_INLINE void rasterizer_cells_aa<Cell>::style(const cell_type& style_cell)
{
m_style_cell.style(style_cell);
}
//------------------------------------------------------------------------
template<class Cell>
void rasterizer_cells_aa<Cell>::line(int x1, int y1, int x2, int y2)
{
enum dx_limit_e { dx_limit = 16384 << poly_subpixel_shift };
int dx = x2 - x1;
if(dx >= dx_limit || dx <= -dx_limit)
{
int cx = (x1 + x2) >> 1;
int cy = (y1 + y2) >> 1;
line(x1, y1, cx, cy);
line(cx, cy, x2, y2);
}
int dy = y2 - y1;
int ex1 = x1 >> poly_subpixel_shift;
int ex2 = x2 >> poly_subpixel_shift;
int ey1 = y1 >> poly_subpixel_shift;
int ey2 = y2 >> poly_subpixel_shift;
int fy1 = y1 & poly_subpixel_mask;
int fy2 = y2 & poly_subpixel_mask;
int x_from, x_to;
int p, rem, mod, lift, delta, first, incr;
if(ex1 < m_min_x) m_min_x = ex1;
if(ex1 > m_max_x) m_max_x = ex1;
if(ey1 < m_min_y) m_min_y = ey1;
if(ey1 > m_max_y) m_max_y = ey1;
if(ex2 < m_min_x) m_min_x = ex2;
if(ex2 > m_max_x) m_max_x = ex2;
if(ey2 < m_min_y) m_min_y = ey2;
if(ey2 > m_max_y) m_max_y = ey2;
set_curr_cell(ex1, ey1);
//everything is on a single hline
if(ey1 == ey2)
{
render_hline(ey1, x1, fy1, x2, fy2);
return;
}
//Vertical line - we have to calculate start and end cells,
//and then - the common values of the area and coverage for
//all cells of the line. We know exactly there's only one
//cell, so, we don't have to call render_hline().
incr = 1;
if(dx == 0)
{
int ex = x1 >> poly_subpixel_shift;
int two_fx = (x1 - (ex << poly_subpixel_shift)) << 1;
int area;
first = poly_subpixel_scale;
if(dy < 0)
{
first = 0;
incr = -1;
}
x_from = x1;
//render_hline(ey1, x_from, fy1, x_from, first);
delta = first - fy1;
m_curr_cell.cover += delta;
m_curr_cell.area += two_fx * delta;
ey1 += incr;
set_curr_cell(ex, ey1);
delta = first + first - poly_subpixel_scale;
area = two_fx * delta;
while(ey1 != ey2)
{
//render_hline(ey1, x_from, poly_subpixel_scale - first, x_from, first);
m_curr_cell.cover = delta;
m_curr_cell.area = area;
ey1 += incr;
set_curr_cell(ex, ey1);
}
//render_hline(ey1, x_from, poly_subpixel_scale - first, x_from, fy2);
delta = fy2 - poly_subpixel_scale + first;
m_curr_cell.cover += delta;
m_curr_cell.area += two_fx * delta;
return;
}
//ok, we have to render several hlines
p = (poly_subpixel_scale - fy1) * dx;
first = poly_subpixel_scale;
if(dy < 0)
{
p = fy1 * dx;
first = 0;
incr = -1;
dy = -dy;
}
delta = p / dy;
mod = p % dy;
if(mod < 0)
{
delta--;
mod += dy;
}
x_from = x1 + delta;
render_hline(ey1, x1, fy1, x_from, first);
ey1 += incr;
set_curr_cell(x_from >> poly_subpixel_shift, ey1);
if(ey1 != ey2)
{
p = poly_subpixel_scale * dx;
lift = p / dy;
rem = p % dy;
if(rem < 0)
{
lift--;
rem += dy;
}
mod -= dy;
while(ey1 != ey2)
{
delta = lift;
mod += rem;
if (mod >= 0)
{
mod -= dy;
delta++;
}
x_to = x_from + delta;
render_hline(ey1, x_from, poly_subpixel_scale - first, x_to, first);
x_from = x_to;
ey1 += incr;
set_curr_cell(x_from >> poly_subpixel_shift, ey1);
}
}
render_hline(ey1, x_from, poly_subpixel_scale - first, x2, fy2);
}
//------------------------------------------------------------------------
template<class Cell>
void rasterizer_cells_aa<Cell>::allocate_block()
{
if(m_curr_block >= m_num_blocks)
{
if(m_num_blocks >= m_max_blocks)
{
cell_type** new_cells =
pod_allocator<cell_type*>::allocate(m_max_blocks +
cell_block_pool);
if(m_cells)
{
memcpy(new_cells, m_cells, m_max_blocks * sizeof(cell_type*));
pod_allocator<cell_type*>::deallocate(m_cells, m_max_blocks);
}
m_cells = new_cells;
m_max_blocks += cell_block_pool;
}
m_cells[m_num_blocks++] =
pod_allocator<cell_type>::allocate(cell_block_size);
}
m_curr_cell_ptr = m_cells[m_curr_block++];
}
//------------------------------------------------------------------------
template <class T> static AGG_INLINE void swap_cells(T* a, T* b)
{
T temp = *a;
*a = *b;
*b = temp;
}
//------------------------------------------------------------------------
enum
{
qsort_threshold = 9
};
//------------------------------------------------------------------------
template<class Cell>
void qsort_cells(Cell** start, unsigned num)
{
Cell** stack[80];
Cell*** top;
Cell** limit;
Cell** base;
limit = start + num;
base = start;
top = stack;
for (;;)
{
int len = int(limit - base);
Cell** i;
Cell** j;
Cell** pivot;
if(len > qsort_threshold)
{
// we use base + len/2 as the pivot
pivot = base + len / 2;
swap_cells(base, pivot);
i = base + 1;
j = limit - 1;
// now ensure that *i <= *base <= *j
if((*j)->x < (*i)->x)
{
swap_cells(i, j);
}
if((*base)->x < (*i)->x)
{
swap_cells(base, i);
}
if((*j)->x < (*base)->x)
{
swap_cells(base, j);
}
for(;;)
{
int x = (*base)->x;
do i++; while( (*i)->x < x );
do j--; while( x < (*j)->x );
if(i > j)
{
break;
}
swap_cells(i, j);
}
swap_cells(base, j);
// now, push the largest sub-array
if(j - base > limit - i)
{
top[0] = base;
top[1] = j;
base = i;
}
else
{
top[0] = i;
top[1] = limit;
limit = j;
}
top += 2;
}
else
{
// the sub-array is small, perform insertion sort
j = base;
i = j + 1;
for(; i < limit; j = i, i++)
{
for(; j[1]->x < (*j)->x; j--)
{
swap_cells(j + 1, j);
if (j == base)
{
break;
}
}
}
if(top > stack)
{
top -= 2;
base = top[0];
limit = top[1];
}
else
{
break;
}
}
}
}
//------------------------------------------------------------------------
template<class Cell>
void rasterizer_cells_aa<Cell>::sort_cells()
{
if(m_sorted) return; //Perform sort only the first time.
add_curr_cell();
m_curr_cell.x = 0x7FFFFFFF;
m_curr_cell.y = 0x7FFFFFFF;
m_curr_cell.cover = 0;
m_curr_cell.area = 0;
if(m_num_cells == 0) return;
// DBG: Check to see if min/max works well.
//for(unsigned nc = 0; nc < m_num_cells; nc++)
//{
// cell_type* cell = m_cells[nc >> cell_block_shift] + (nc & cell_block_mask);
// if(cell->x < m_min_x ||
// cell->y < m_min_y ||
// cell->x > m_max_x ||
// cell->y > m_max_y)
// {
// cell = cell; // Breakpoint here
// }
//}
// Allocate the array of cell pointers
m_sorted_cells.allocate(m_num_cells, 16);
// Allocate and zero the Y array
m_sorted_y.allocate(m_max_y - m_min_y + 1, 16);
m_sorted_y.zero();
// Create the Y-histogram (count the numbers of cells for each Y)
cell_type** block_ptr = m_cells;
cell_type* cell_ptr;
unsigned nb = m_num_cells >> cell_block_shift;
unsigned i;
while(nb--)
{
cell_ptr = *block_ptr++;
i = cell_block_size;
while(i--)
{
m_sorted_y[cell_ptr->y - m_min_y].start++;
++cell_ptr;
}
}
i = m_num_cells & cell_block_mask;
if (i) {
cell_ptr = *block_ptr++;
while(i--)
{
m_sorted_y[cell_ptr->y - m_min_y].start++;
++cell_ptr;
}
}
// Convert the Y-histogram into the array of starting indexes
unsigned start = 0;
for(i = 0; i < m_sorted_y.size(); i++)
{
unsigned v = m_sorted_y[i].start;
m_sorted_y[i].start = start;
start += v;
}
// Fill the cell pointer array sorted by Y
block_ptr = m_cells;
nb = m_num_cells >> cell_block_shift;
while(nb--)
{
cell_ptr = *block_ptr++;
i = cell_block_size;
while(i--)
{
sorted_y& curr_y = m_sorted_y[cell_ptr->y - m_min_y];
m_sorted_cells[curr_y.start + curr_y.num] = cell_ptr;
++curr_y.num;
++cell_ptr;
}
}
i = m_num_cells & cell_block_mask;
if (i) {
cell_ptr = *block_ptr++;
while(i--)
{
sorted_y& curr_y = m_sorted_y[cell_ptr->y - m_min_y];
m_sorted_cells[curr_y.start + curr_y.num] = cell_ptr;
++curr_y.num;
++cell_ptr;
}
}
// Finally arrange the X-arrays
for(i = 0; i < m_sorted_y.size(); i++)
{
const sorted_y& curr_y = m_sorted_y[i];
if(curr_y.num)
{
qsort_cells(m_sorted_cells.data() + curr_y.start, curr_y.num);
}
}
m_sorted = true;
}
//------------------------------------------------------scanline_hit_test
class scanline_hit_test
{
public:
scanline_hit_test(int x) : m_x(x), m_hit(false) {}
void reset_spans() {}
void finalize(int) {}
void add_cell(int x, int)
{
if(m_x == x) m_hit = true;
}
void add_span(int x, int len, int)
{
if(m_x >= x && m_x < x+len) m_hit = true;
}
unsigned num_spans() const { return 1; }
bool hit() const { return m_hit; }
private:
int m_x;
bool m_hit;
};
}
#endif

View file

@ -1,698 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.3
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
//
// The author gratefully acknowleges the support of David Turner,
// Robert Wilhelm, and Werner Lemberg - the authors of the FreeType
// libray - in producing this work. See http://www.freetype.org for details.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Adaptation for 32-bit screen coordinates has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
#ifndef AGG_RASTERIZER_COMPOUND_AA_INCLUDED
#define AGG_RASTERIZER_COMPOUND_AA_INCLUDED
#include "agg_rasterizer_cells_aa.h"
#include "agg_rasterizer_sl_clip.h"
namespace agg
{
//-----------------------------------------------------------cell_style_aa
// A pixel cell. There're no constructors defined and it was done
// intentionally in order to avoid extra overhead when allocating an
// array of cells.
struct cell_style_aa
{
int x;
int y;
int cover;
int area;
int16 left, right;
void initial()
{
x = 0x7FFFFFFF;
y = 0x7FFFFFFF;
cover = 0;
area = 0;
left = -1;
right = -1;
}
void style(const cell_style_aa& c)
{
left = c.left;
right = c.right;
}
int not_equal(int ex, int ey, const cell_style_aa& c) const
{
return (ex - x) | (ey - y) | (left - c.left) | (right - c.right);
}
};
//===========================================================layer_order_e
enum layer_order_e
{
layer_unsorted, //------layer_unsorted
layer_direct, //------layer_direct
layer_inverse //------layer_inverse
};
//==================================================rasterizer_compound_aa
template<class Clip=rasterizer_sl_clip_int> class rasterizer_compound_aa
{
struct style_info
{
unsigned start_cell;
unsigned num_cells;
int last_x;
};
struct cell_info
{
int x, area, cover;
};
public:
typedef Clip clip_type;
typedef typename Clip::conv_type conv_type;
typedef typename Clip::coord_type coord_type;
enum aa_scale_e
{
aa_shift = 8,
aa_scale = 1 << aa_shift,
aa_mask = aa_scale - 1,
aa_scale2 = aa_scale * 2,
aa_mask2 = aa_scale2 - 1
};
//--------------------------------------------------------------------
rasterizer_compound_aa() :
m_outline(),
m_clipper(),
m_filling_rule(fill_non_zero),
m_layer_order(layer_direct),
m_styles(), // Active Styles
m_ast(), // Active Style Table (unique values)
m_asm(), // Active Style Mask
m_cells(),
m_cover_buf(),
m_master_alpha(),
m_min_style(0x7FFFFFFF),
m_max_style(-0x7FFFFFFF),
m_start_x(0),
m_start_y(0),
m_scan_y(0x7FFFFFFF),
m_sl_start(0),
m_sl_len(0)
{}
//--------------------------------------------------------------------
void reset();
void reset_clipping();
void clip_box(double x1, double y1, double x2, double y2);
void filling_rule(filling_rule_e filling_rule);
void layer_order(layer_order_e order);
void master_alpha(int style, double alpha);
//--------------------------------------------------------------------
void styles(int left, int right);
void move_to(int x, int y);
void line_to(int x, int y);
void move_to_d(double x, double y);
void line_to_d(double x, double y);
void add_vertex(double x, double y, unsigned cmd);
void edge(int x1, int y1, int x2, int y2);
void edge_d(double x1, double y1, double x2, double y2);
//-------------------------------------------------------------------
template<class VertexSource>
void add_path(VertexSource& vs, unsigned path_id=0)
{
double x;
double y;
unsigned cmd;
vs.rewind(path_id);
if(m_outline.sorted()) reset();
while(!is_stop(cmd = vs.vertex(&x, &y)))
{
add_vertex(x, y, cmd);
}
}
//--------------------------------------------------------------------
int min_x() const { return m_outline.min_x(); }
int min_y() const { return m_outline.min_y(); }
int max_x() const { return m_outline.max_x(); }
int max_y() const { return m_outline.max_y(); }
int min_style() const { return m_min_style; }
int max_style() const { return m_max_style; }
//--------------------------------------------------------------------
void sort();
bool rewind_scanlines();
unsigned sweep_styles();
int scanline_start() const { return m_sl_start; }
unsigned scanline_length() const { return m_sl_len; }
unsigned style(unsigned style_idx) const;
cover_type* allocate_cover_buffer(unsigned len);
//--------------------------------------------------------------------
bool navigate_scanline(int y);
bool hit_test(int tx, int ty);
//--------------------------------------------------------------------
AGG_INLINE unsigned calculate_alpha(int area, unsigned master_alpha) const
{
int cover = area >> (poly_subpixel_shift*2 + 1 - aa_shift);
if(cover < 0) cover = -cover;
if(m_filling_rule == fill_even_odd)
{
cover &= aa_mask2;
if(cover > aa_scale)
{
cover = aa_scale2 - cover;
}
}
if(cover > aa_mask) cover = aa_mask;
return (cover * master_alpha + aa_mask) >> aa_shift;
}
//--------------------------------------------------------------------
// Sweeps one scanline with one style index. The style ID can be
// determined by calling style().
template<class Scanline> bool sweep_scanline(Scanline& sl, int style_idx)
{
int scan_y = m_scan_y - 1;
if(scan_y > m_outline.max_y()) return false;
sl.reset_spans();
unsigned master_alpha = aa_mask;
if(style_idx < 0)
{
style_idx = 0;
}
else
{
style_idx++;
master_alpha = m_master_alpha[m_ast[style_idx] + m_min_style - 1];
}
const style_info& st = m_styles[m_ast[style_idx]];
unsigned num_cells = st.num_cells;
cell_info* cell = &m_cells[st.start_cell];
int cover = 0;
while(num_cells--)
{
unsigned alpha;
int x = cell->x;
int area = cell->area;
cover += cell->cover;
++cell;
if(area)
{
alpha = calculate_alpha((cover << (poly_subpixel_shift + 1)) - area,
master_alpha);
sl.add_cell(x, alpha);
x++;
}
if(num_cells && cell->x > x)
{
alpha = calculate_alpha(cover << (poly_subpixel_shift + 1),
master_alpha);
if(alpha)
{
sl.add_span(x, cell->x - x, alpha);
}
}
}
if(sl.num_spans() == 0) return false;
sl.finalize(scan_y);
return true;
}
private:
void add_style(int style_id);
void allocate_master_alpha();
//--------------------------------------------------------------------
// Disable copying
rasterizer_compound_aa(const rasterizer_compound_aa<Clip>&);
const rasterizer_compound_aa<Clip>&
operator = (const rasterizer_compound_aa<Clip>&);
private:
rasterizer_cells_aa<cell_style_aa> m_outline;
clip_type m_clipper;
filling_rule_e m_filling_rule;
layer_order_e m_layer_order;
pod_vector<style_info> m_styles; // Active Styles
pod_vector<unsigned> m_ast; // Active Style Table (unique values)
pod_vector<int8u> m_asm; // Active Style Mask
pod_vector<cell_info> m_cells;
pod_vector<cover_type> m_cover_buf;
pod_bvector<unsigned> m_master_alpha;
int m_min_style;
int m_max_style;
coord_type m_start_x;
coord_type m_start_y;
int m_scan_y;
int m_sl_start;
unsigned m_sl_len;
};
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::reset()
{
m_outline.reset();
m_min_style = 0x7FFFFFFF;
m_max_style = -0x7FFFFFFF;
m_scan_y = 0x7FFFFFFF;
m_sl_start = 0;
m_sl_len = 0;
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::filling_rule(filling_rule_e filling_rule)
{
m_filling_rule = filling_rule;
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::layer_order(layer_order_e order)
{
m_layer_order = order;
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::clip_box(double x1, double y1,
double x2, double y2)
{
reset();
m_clipper.clip_box(conv_type::upscale(x1), conv_type::upscale(y1),
conv_type::upscale(x2), conv_type::upscale(y2));
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::reset_clipping()
{
reset();
m_clipper.reset_clipping();
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::styles(int left, int right)
{
cell_style_aa cell;
cell.initial();
cell.left = (int16)left;
cell.right = (int16)right;
m_outline.style(cell);
if(left >= 0 && left < m_min_style) m_min_style = left;
if(left >= 0 && left > m_max_style) m_max_style = left;
if(right >= 0 && right < m_min_style) m_min_style = right;
if(right >= 0 && right > m_max_style) m_max_style = right;
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::move_to(int x, int y)
{
if(m_outline.sorted()) reset();
m_clipper.move_to(m_start_x = conv_type::downscale(x),
m_start_y = conv_type::downscale(y));
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::line_to(int x, int y)
{
m_clipper.line_to(m_outline,
conv_type::downscale(x),
conv_type::downscale(y));
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::move_to_d(double x, double y)
{
if(m_outline.sorted()) reset();
m_clipper.move_to(m_start_x = conv_type::upscale(x),
m_start_y = conv_type::upscale(y));
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::line_to_d(double x, double y)
{
m_clipper.line_to(m_outline,
conv_type::upscale(x),
conv_type::upscale(y));
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::add_vertex(double x, double y, unsigned cmd)
{
if(is_move_to(cmd))
{
move_to_d(x, y);
}
else
if(is_vertex(cmd))
{
line_to_d(x, y);
}
else
if(is_close(cmd))
{
m_clipper.line_to(m_outline, m_start_x, m_start_y);
}
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::edge(int x1, int y1, int x2, int y2)
{
if(m_outline.sorted()) reset();
m_clipper.move_to(conv_type::downscale(x1), conv_type::downscale(y1));
m_clipper.line_to(m_outline,
conv_type::downscale(x2),
conv_type::downscale(y2));
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::edge_d(double x1, double y1,
double x2, double y2)
{
if(m_outline.sorted()) reset();
m_clipper.move_to(conv_type::upscale(x1), conv_type::upscale(y1));
m_clipper.line_to(m_outline,
conv_type::upscale(x2),
conv_type::upscale(y2));
}
//------------------------------------------------------------------------
template<class Clip>
AGG_INLINE void rasterizer_compound_aa<Clip>::sort()
{
m_outline.sort_cells();
}
//------------------------------------------------------------------------
template<class Clip>
AGG_INLINE bool rasterizer_compound_aa<Clip>::rewind_scanlines()
{
m_outline.sort_cells();
if(m_outline.total_cells() == 0)
{
return false;
}
if(m_max_style < m_min_style)
{
return false;
}
m_scan_y = m_outline.min_y();
m_styles.allocate(m_max_style - m_min_style + 2, 128);
allocate_master_alpha();
return true;
}
//------------------------------------------------------------------------
template<class Clip>
AGG_INLINE void rasterizer_compound_aa<Clip>::add_style(int style_id)
{
if(style_id < 0) style_id = 0;
else style_id -= m_min_style - 1;
unsigned nbyte = style_id >> 3;
unsigned mask = 1 << (style_id & 7);
style_info* style = &m_styles[style_id];
if((m_asm[nbyte] & mask) == 0)
{
m_ast.add(style_id);
m_asm[nbyte] |= mask;
style->start_cell = 0;
style->num_cells = 0;
style->last_x = -0x7FFFFFFF;
}
++style->start_cell;
}
//------------------------------------------------------------------------
// Returns the number of styles
template<class Clip>
unsigned rasterizer_compound_aa<Clip>::sweep_styles()
{
for(;;)
{
if(m_scan_y > m_outline.max_y()) return 0;
unsigned num_cells = m_outline.scanline_num_cells(m_scan_y);
const cell_style_aa* const* cells = m_outline.scanline_cells(m_scan_y);
unsigned num_styles = m_max_style - m_min_style + 2;
const cell_style_aa* curr_cell;
unsigned style_id;
style_info* style;
cell_info* cell;
m_cells.allocate(num_cells * 2, 256); // Each cell can have two styles
m_ast.capacity(num_styles, 64);
m_asm.allocate((num_styles + 7) >> 3, 8);
m_asm.zero();
if(num_cells)
{
// Pre-add zero (for no-fill style, that is, -1).
// We need that to ensure that the "-1 style" would go first.
m_asm[0] |= 1;
m_ast.add(0);
style = &m_styles[0];
style->start_cell = 0;
style->num_cells = 0;
style->last_x = -0x7FFFFFFF;
m_sl_start = cells[0]->x;
m_sl_len = cells[num_cells-1]->x - m_sl_start + 1;
while(num_cells--)
{
curr_cell = *cells++;
add_style(curr_cell->left);
add_style(curr_cell->right);
}
// Convert the Y-histogram into the array of starting indexes
unsigned i;
unsigned start_cell = 0;
for(i = 0; i < m_ast.size(); i++)
{
style_info& st = m_styles[m_ast[i]];
unsigned v = st.start_cell;
st.start_cell = start_cell;
start_cell += v;
}
cells = m_outline.scanline_cells(m_scan_y);
num_cells = m_outline.scanline_num_cells(m_scan_y);
while(num_cells--)
{
curr_cell = *cells++;
style_id = (curr_cell->left < 0) ? 0 :
curr_cell->left - m_min_style + 1;
style = &m_styles[style_id];
if(curr_cell->x == style->last_x)
{
cell = &m_cells[style->start_cell + style->num_cells - 1];
cell->area += curr_cell->area;
cell->cover += curr_cell->cover;
}
else
{
cell = &m_cells[style->start_cell + style->num_cells];
cell->x = curr_cell->x;
cell->area = curr_cell->area;
cell->cover = curr_cell->cover;
style->last_x = curr_cell->x;
style->num_cells++;
}
style_id = (curr_cell->right < 0) ? 0 :
curr_cell->right - m_min_style + 1;
style = &m_styles[style_id];
if(curr_cell->x == style->last_x)
{
cell = &m_cells[style->start_cell + style->num_cells - 1];
cell->area -= curr_cell->area;
cell->cover -= curr_cell->cover;
}
else
{
cell = &m_cells[style->start_cell + style->num_cells];
cell->x = curr_cell->x;
cell->area = -curr_cell->area;
cell->cover = -curr_cell->cover;
style->last_x = curr_cell->x;
style->num_cells++;
}
}
}
if(m_ast.size() > 1) break;
++m_scan_y;
}
++m_scan_y;
if(m_layer_order != layer_unsorted)
{
range_adaptor<pod_vector<unsigned> > ra(m_ast, 1, m_ast.size() - 1);
if(m_layer_order == layer_direct) quick_sort(ra, unsigned_greater);
else quick_sort(ra, unsigned_less);
}
return m_ast.size() - 1;
}
//------------------------------------------------------------------------
// Returns style ID depending of the existing style index
template<class Clip>
AGG_INLINE
unsigned rasterizer_compound_aa<Clip>::style(unsigned style_idx) const
{
return m_ast[style_idx + 1] + m_min_style - 1;
}
//------------------------------------------------------------------------
template<class Clip>
AGG_INLINE bool rasterizer_compound_aa<Clip>::navigate_scanline(int y)
{
m_outline.sort_cells();
if(m_outline.total_cells() == 0)
{
return false;
}
if(m_max_style < m_min_style)
{
return false;
}
if(y < m_outline.min_y() || y > m_outline.max_y())
{
return false;
}
m_scan_y = y;
m_styles.allocate(m_max_style - m_min_style + 2, 128);
allocate_master_alpha();
return true;
}
//------------------------------------------------------------------------
template<class Clip>
bool rasterizer_compound_aa<Clip>::hit_test(int tx, int ty)
{
if(!navigate_scanline(ty))
{
return false;
}
unsigned num_styles = sweep_styles();
if(num_styles <= 0)
{
return false;
}
scanline_hit_test sl(tx);
sweep_scanline(sl, -1);
return sl.hit();
}
//------------------------------------------------------------------------
template<class Clip>
cover_type* rasterizer_compound_aa<Clip>::allocate_cover_buffer(unsigned len)
{
m_cover_buf.allocate(len, 256);
return &m_cover_buf[0];
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::allocate_master_alpha()
{
while((int)m_master_alpha.size() <= m_max_style)
{
m_master_alpha.add(aa_mask);
}
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::master_alpha(int style, double alpha)
{
if(style >= 0)
{
while((int)m_master_alpha.size() <= style)
{
m_master_alpha.add(aa_mask);
}
m_master_alpha[style] = uround(alpha * aa_mask);
}
}
}
#endif

View file

@ -1,147 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_RASTERIZER_OUTLINE_INCLUDED
#define AGG_RASTERIZER_OUTLINE_INCLUDED
#include "agg_basics.h"
namespace agg
{
//======================================================rasterizer_outline
template<class Renderer> class rasterizer_outline
{
public:
explicit rasterizer_outline(Renderer& ren) :
m_ren(&ren),
m_start_x(0),
m_start_y(0),
m_vertices(0)
{}
void attach(Renderer& ren) { m_ren = &ren; }
//--------------------------------------------------------------------
void move_to(int x, int y)
{
m_vertices = 1;
m_ren->move_to(m_start_x = x, m_start_y = y);
}
//--------------------------------------------------------------------
void line_to(int x, int y)
{
++m_vertices;
m_ren->line_to(x, y);
}
//--------------------------------------------------------------------
void move_to_d(double x, double y)
{
move_to(m_ren->coord(x), m_ren->coord(y));
}
//--------------------------------------------------------------------
void line_to_d(double x, double y)
{
line_to(m_ren->coord(x), m_ren->coord(y));
}
//--------------------------------------------------------------------
void close()
{
if(m_vertices > 2)
{
line_to(m_start_x, m_start_y);
}
m_vertices = 0;
}
//--------------------------------------------------------------------
void add_vertex(double x, double y, unsigned cmd)
{
if(is_move_to(cmd))
{
move_to_d(x, y);
}
else
{
if(is_end_poly(cmd))
{
if(is_closed(cmd)) close();
}
else
{
line_to_d(x, y);
}
}
}
//--------------------------------------------------------------------
template<class VertexSource>
void add_path(VertexSource& vs, unsigned path_id=0)
{
double x;
double y;
unsigned cmd;
vs.rewind(path_id);
while(!is_stop(cmd = vs.vertex(&x, &y)))
{
add_vertex(x, y, cmd);
}
}
//--------------------------------------------------------------------
template<class VertexSource, class ColorStorage, class PathId>
void render_all_paths(VertexSource& vs,
const ColorStorage& colors,
const PathId& path_id,
unsigned num_paths)
{
for(unsigned i = 0; i < num_paths; i++)
{
m_ren->line_color(colors[i]);
add_path(vs, path_id[i]);
}
}
//--------------------------------------------------------------------
template<class Ctrl> void render_ctrl(Ctrl& c)
{
unsigned i;
for(i = 0; i < c.num_paths(); i++)
{
m_ren->line_color(c.color(i));
add_path(c, i);
}
}
private:
Renderer* m_ren;
int m_start_x;
int m_start_y;
unsigned m_vertices;
};
}
#endif

View file

@ -1,599 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_RASTERIZER_OUTLINE_AA_INCLUDED
#define AGG_RASTERIZER_OUTLINE_AA_INCLUDED
#include "agg_basics.h"
#include "agg_line_aa_basics.h"
#include "agg_vertex_sequence.h"
namespace agg
{
//-------------------------------------------------------------------------
inline bool cmp_dist_start(int d) { return d > 0; }
inline bool cmp_dist_end(int d) { return d <= 0; }
//-----------------------------------------------------------line_aa_vertex
// Vertex (x, y) with the distance to the next one. The last vertex has
// the distance between the last and the first points
struct line_aa_vertex
{
int x;
int y;
int len;
line_aa_vertex() {}
line_aa_vertex(int x_, int y_) :
x(x_),
y(y_),
len(0)
{
}
bool operator () (const line_aa_vertex& val)
{
double dx = val.x - x;
double dy = val.y - y;
return (len = uround(sqrt(dx * dx + dy * dy))) >
(line_subpixel_scale + line_subpixel_scale / 2);
}
};
//----------------------------------------------------------outline_aa_join_e
enum outline_aa_join_e
{
outline_no_join, //-----outline_no_join
outline_miter_join, //-----outline_miter_join
outline_round_join, //-----outline_round_join
outline_miter_accurate_join //-----outline_accurate_join
};
//=======================================================rasterizer_outline_aa
template<class Renderer, class Coord=line_coord> class rasterizer_outline_aa
{
private:
//------------------------------------------------------------------------
struct draw_vars
{
unsigned idx;
int x1, y1, x2, y2;
line_parameters curr, next;
int lcurr, lnext;
int xb1, yb1, xb2, yb2;
unsigned flags;
};
void draw(draw_vars& dv, unsigned start, unsigned end);
public:
typedef line_aa_vertex vertex_type;
typedef vertex_sequence<vertex_type, 6> vertex_storage_type;
explicit rasterizer_outline_aa(Renderer& ren) :
m_ren(&ren),
m_line_join(ren.accurate_join_only() ?
outline_miter_accurate_join :
outline_round_join),
m_round_cap(false),
m_start_x(0),
m_start_y(0)
{}
void attach(Renderer& ren) { m_ren = &ren; }
//------------------------------------------------------------------------
void line_join(outline_aa_join_e join)
{
m_line_join = m_ren->accurate_join_only() ?
outline_miter_accurate_join :
join;
}
bool line_join() const { return m_line_join; }
//------------------------------------------------------------------------
void round_cap(bool v) { m_round_cap = v; }
bool round_cap() const { return m_round_cap; }
//------------------------------------------------------------------------
void move_to(int x, int y)
{
m_src_vertices.modify_last(vertex_type(m_start_x = x, m_start_y = y));
}
//------------------------------------------------------------------------
void line_to(int x, int y)
{
m_src_vertices.add(vertex_type(x, y));
}
//------------------------------------------------------------------------
void move_to_d(double x, double y)
{
move_to(Coord::conv(x), Coord::conv(y));
}
//------------------------------------------------------------------------
void line_to_d(double x, double y)
{
line_to(Coord::conv(x), Coord::conv(y));
}
//------------------------------------------------------------------------
void render(bool close_polygon);
//------------------------------------------------------------------------
void add_vertex(double x, double y, unsigned cmd)
{
if(is_move_to(cmd))
{
render(false);
move_to_d(x, y);
}
else
{
if(is_end_poly(cmd))
{
render(is_closed(cmd));
if(is_closed(cmd))
{
move_to(m_start_x, m_start_y);
}
}
else
{
line_to_d(x, y);
}
}
}
//------------------------------------------------------------------------
template<class VertexSource>
void add_path(VertexSource& vs, unsigned path_id=0)
{
double x;
double y;
unsigned cmd;
vs.rewind(path_id);
while(!is_stop(cmd = vs.vertex(&x, &y)))
{
add_vertex(x, y, cmd);
}
render(false);
}
//------------------------------------------------------------------------
template<class VertexSource, class ColorStorage, class PathId>
void render_all_paths(VertexSource& vs,
const ColorStorage& colors,
const PathId& path_id,
unsigned num_paths)
{
for(unsigned i = 0; i < num_paths; i++)
{
m_ren->color(colors[i]);
add_path(vs, path_id[i]);
}
}
//------------------------------------------------------------------------
template<class Ctrl> void render_ctrl(Ctrl& c)
{
unsigned i;
for(i = 0; i < c.num_paths(); i++)
{
m_ren->color(c.color(i));
add_path(c, i);
}
}
private:
rasterizer_outline_aa(const rasterizer_outline_aa<Renderer, Coord>&);
const rasterizer_outline_aa<Renderer, Coord>& operator =
(const rasterizer_outline_aa<Renderer, Coord>&);
Renderer* m_ren;
vertex_storage_type m_src_vertices;
outline_aa_join_e m_line_join;
bool m_round_cap;
int m_start_x;
int m_start_y;
};
//----------------------------------------------------------------------------
template<class Renderer, class Coord>
void rasterizer_outline_aa<Renderer, Coord>::draw(draw_vars& dv,
unsigned start,
unsigned end)
{
unsigned i;
const vertex_storage_type::value_type* v;
for(i = start; i < end; i++)
{
if(m_line_join == outline_round_join)
{
dv.xb1 = dv.curr.x1 + (dv.curr.y2 - dv.curr.y1);
dv.yb1 = dv.curr.y1 - (dv.curr.x2 - dv.curr.x1);
dv.xb2 = dv.curr.x2 + (dv.curr.y2 - dv.curr.y1);
dv.yb2 = dv.curr.y2 - (dv.curr.x2 - dv.curr.x1);
}
switch(dv.flags)
{
case 0: m_ren->line3(dv.curr, dv.xb1, dv.yb1, dv.xb2, dv.yb2); break;
case 1: m_ren->line2(dv.curr, dv.xb2, dv.yb2); break;
case 2: m_ren->line1(dv.curr, dv.xb1, dv.yb1); break;
case 3: m_ren->line0(dv.curr); break;
}
if(m_line_join == outline_round_join && (dv.flags & 2) == 0)
{
m_ren->pie(dv.curr.x2, dv.curr.y2,
dv.curr.x2 + (dv.curr.y2 - dv.curr.y1),
dv.curr.y2 - (dv.curr.x2 - dv.curr.x1),
dv.curr.x2 + (dv.next.y2 - dv.next.y1),
dv.curr.y2 - (dv.next.x2 - dv.next.x1));
}
dv.x1 = dv.x2;
dv.y1 = dv.y2;
dv.lcurr = dv.lnext;
dv.lnext = m_src_vertices[dv.idx].len;
++dv.idx;
if(dv.idx >= m_src_vertices.size()) dv.idx = 0;
v = &m_src_vertices[dv.idx];
dv.x2 = v->x;
dv.y2 = v->y;
dv.curr = dv.next;
dv.next = line_parameters(dv.x1, dv.y1, dv.x2, dv.y2, dv.lnext);
dv.xb1 = dv.xb2;
dv.yb1 = dv.yb2;
switch(m_line_join)
{
case outline_no_join:
dv.flags = 3;
break;
case outline_miter_join:
dv.flags >>= 1;
dv.flags |= ((dv.curr.diagonal_quadrant() ==
dv.next.diagonal_quadrant()) << 1);
if((dv.flags & 2) == 0)
{
bisectrix(dv.curr, dv.next, &dv.xb2, &dv.yb2);
}
break;
case outline_round_join:
dv.flags >>= 1;
dv.flags |= ((dv.curr.diagonal_quadrant() ==
dv.next.diagonal_quadrant()) << 1);
break;
case outline_miter_accurate_join:
dv.flags = 0;
bisectrix(dv.curr, dv.next, &dv.xb2, &dv.yb2);
break;
}
}
}
//----------------------------------------------------------------------------
template<class Renderer, class Coord>
void rasterizer_outline_aa<Renderer, Coord>::render(bool close_polygon)
{
m_src_vertices.close(close_polygon);
draw_vars dv;
const vertex_storage_type::value_type* v;
int x1;
int y1;
int x2;
int y2;
int lprev;
if(close_polygon)
{
if(m_src_vertices.size() >= 3)
{
dv.idx = 2;
v = &m_src_vertices[m_src_vertices.size() - 1];
x1 = v->x;
y1 = v->y;
lprev = v->len;
v = &m_src_vertices[0];
x2 = v->x;
y2 = v->y;
dv.lcurr = v->len;
line_parameters prev(x1, y1, x2, y2, lprev);
v = &m_src_vertices[1];
dv.x1 = v->x;
dv.y1 = v->y;
dv.lnext = v->len;
dv.curr = line_parameters(x2, y2, dv.x1, dv.y1, dv.lcurr);
v = &m_src_vertices[dv.idx];
dv.x2 = v->x;
dv.y2 = v->y;
dv.next = line_parameters(dv.x1, dv.y1, dv.x2, dv.y2, dv.lnext);
dv.xb1 = 0;
dv.yb1 = 0;
dv.xb2 = 0;
dv.yb2 = 0;
switch(m_line_join)
{
case outline_no_join:
dv.flags = 3;
break;
case outline_miter_join:
case outline_round_join:
dv.flags =
(prev.diagonal_quadrant() == dv.curr.diagonal_quadrant()) |
((dv.curr.diagonal_quadrant() == dv.next.diagonal_quadrant()) << 1);
break;
case outline_miter_accurate_join:
dv.flags = 0;
break;
}
if((dv.flags & 1) == 0 && m_line_join != outline_round_join)
{
bisectrix(prev, dv.curr, &dv.xb1, &dv.yb1);
}
if((dv.flags & 2) == 0 && m_line_join != outline_round_join)
{
bisectrix(dv.curr, dv.next, &dv.xb2, &dv.yb2);
}
draw(dv, 0, m_src_vertices.size());
}
}
else
{
switch(m_src_vertices.size())
{
case 0:
case 1:
break;
case 2:
{
v = &m_src_vertices[0];
x1 = v->x;
y1 = v->y;
lprev = v->len;
v = &m_src_vertices[1];
x2 = v->x;
y2 = v->y;
line_parameters lp(x1, y1, x2, y2, lprev);
if(m_round_cap)
{
m_ren->semidot(cmp_dist_start, x1, y1, x1 + (y2 - y1), y1 - (x2 - x1));
}
m_ren->line3(lp,
x1 + (y2 - y1),
y1 - (x2 - x1),
x2 + (y2 - y1),
y2 - (x2 - x1));
if(m_round_cap)
{
m_ren->semidot(cmp_dist_end, x2, y2, x2 + (y2 - y1), y2 - (x2 - x1));
}
}
break;
case 3:
{
int x3, y3;
int lnext;
v = &m_src_vertices[0];
x1 = v->x;
y1 = v->y;
lprev = v->len;
v = &m_src_vertices[1];
x2 = v->x;
y2 = v->y;
lnext = v->len;
v = &m_src_vertices[2];
x3 = v->x;
y3 = v->y;
line_parameters lp1(x1, y1, x2, y2, lprev);
line_parameters lp2(x2, y2, x3, y3, lnext);
if(m_round_cap)
{
m_ren->semidot(cmp_dist_start, x1, y1, x1 + (y2 - y1), y1 - (x2 - x1));
}
if(m_line_join == outline_round_join)
{
m_ren->line3(lp1, x1 + (y2 - y1), y1 - (x2 - x1),
x2 + (y2 - y1), y2 - (x2 - x1));
m_ren->pie(x2, y2, x2 + (y2 - y1), y2 - (x2 - x1),
x2 + (y3 - y2), y2 - (x3 - x2));
m_ren->line3(lp2, x2 + (y3 - y2), y2 - (x3 - x2),
x3 + (y3 - y2), y3 - (x3 - x2));
}
else
{
bisectrix(lp1, lp2, &dv.xb1, &dv.yb1);
m_ren->line3(lp1, x1 + (y2 - y1), y1 - (x2 - x1),
dv.xb1, dv.yb1);
m_ren->line3(lp2, dv.xb1, dv.yb1,
x3 + (y3 - y2), y3 - (x3 - x2));
}
if(m_round_cap)
{
m_ren->semidot(cmp_dist_end, x3, y3, x3 + (y3 - y2), y3 - (x3 - x2));
}
}
break;
default:
{
dv.idx = 3;
v = &m_src_vertices[0];
x1 = v->x;
y1 = v->y;
lprev = v->len;
v = &m_src_vertices[1];
x2 = v->x;
y2 = v->y;
dv.lcurr = v->len;
line_parameters prev(x1, y1, x2, y2, lprev);
v = &m_src_vertices[2];
dv.x1 = v->x;
dv.y1 = v->y;
dv.lnext = v->len;
dv.curr = line_parameters(x2, y2, dv.x1, dv.y1, dv.lcurr);
v = &m_src_vertices[dv.idx];
dv.x2 = v->x;
dv.y2 = v->y;
dv.next = line_parameters(dv.x1, dv.y1, dv.x2, dv.y2, dv.lnext);
dv.xb1 = 0;
dv.yb1 = 0;
dv.xb2 = 0;
dv.yb2 = 0;
switch(m_line_join)
{
case outline_no_join:
dv.flags = 3;
break;
case outline_miter_join:
case outline_round_join:
dv.flags =
(prev.diagonal_quadrant() == dv.curr.diagonal_quadrant()) |
((dv.curr.diagonal_quadrant() == dv.next.diagonal_quadrant()) << 1);
break;
case outline_miter_accurate_join:
dv.flags = 0;
break;
}
if(m_round_cap)
{
m_ren->semidot(cmp_dist_start, x1, y1, x1 + (y2 - y1), y1 - (x2 - x1));
}
if((dv.flags & 1) == 0)
{
if(m_line_join == outline_round_join)
{
m_ren->line3(prev, x1 + (y2 - y1), y1 - (x2 - x1),
x2 + (y2 - y1), y2 - (x2 - x1));
m_ren->pie(prev.x2, prev.y2,
x2 + (y2 - y1), y2 - (x2 - x1),
dv.curr.x1 + (dv.curr.y2 - dv.curr.y1),
dv.curr.y1 - (dv.curr.x2 - dv.curr.x1));
}
else
{
bisectrix(prev, dv.curr, &dv.xb1, &dv.yb1);
m_ren->line3(prev, x1 + (y2 - y1), y1 - (x2 - x1),
dv.xb1, dv.yb1);
}
}
else
{
m_ren->line1(prev,
x1 + (y2 - y1),
y1 - (x2 - x1));
}
if((dv.flags & 2) == 0 && m_line_join != outline_round_join)
{
bisectrix(dv.curr, dv.next, &dv.xb2, &dv.yb2);
}
draw(dv, 1, m_src_vertices.size() - 2);
if((dv.flags & 1) == 0)
{
if(m_line_join == outline_round_join)
{
m_ren->line3(dv.curr,
dv.curr.x1 + (dv.curr.y2 - dv.curr.y1),
dv.curr.y1 - (dv.curr.x2 - dv.curr.x1),
dv.curr.x2 + (dv.curr.y2 - dv.curr.y1),
dv.curr.y2 - (dv.curr.x2 - dv.curr.x1));
}
else
{
m_ren->line3(dv.curr, dv.xb1, dv.yb1,
dv.curr.x2 + (dv.curr.y2 - dv.curr.y1),
dv.curr.y2 - (dv.curr.x2 - dv.curr.x1));
}
}
else
{
m_ren->line2(dv.curr,
dv.curr.x2 + (dv.curr.y2 - dv.curr.y1),
dv.curr.y2 - (dv.curr.x2 - dv.curr.x1));
}
if(m_round_cap)
{
m_ren->semidot(cmp_dist_end, dv.curr.x2, dv.curr.y2,
dv.curr.x2 + (dv.curr.y2 - dv.curr.y1),
dv.curr.y2 - (dv.curr.x2 - dv.curr.x1));
}
}
break;
}
}
m_src_vertices.remove_all();
}
}
#endif

View file

@ -1,510 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
//
// The author gratefully acknowleges the support of David Turner,
// Robert Wilhelm, and Werner Lemberg - the authors of the FreeType
// libray - in producing this work. See http://www.freetype.org for details.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Adaptation for 32-bit screen coordinates has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
#ifndef AGG_RASTERIZER_SCANLINE_AA_INCLUDED
#define AGG_RASTERIZER_SCANLINE_AA_INCLUDED
#include "agg_rasterizer_cells_aa.h"
#include "agg_rasterizer_sl_clip.h"
#include "agg_gamma_functions.h"
namespace agg
{
//-----------------------------------------------------------------cell_aa
// A pixel cell. There're no constructors defined and it was done
// intentionally in order to avoid extra overhead when allocating an
// array of cells.
struct cell_aa
{
int x;
int y;
int cover;
int area;
void initial()
{
x = 0x7FFFFFFF;
y = 0x7FFFFFFF;
cover = 0;
area = 0;
}
void style(const cell_aa&) {}
int not_equal(int ex, int ey, const cell_aa&) const
{
return (ex - x) | (ey - y);
}
};
//==================================================rasterizer_scanline_aa
// Polygon rasterizer that is used to render filled polygons with
// high-quality Anti-Aliasing. Internally, by default, the class uses
// integer coordinates in format 24.8, i.e. 24 bits for integer part
// and 8 bits for fractional - see poly_subpixel_shift. This class can be
// used in the following way:
//
// 1. filling_rule(filling_rule_e ft) - optional.
//
// 2. gamma() - optional.
//
// 3. reset()
//
// 4. move_to(x, y) / line_to(x, y) - make the polygon. One can create
// more than one contour, but each contour must consist of at least 3
// vertices, i.e. move_to(x1, y1); line_to(x2, y2); line_to(x3, y3);
// is the absolute minimum of vertices that define a triangle.
// The algorithm does not check either the number of vertices nor
// coincidence of their coordinates, but in the worst case it just
// won't draw anything.
// The orger of the vertices (clockwise or counterclockwise)
// is important when using the non-zero filling rule (fill_non_zero).
// In this case the vertex order of all the contours must be the same
// if you want your intersecting polygons to be without "holes".
// You actually can use different vertices order. If the contours do not
// intersect each other the order is not important anyway. If they do,
// contours with the same vertex order will be rendered without "holes"
// while the intersecting contours with different orders will have "holes".
//
// filling_rule() and gamma() can be called anytime before "sweeping".
//------------------------------------------------------------------------
template<class Clip=rasterizer_sl_clip_int> class rasterizer_scanline_aa
{
enum status
{
status_initial,
status_move_to,
status_line_to,
status_closed
};
public:
typedef Clip clip_type;
typedef typename Clip::conv_type conv_type;
typedef typename Clip::coord_type coord_type;
enum aa_scale_e
{
aa_shift = 8,
aa_scale = 1 << aa_shift,
aa_mask = aa_scale - 1,
aa_scale2 = aa_scale * 2,
aa_mask2 = aa_scale2 - 1
};
//--------------------------------------------------------------------
rasterizer_scanline_aa() :
m_outline(),
m_clipper(),
m_filling_rule(fill_non_zero),
m_auto_close(true),
m_start_x(0),
m_start_y(0),
m_status(status_initial)
{
int i;
for(i = 0; i < aa_scale; i++) m_gamma[i] = i;
}
//--------------------------------------------------------------------
template<class GammaF>
rasterizer_scanline_aa(const GammaF& gamma_function) :
m_outline(),
m_clipper(m_outline),
m_filling_rule(fill_non_zero),
m_auto_close(true),
m_start_x(0),
m_start_y(0),
m_status(status_initial)
{
gamma(gamma_function);
}
//--------------------------------------------------------------------
void reset();
void reset_clipping();
void clip_box(double x1, double y1, double x2, double y2);
void filling_rule(filling_rule_e filling_rule);
void auto_close(bool flag) { m_auto_close = flag; }
//--------------------------------------------------------------------
template<class GammaF> void gamma(const GammaF& gamma_function)
{
int i;
for(i = 0; i < aa_scale; i++)
{
m_gamma[i] = uround(gamma_function(double(i) / aa_mask) * aa_mask);
}
}
//--------------------------------------------------------------------
unsigned apply_gamma(unsigned cover) const
{
return m_gamma[cover];
}
//--------------------------------------------------------------------
void move_to(int x, int y);
void line_to(int x, int y);
void move_to_d(double x, double y);
void line_to_d(double x, double y);
void close_polygon();
void add_vertex(double x, double y, unsigned cmd);
void edge(int x1, int y1, int x2, int y2);
void edge_d(double x1, double y1, double x2, double y2);
//-------------------------------------------------------------------
template<class VertexSource>
void add_path(VertexSource& vs, unsigned path_id=0)
{
double x;
double y;
unsigned cmd;
vs.rewind(path_id);
if(m_outline.sorted()) reset();
while(!is_stop(cmd = vs.vertex(&x, &y)))
{
add_vertex(x, y, cmd);
}
}
//--------------------------------------------------------------------
int min_x() const { return m_outline.min_x(); }
int min_y() const { return m_outline.min_y(); }
int max_x() const { return m_outline.max_x(); }
int max_y() const { return m_outline.max_y(); }
//--------------------------------------------------------------------
void sort();
bool rewind_scanlines();
bool navigate_scanline(int y);
//--------------------------------------------------------------------
AGG_INLINE unsigned calculate_alpha(int area) const
{
int cover = area >> (poly_subpixel_shift*2 + 1 - aa_shift);
if(cover < 0) cover = -cover;
if(m_filling_rule == fill_even_odd)
{
cover &= aa_mask2;
if(cover > aa_scale)
{
cover = aa_scale2 - cover;
}
}
if(cover > aa_mask) cover = aa_mask;
return m_gamma[cover];
}
//--------------------------------------------------------------------
template<class Scanline> bool sweep_scanline(Scanline& sl)
{
for(;;)
{
if(m_scan_y > m_outline.max_y()) return false;
sl.reset_spans();
unsigned num_cells = m_outline.scanline_num_cells(m_scan_y);
const cell_aa* const* cells = m_outline.scanline_cells(m_scan_y);
int cover = 0;
while(num_cells)
{
const cell_aa* cur_cell = *cells;
int x = cur_cell->x;
int area = cur_cell->area;
unsigned alpha;
cover += cur_cell->cover;
//accumulate all cells with the same X
while(--num_cells)
{
cur_cell = *++cells;
if(cur_cell->x != x) break;
area += cur_cell->area;
cover += cur_cell->cover;
}
if(area)
{
alpha = calculate_alpha((cover << (poly_subpixel_shift + 1)) - area);
if(alpha)
{
sl.add_cell(x, alpha);
}
x++;
}
if(num_cells && cur_cell->x > x)
{
alpha = calculate_alpha(cover << (poly_subpixel_shift + 1));
if(alpha)
{
sl.add_span(x, cur_cell->x - x, alpha);
}
}
}
if(sl.num_spans()) break;
++m_scan_y;
}
sl.finalize(m_scan_y);
++m_scan_y;
return true;
}
//--------------------------------------------------------------------
bool hit_test(int tx, int ty);
private:
//--------------------------------------------------------------------
// Disable copying
rasterizer_scanline_aa(const rasterizer_scanline_aa<Clip>&);
const rasterizer_scanline_aa<Clip>&
operator = (const rasterizer_scanline_aa<Clip>&);
private:
rasterizer_cells_aa<cell_aa> m_outline;
clip_type m_clipper;
int m_gamma[aa_scale];
filling_rule_e m_filling_rule;
bool m_auto_close;
coord_type m_start_x;
coord_type m_start_y;
unsigned m_status;
int m_scan_y;
};
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::reset()
{
m_outline.reset();
m_status = status_initial;
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::filling_rule(filling_rule_e filling_rule)
{
m_filling_rule = filling_rule;
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::clip_box(double x1, double y1,
double x2, double y2)
{
reset();
m_clipper.clip_box(conv_type::upscale(x1), conv_type::upscale(y1),
conv_type::upscale(x2), conv_type::upscale(y2));
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::reset_clipping()
{
reset();
m_clipper.reset_clipping();
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::close_polygon()
{
if(m_status == status_line_to)
{
m_clipper.line_to(m_outline, m_start_x, m_start_y);
m_status = status_closed;
}
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::move_to(int x, int y)
{
if(m_outline.sorted()) reset();
if(m_auto_close) close_polygon();
m_clipper.move_to(m_start_x = conv_type::downscale(x),
m_start_y = conv_type::downscale(y));
m_status = status_move_to;
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::line_to(int x, int y)
{
m_clipper.line_to(m_outline,
conv_type::downscale(x),
conv_type::downscale(y));
m_status = status_line_to;
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::move_to_d(double x, double y)
{
if(m_outline.sorted()) reset();
if(m_auto_close) close_polygon();
m_clipper.move_to(m_start_x = conv_type::upscale(x),
m_start_y = conv_type::upscale(y));
m_status = status_move_to;
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::line_to_d(double x, double y)
{
m_clipper.line_to(m_outline,
conv_type::upscale(x),
conv_type::upscale(y));
m_status = status_line_to;
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::add_vertex(double x, double y, unsigned cmd)
{
if(is_move_to(cmd))
{
move_to_d(x, y);
}
else
if(is_vertex(cmd))
{
line_to_d(x, y);
}
else
if(is_close(cmd))
{
close_polygon();
}
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::edge(int x1, int y1, int x2, int y2)
{
if(m_outline.sorted()) reset();
m_clipper.move_to(conv_type::downscale(x1), conv_type::downscale(y1));
m_clipper.line_to(m_outline,
conv_type::downscale(x2),
conv_type::downscale(y2));
m_status = status_move_to;
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::edge_d(double x1, double y1,
double x2, double y2)
{
if(m_outline.sorted()) reset();
m_clipper.move_to(conv_type::upscale(x1), conv_type::upscale(y1));
m_clipper.line_to(m_outline,
conv_type::upscale(x2),
conv_type::upscale(y2));
m_status = status_move_to;
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::sort()
{
if(m_auto_close) close_polygon();
m_outline.sort_cells();
}
//------------------------------------------------------------------------
template<class Clip>
AGG_INLINE bool rasterizer_scanline_aa<Clip>::rewind_scanlines()
{
if(m_auto_close) close_polygon();
m_outline.sort_cells();
if(m_outline.total_cells() == 0)
{
return false;
}
m_scan_y = m_outline.min_y();
return true;
}
//------------------------------------------------------------------------
template<class Clip>
AGG_INLINE bool rasterizer_scanline_aa<Clip>::navigate_scanline(int y)
{
if(m_auto_close) close_polygon();
m_outline.sort_cells();
if(m_outline.total_cells() == 0 ||
y < m_outline.min_y() ||
y > m_outline.max_y())
{
return false;
}
m_scan_y = y;
return true;
}
//------------------------------------------------------------------------
template<class Clip>
bool rasterizer_scanline_aa<Clip>::hit_test(int tx, int ty)
{
if(!navigate_scanline(ty)) return false;
scanline_hit_test sl(tx);
sweep_scanline(sl);
return sl.hit();
}
}
#endif

View file

@ -1,351 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_RASTERIZER_SL_CLIP_INCLUDED
#define AGG_RASTERIZER_SL_CLIP_INCLUDED
#include "agg_clip_liang_barsky.h"
namespace agg
{
//--------------------------------------------------------poly_max_coord_e
enum poly_max_coord_e
{
poly_max_coord = (1 << 30) - 1 //----poly_max_coord
};
//------------------------------------------------------------ras_conv_int
struct ras_conv_int
{
typedef int coord_type;
static AGG_INLINE int mul_div(double a, double b, double c)
{
return iround(a * b / c);
}
static int xi(int v) { return v; }
static int yi(int v) { return v; }
static int upscale(double v) { return iround(v * poly_subpixel_scale); }
static int downscale(int v) { return v; }
};
//--------------------------------------------------------ras_conv_int_sat
struct ras_conv_int_sat
{
typedef int coord_type;
static AGG_INLINE int mul_div(double a, double b, double c)
{
return saturation<poly_max_coord>::iround(a * b / c);
}
static int xi(int v) { return v; }
static int yi(int v) { return v; }
static int upscale(double v)
{
return saturation<poly_max_coord>::iround(v * poly_subpixel_scale);
}
static int downscale(int v) { return v; }
};
//---------------------------------------------------------ras_conv_int_3x
struct ras_conv_int_3x
{
typedef int coord_type;
static AGG_INLINE int mul_div(double a, double b, double c)
{
return iround(a * b / c);
}
static int xi(int v) { return v * 3; }
static int yi(int v) { return v; }
static int upscale(double v) { return iround(v * poly_subpixel_scale); }
static int downscale(int v) { return v; }
};
//-----------------------------------------------------------ras_conv_dbl
struct ras_conv_dbl
{
typedef double coord_type;
static AGG_INLINE double mul_div(double a, double b, double c)
{
return a * b / c;
}
static int xi(double v) { return iround(v * poly_subpixel_scale); }
static int yi(double v) { return iround(v * poly_subpixel_scale); }
static double upscale(double v) { return v; }
static double downscale(int v) { return v / double(poly_subpixel_scale); }
};
//--------------------------------------------------------ras_conv_dbl_3x
struct ras_conv_dbl_3x
{
typedef double coord_type;
static AGG_INLINE double mul_div(double a, double b, double c)
{
return a * b / c;
}
static int xi(double v) { return iround(v * poly_subpixel_scale * 3); }
static int yi(double v) { return iround(v * poly_subpixel_scale); }
static double upscale(double v) { return v; }
static double downscale(int v) { return v / double(poly_subpixel_scale); }
};
//------------------------------------------------------rasterizer_sl_clip
template<class Conv> class rasterizer_sl_clip
{
public:
typedef Conv conv_type;
typedef typename Conv::coord_type coord_type;
typedef rect_base<coord_type> rect_type;
//--------------------------------------------------------------------
rasterizer_sl_clip() :
m_clip_box(0,0,0,0),
m_x1(0),
m_y1(0),
m_f1(0),
m_clipping(false)
{}
//--------------------------------------------------------------------
void reset_clipping()
{
m_clipping = false;
}
//--------------------------------------------------------------------
void clip_box(coord_type x1, coord_type y1, coord_type x2, coord_type y2)
{
m_clip_box = rect_type(x1, y1, x2, y2);
m_clip_box.normalize();
m_clipping = true;
}
//--------------------------------------------------------------------
void move_to(coord_type x1, coord_type y1)
{
m_x1 = x1;
m_y1 = y1;
if(m_clipping) m_f1 = clipping_flags(x1, y1, m_clip_box);
}
private:
//------------------------------------------------------------------------
template<class Rasterizer>
AGG_INLINE void line_clip_y(Rasterizer& ras,
coord_type x1, coord_type y1,
coord_type x2, coord_type y2,
unsigned f1, unsigned f2) const
{
f1 &= 10;
f2 &= 10;
if((f1 | f2) == 0)
{
// Fully visible
ras.line(Conv::xi(x1), Conv::yi(y1), Conv::xi(x2), Conv::yi(y2));
}
else
{
if(f1 == f2)
{
// Invisible by Y
return;
}
coord_type tx1 = x1;
coord_type ty1 = y1;
coord_type tx2 = x2;
coord_type ty2 = y2;
if(f1 & 8) // y1 < clip.y1
{
tx1 = x1 + Conv::mul_div(m_clip_box.y1-y1, x2-x1, y2-y1);
ty1 = m_clip_box.y1;
}
if(f1 & 2) // y1 > clip.y2
{
tx1 = x1 + Conv::mul_div(m_clip_box.y2-y1, x2-x1, y2-y1);
ty1 = m_clip_box.y2;
}
if(f2 & 8) // y2 < clip.y1
{
tx2 = x1 + Conv::mul_div(m_clip_box.y1-y1, x2-x1, y2-y1);
ty2 = m_clip_box.y1;
}
if(f2 & 2) // y2 > clip.y2
{
tx2 = x1 + Conv::mul_div(m_clip_box.y2-y1, x2-x1, y2-y1);
ty2 = m_clip_box.y2;
}
ras.line(Conv::xi(tx1), Conv::yi(ty1),
Conv::xi(tx2), Conv::yi(ty2));
}
}
public:
//--------------------------------------------------------------------
template<class Rasterizer>
void line_to(Rasterizer& ras, coord_type x2, coord_type y2)
{
if(m_clipping)
{
unsigned f2 = clipping_flags(x2, y2, m_clip_box);
if((m_f1 & 10) == (f2 & 10) && (m_f1 & 10) != 0)
{
// Invisible by Y
m_x1 = x2;
m_y1 = y2;
m_f1 = f2;
return;
}
coord_type x1 = m_x1;
coord_type y1 = m_y1;
unsigned f1 = m_f1;
coord_type y3, y4;
unsigned f3, f4;
switch(((f1 & 5) << 1) | (f2 & 5))
{
case 0: // Visible by X
line_clip_y(ras, x1, y1, x2, y2, f1, f2);
break;
case 1: // x2 > clip.x2
y3 = y1 + Conv::mul_div(m_clip_box.x2-x1, y2-y1, x2-x1);
f3 = clipping_flags_y(y3, m_clip_box);
line_clip_y(ras, x1, y1, m_clip_box.x2, y3, f1, f3);
line_clip_y(ras, m_clip_box.x2, y3, m_clip_box.x2, y2, f3, f2);
break;
case 2: // x1 > clip.x2
y3 = y1 + Conv::mul_div(m_clip_box.x2-x1, y2-y1, x2-x1);
f3 = clipping_flags_y(y3, m_clip_box);
line_clip_y(ras, m_clip_box.x2, y1, m_clip_box.x2, y3, f1, f3);
line_clip_y(ras, m_clip_box.x2, y3, x2, y2, f3, f2);
break;
case 3: // x1 > clip.x2 && x2 > clip.x2
line_clip_y(ras, m_clip_box.x2, y1, m_clip_box.x2, y2, f1, f2);
break;
case 4: // x2 < clip.x1
y3 = y1 + Conv::mul_div(m_clip_box.x1-x1, y2-y1, x2-x1);
f3 = clipping_flags_y(y3, m_clip_box);
line_clip_y(ras, x1, y1, m_clip_box.x1, y3, f1, f3);
line_clip_y(ras, m_clip_box.x1, y3, m_clip_box.x1, y2, f3, f2);
break;
case 6: // x1 > clip.x2 && x2 < clip.x1
y3 = y1 + Conv::mul_div(m_clip_box.x2-x1, y2-y1, x2-x1);
y4 = y1 + Conv::mul_div(m_clip_box.x1-x1, y2-y1, x2-x1);
f3 = clipping_flags_y(y3, m_clip_box);
f4 = clipping_flags_y(y4, m_clip_box);
line_clip_y(ras, m_clip_box.x2, y1, m_clip_box.x2, y3, f1, f3);
line_clip_y(ras, m_clip_box.x2, y3, m_clip_box.x1, y4, f3, f4);
line_clip_y(ras, m_clip_box.x1, y4, m_clip_box.x1, y2, f4, f2);
break;
case 8: // x1 < clip.x1
y3 = y1 + Conv::mul_div(m_clip_box.x1-x1, y2-y1, x2-x1);
f3 = clipping_flags_y(y3, m_clip_box);
line_clip_y(ras, m_clip_box.x1, y1, m_clip_box.x1, y3, f1, f3);
line_clip_y(ras, m_clip_box.x1, y3, x2, y2, f3, f2);
break;
case 9: // x1 < clip.x1 && x2 > clip.x2
y3 = y1 + Conv::mul_div(m_clip_box.x1-x1, y2-y1, x2-x1);
y4 = y1 + Conv::mul_div(m_clip_box.x2-x1, y2-y1, x2-x1);
f3 = clipping_flags_y(y3, m_clip_box);
f4 = clipping_flags_y(y4, m_clip_box);
line_clip_y(ras, m_clip_box.x1, y1, m_clip_box.x1, y3, f1, f3);
line_clip_y(ras, m_clip_box.x1, y3, m_clip_box.x2, y4, f3, f4);
line_clip_y(ras, m_clip_box.x2, y4, m_clip_box.x2, y2, f4, f2);
break;
case 12: // x1 < clip.x1 && x2 < clip.x1
line_clip_y(ras, m_clip_box.x1, y1, m_clip_box.x1, y2, f1, f2);
break;
}
m_f1 = f2;
}
else
{
ras.line(Conv::xi(m_x1), Conv::yi(m_y1),
Conv::xi(x2), Conv::yi(y2));
}
m_x1 = x2;
m_y1 = y2;
}
private:
rect_type m_clip_box;
coord_type m_x1;
coord_type m_y1;
unsigned m_f1;
bool m_clipping;
};
//---------------------------------------------------rasterizer_sl_no_clip
class rasterizer_sl_no_clip
{
public:
typedef ras_conv_int conv_type;
typedef int coord_type;
rasterizer_sl_no_clip() : m_x1(0), m_y1(0) {}
void reset_clipping() {}
void clip_box(coord_type x1, coord_type y1, coord_type x2, coord_type y2) {}
void move_to(coord_type x1, coord_type y1) { m_x1 = x1; m_y1 = y1; }
template<class Rasterizer>
void line_to(Rasterizer& ras, coord_type x2, coord_type y2)
{
ras.line(m_x1, m_y1, x2, y2);
m_x1 = x2;
m_y1 = y2;
}
private:
int m_x1, m_y1;
};
// -----rasterizer_sl_clip_int
// -----rasterizer_sl_clip_int_sat
// -----rasterizer_sl_clip_int_3x
// -----rasterizer_sl_clip_dbl
// -----rasterizer_sl_clip_dbl_3x
//------------------------------------------------------------------------
typedef rasterizer_sl_clip<ras_conv_int> rasterizer_sl_clip_int;
typedef rasterizer_sl_clip<ras_conv_int_sat> rasterizer_sl_clip_int_sat;
typedef rasterizer_sl_clip<ras_conv_int_3x> rasterizer_sl_clip_int_3x;
typedef rasterizer_sl_clip<ras_conv_dbl> rasterizer_sl_clip_dbl;
typedef rasterizer_sl_clip<ras_conv_dbl_3x> rasterizer_sl_clip_dbl_3x;
}
#endif

View file

@ -1,718 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// class renderer_base
//
//----------------------------------------------------------------------------
#ifndef AGG_RENDERER_BASE_INCLUDED
#define AGG_RENDERER_BASE_INCLUDED
#include "agg_basics.h"
#include "agg_rendering_buffer.h"
namespace agg
{
//-----------------------------------------------------------renderer_base
template<class PixelFormat> class renderer_base
{
public:
typedef PixelFormat pixfmt_type;
typedef typename pixfmt_type::color_type color_type;
typedef typename pixfmt_type::row_data row_data;
//--------------------------------------------------------------------
renderer_base() : m_ren(0), m_clip_box(1, 1, 0, 0) {}
explicit renderer_base(pixfmt_type& ren) :
m_ren(&ren),
m_clip_box(0, 0, ren.width() - 1, ren.height() - 1)
{}
void attach(pixfmt_type& ren)
{
m_ren = &ren;
m_clip_box = rect_i(0, 0, ren.width() - 1, ren.height() - 1);
}
//--------------------------------------------------------------------
const pixfmt_type& ren() const { return *m_ren; }
pixfmt_type& ren() { return *m_ren; }
//--------------------------------------------------------------------
unsigned width() const { return m_ren->width(); }
unsigned height() const { return m_ren->height(); }
//--------------------------------------------------------------------
bool clip_box(int x1, int y1, int x2, int y2)
{
rect_i cb(x1, y1, x2, y2);
cb.normalize();
if(cb.clip(rect_i(0, 0, width() - 1, height() - 1)))
{
m_clip_box = cb;
return true;
}
m_clip_box.x1 = 1;
m_clip_box.y1 = 1;
m_clip_box.x2 = 0;
m_clip_box.y2 = 0;
return false;
}
//--------------------------------------------------------------------
void reset_clipping(bool visibility)
{
if(visibility)
{
m_clip_box.x1 = 0;
m_clip_box.y1 = 0;
m_clip_box.x2 = width() - 1;
m_clip_box.y2 = height() - 1;
}
else
{
m_clip_box.x1 = 1;
m_clip_box.y1 = 1;
m_clip_box.x2 = 0;
m_clip_box.y2 = 0;
}
}
//--------------------------------------------------------------------
void clip_box_naked(int x1, int y1, int x2, int y2)
{
m_clip_box.x1 = x1;
m_clip_box.y1 = y1;
m_clip_box.x2 = x2;
m_clip_box.y2 = y2;
}
//--------------------------------------------------------------------
bool inbox(int x, int y) const
{
return x >= m_clip_box.x1 && y >= m_clip_box.y1 &&
x <= m_clip_box.x2 && y <= m_clip_box.y2;
}
//--------------------------------------------------------------------
const rect_i& clip_box() const { return m_clip_box; }
int xmin() const { return m_clip_box.x1; }
int ymin() const { return m_clip_box.y1; }
int xmax() const { return m_clip_box.x2; }
int ymax() const { return m_clip_box.y2; }
//--------------------------------------------------------------------
const rect_i& bounding_clip_box() const { return m_clip_box; }
int bounding_xmin() const { return m_clip_box.x1; }
int bounding_ymin() const { return m_clip_box.y1; }
int bounding_xmax() const { return m_clip_box.x2; }
int bounding_ymax() const { return m_clip_box.y2; }
//--------------------------------------------------------------------
void clear(const color_type& c)
{
unsigned y;
if(width())
{
for(y = 0; y < height(); y++)
{
m_ren->copy_hline(0, y, width(), c);
}
}
}
//--------------------------------------------------------------------
void copy_pixel(int x, int y, const color_type& c)
{
if(inbox(x, y))
{
m_ren->copy_pixel(x, y, c);
}
}
//--------------------------------------------------------------------
void blend_pixel(int x, int y, const color_type& c, cover_type cover)
{
if(inbox(x, y))
{
m_ren->blend_pixel(x, y, c, cover);
}
}
//--------------------------------------------------------------------
color_type pixel(int x, int y) const
{
return inbox(x, y) ?
m_ren->pixel(x, y) :
color_type::no_color();
}
//--------------------------------------------------------------------
void copy_hline(int x1, int y, int x2, const color_type& c)
{
if(x1 > x2) { int t = x2; x2 = x1; x1 = t; }
if(y > ymax()) return;
if(y < ymin()) return;
if(x1 > xmax()) return;
if(x2 < xmin()) return;
if(x1 < xmin()) x1 = xmin();
if(x2 > xmax()) x2 = xmax();
m_ren->copy_hline(x1, y, x2 - x1 + 1, c);
}
//--------------------------------------------------------------------
void copy_vline(int x, int y1, int y2, const color_type& c)
{
if(y1 > y2) { int t = y2; y2 = y1; y1 = t; }
if(x > xmax()) return;
if(x < xmin()) return;
if(y1 > ymax()) return;
if(y2 < ymin()) return;
if(y1 < ymin()) y1 = ymin();
if(y2 > ymax()) y2 = ymax();
m_ren->copy_vline(x, y1, y2 - y1 + 1, c);
}
//--------------------------------------------------------------------
void blend_hline(int x1, int y, int x2,
const color_type& c, cover_type cover)
{
if(x1 > x2) { int t = x2; x2 = x1; x1 = t; }
if(y > ymax()) return;
if(y < ymin()) return;
if(x1 > xmax()) return;
if(x2 < xmin()) return;
if(x1 < xmin()) x1 = xmin();
if(x2 > xmax()) x2 = xmax();
m_ren->blend_hline(x1, y, x2 - x1 + 1, c, cover);
}
//--------------------------------------------------------------------
void blend_vline(int x, int y1, int y2,
const color_type& c, cover_type cover)
{
if(y1 > y2) { int t = y2; y2 = y1; y1 = t; }
if(x > xmax()) return;
if(x < xmin()) return;
if(y1 > ymax()) return;
if(y2 < ymin()) return;
if(y1 < ymin()) y1 = ymin();
if(y2 > ymax()) y2 = ymax();
m_ren->blend_vline(x, y1, y2 - y1 + 1, c, cover);
}
//--------------------------------------------------------------------
void copy_bar(int x1, int y1, int x2, int y2, const color_type& c)
{
rect_i rc(x1, y1, x2, y2);
rc.normalize();
if(rc.clip(clip_box()))
{
int y;
for(y = rc.y1; y <= rc.y2; y++)
{
m_ren->copy_hline(rc.x1, y, unsigned(rc.x2 - rc.x1 + 1), c);
}
}
}
//--------------------------------------------------------------------
void blend_bar(int x1, int y1, int x2, int y2,
const color_type& c, cover_type cover)
{
rect_i rc(x1, y1, x2, y2);
rc.normalize();
if(rc.clip(clip_box()))
{
int y;
for(y = rc.y1; y <= rc.y2; y++)
{
m_ren->blend_hline(rc.x1,
y,
unsigned(rc.x2 - rc.x1 + 1),
c,
cover);
}
}
}
//--------------------------------------------------------------------
void blend_solid_hspan(int x, int y, int len,
const color_type& c,
const cover_type* covers)
{
if(y > ymax()) return;
if(y < ymin()) return;
if(x < xmin())
{
len -= xmin() - x;
if(len <= 0) return;
covers += xmin() - x;
x = xmin();
}
if(x + len > xmax())
{
len = xmax() - x + 1;
if(len <= 0) return;
}
m_ren->blend_solid_hspan(x, y, len, c, covers);
}
//--------------------------------------------------------------------
void blend_solid_vspan(int x, int y, int len,
const color_type& c,
const cover_type* covers)
{
if(x > xmax()) return;
if(x < xmin()) return;
if(y < ymin())
{
len -= ymin() - y;
if(len <= 0) return;
covers += ymin() - y;
y = ymin();
}
if(y + len > ymax())
{
len = ymax() - y + 1;
if(len <= 0) return;
}
m_ren->blend_solid_vspan(x, y, len, c, covers);
}
//--------------------------------------------------------------------
void copy_color_hspan(int x, int y, int len, const color_type* colors)
{
if(y > ymax()) return;
if(y < ymin()) return;
if(x < xmin())
{
int d = xmin() - x;
len -= d;
if(len <= 0) return;
colors += d;
x = xmin();
}
if(x + len > xmax())
{
len = xmax() - x + 1;
if(len <= 0) return;
}
m_ren->copy_color_hspan(x, y, len, colors);
}
//--------------------------------------------------------------------
void copy_color_vspan(int x, int y, int len, const color_type* colors)
{
if(x > xmax()) return;
if(x < xmin()) return;
if(y < ymin())
{
int d = ymin() - y;
len -= d;
if(len <= 0) return;
colors += d;
y = ymin();
}
if(y + len > ymax())
{
len = ymax() - y + 1;
if(len <= 0) return;
}
m_ren->copy_color_vspan(x, y, len, colors);
}
//--------------------------------------------------------------------
void blend_color_hspan(int x, int y, int len,
const color_type* colors,
const cover_type* covers,
cover_type cover = agg::cover_full)
{
if(y > ymax()) return;
if(y < ymin()) return;
if(x < xmin())
{
int d = xmin() - x;
len -= d;
if(len <= 0) return;
if(covers) covers += d;
colors += d;
x = xmin();
}
if(x + len > xmax())
{
len = xmax() - x + 1;
if(len <= 0) return;
}
m_ren->blend_color_hspan(x, y, len, colors, covers, cover);
}
//--------------------------------------------------------------------
void blend_color_vspan(int x, int y, int len,
const color_type* colors,
const cover_type* covers,
cover_type cover = agg::cover_full)
{
if(x > xmax()) return;
if(x < xmin()) return;
if(y < ymin())
{
int d = ymin() - y;
len -= d;
if(len <= 0) return;
if(covers) covers += d;
colors += d;
y = ymin();
}
if(y + len > ymax())
{
len = ymax() - y + 1;
if(len <= 0) return;
}
m_ren->blend_color_vspan(x, y, len, colors, covers, cover);
}
//--------------------------------------------------------------------
rect_i clip_rect_area(rect_i& dst, rect_i& src, int wsrc, int hsrc) const
{
rect_i rc(0,0,0,0);
rect_i cb = clip_box();
++cb.x2;
++cb.y2;
if(src.x1 < 0)
{
dst.x1 -= src.x1;
src.x1 = 0;
}
if(src.y1 < 0)
{
dst.y1 -= src.y1;
src.y1 = 0;
}
if(src.x2 > wsrc) src.x2 = wsrc;
if(src.y2 > hsrc) src.y2 = hsrc;
if(dst.x1 < cb.x1)
{
src.x1 += cb.x1 - dst.x1;
dst.x1 = cb.x1;
}
if(dst.y1 < cb.y1)
{
src.y1 += cb.y1 - dst.y1;
dst.y1 = cb.y1;
}
if(dst.x2 > cb.x2) dst.x2 = cb.x2;
if(dst.y2 > cb.y2) dst.y2 = cb.y2;
rc.x2 = dst.x2 - dst.x1;
rc.y2 = dst.y2 - dst.y1;
if(rc.x2 > src.x2 - src.x1) rc.x2 = src.x2 - src.x1;
if(rc.y2 > src.y2 - src.y1) rc.y2 = src.y2 - src.y1;
return rc;
}
//--------------------------------------------------------------------
template<class RenBuf>
void copy_from(const RenBuf& src,
const rect_i* rect_src_ptr = 0,
int dx = 0,
int dy = 0)
{
rect_i rsrc(0, 0, src.width(), src.height());
if(rect_src_ptr)
{
rsrc.x1 = rect_src_ptr->x1;
rsrc.y1 = rect_src_ptr->y1;
rsrc.x2 = rect_src_ptr->x2 + 1;
rsrc.y2 = rect_src_ptr->y2 + 1;
}
// Version with xdst, ydst (absolute positioning)
//rect_i rdst(xdst, ydst, xdst + rsrc.x2 - rsrc.x1, ydst + rsrc.y2 - rsrc.y1);
// Version with dx, dy (relative positioning)
rect_i rdst(rsrc.x1 + dx, rsrc.y1 + dy, rsrc.x2 + dx, rsrc.y2 + dy);
rect_i rc = clip_rect_area(rdst, rsrc, src.width(), src.height());
if(rc.x2 > 0)
{
int incy = 1;
if(rdst.y1 > rsrc.y1)
{
rsrc.y1 += rc.y2 - 1;
rdst.y1 += rc.y2 - 1;
incy = -1;
}
while(rc.y2 > 0)
{
m_ren->copy_from(src,
rdst.x1, rdst.y1,
rsrc.x1, rsrc.y1,
rc.x2);
rdst.y1 += incy;
rsrc.y1 += incy;
--rc.y2;
}
}
}
//--------------------------------------------------------------------
template<class SrcPixelFormatRenderer>
void blend_from(const SrcPixelFormatRenderer& src,
const rect_i* rect_src_ptr = 0,
int dx = 0,
int dy = 0,
cover_type cover = agg::cover_full)
{
rect_i rsrc(0, 0, src.width(), src.height());
if(rect_src_ptr)
{
rsrc.x1 = rect_src_ptr->x1;
rsrc.y1 = rect_src_ptr->y1;
rsrc.x2 = rect_src_ptr->x2 + 1;
rsrc.y2 = rect_src_ptr->y2 + 1;
}
// Version with xdst, ydst (absolute positioning)
//rect_i rdst(xdst, ydst, xdst + rsrc.x2 - rsrc.x1, ydst + rsrc.y2 - rsrc.y1);
// Version with dx, dy (relative positioning)
rect_i rdst(rsrc.x1 + dx, rsrc.y1 + dy, rsrc.x2 + dx, rsrc.y2 + dy);
rect_i rc = clip_rect_area(rdst, rsrc, src.width(), src.height());
if(rc.x2 > 0)
{
int incy = 1;
if(rdst.y1 > rsrc.y1)
{
rsrc.y1 += rc.y2 - 1;
rdst.y1 += rc.y2 - 1;
incy = -1;
}
while(rc.y2 > 0)
{
typename SrcPixelFormatRenderer::row_data rw = src.row(rsrc.y1);
if(rw.ptr)
{
int x1src = rsrc.x1;
int x1dst = rdst.x1;
int len = rc.x2;
if(rw.x1 > x1src)
{
x1dst += rw.x1 - x1src;
len -= rw.x1 - x1src;
x1src = rw.x1;
}
if(len > 0)
{
if(x1src + len-1 > rw.x2)
{
len -= x1src + len - rw.x2 - 1;
}
if(len > 0)
{
m_ren->blend_from(src,
x1dst, rdst.y1,
x1src, rsrc.y1,
len,
cover);
}
}
}
rdst.y1 += incy;
rsrc.y1 += incy;
--rc.y2;
}
}
}
//--------------------------------------------------------------------
template<class SrcPixelFormatRenderer>
void blend_from_color(const SrcPixelFormatRenderer& src,
const color_type& color,
const rect_i* rect_src_ptr = 0,
int dx = 0,
int dy = 0,
cover_type cover = agg::cover_full)
{
rect_i rsrc(0, 0, src.width(), src.height());
if(rect_src_ptr)
{
rsrc.x1 = rect_src_ptr->x1;
rsrc.y1 = rect_src_ptr->y1;
rsrc.x2 = rect_src_ptr->x2 + 1;
rsrc.y2 = rect_src_ptr->y2 + 1;
}
// Version with xdst, ydst (absolute positioning)
//rect_i rdst(xdst, ydst, xdst + rsrc.x2 - rsrc.x1, ydst + rsrc.y2 - rsrc.y1);
// Version with dx, dy (relative positioning)
rect_i rdst(rsrc.x1 + dx, rsrc.y1 + dy, rsrc.x2 + dx, rsrc.y2 + dy);
rect_i rc = clip_rect_area(rdst, rsrc, src.width(), src.height());
if(rc.x2 > 0)
{
int incy = 1;
if(rdst.y1 > rsrc.y1)
{
rsrc.y1 += rc.y2 - 1;
rdst.y1 += rc.y2 - 1;
incy = -1;
}
while(rc.y2 > 0)
{
typename SrcPixelFormatRenderer::row_data rw = src.row(rsrc.y1);
if(rw.ptr)
{
int x1src = rsrc.x1;
int x1dst = rdst.x1;
int len = rc.x2;
if(rw.x1 > x1src)
{
x1dst += rw.x1 - x1src;
len -= rw.x1 - x1src;
x1src = rw.x1;
}
if(len > 0)
{
if(x1src + len-1 > rw.x2)
{
len -= x1src + len - rw.x2 - 1;
}
if(len > 0)
{
m_ren->blend_from_color(src,
color,
x1dst, rdst.y1,
x1src, rsrc.y1,
len,
cover);
}
}
}
rdst.y1 += incy;
rsrc.y1 += incy;
--rc.y2;
}
}
}
//--------------------------------------------------------------------
template<class SrcPixelFormatRenderer>
void blend_from_lut(const SrcPixelFormatRenderer& src,
const color_type* color_lut,
const rect_i* rect_src_ptr = 0,
int dx = 0,
int dy = 0,
cover_type cover = agg::cover_full)
{
rect_i rsrc(0, 0, src.width(), src.height());
if(rect_src_ptr)
{
rsrc.x1 = rect_src_ptr->x1;
rsrc.y1 = rect_src_ptr->y1;
rsrc.x2 = rect_src_ptr->x2 + 1;
rsrc.y2 = rect_src_ptr->y2 + 1;
}
// Version with xdst, ydst (absolute positioning)
//rect_i rdst(xdst, ydst, xdst + rsrc.x2 - rsrc.x1, ydst + rsrc.y2 - rsrc.y1);
// Version with dx, dy (relative positioning)
rect_i rdst(rsrc.x1 + dx, rsrc.y1 + dy, rsrc.x2 + dx, rsrc.y2 + dy);
rect_i rc = clip_rect_area(rdst, rsrc, src.width(), src.height());
if(rc.x2 > 0)
{
int incy = 1;
if(rdst.y1 > rsrc.y1)
{
rsrc.y1 += rc.y2 - 1;
rdst.y1 += rc.y2 - 1;
incy = -1;
}
while(rc.y2 > 0)
{
typename SrcPixelFormatRenderer::row_data rw = src.row(rsrc.y1);
if(rw.ptr)
{
int x1src = rsrc.x1;
int x1dst = rdst.x1;
int len = rc.x2;
if(rw.x1 > x1src)
{
x1dst += rw.x1 - x1src;
len -= rw.x1 - x1src;
x1src = rw.x1;
}
if(len > 0)
{
if(x1src + len-1 > rw.x2)
{
len -= x1src + len - rw.x2 - 1;
}
if(len > 0)
{
m_ren->blend_from_lut(src,
color_lut,
x1dst, rdst.y1,
x1src, rsrc.y1,
len,
cover);
}
}
}
rdst.y1 += incy;
rsrc.y1 += incy;
--rc.y2;
}
}
}
private:
pixfmt_type* m_ren;
rect_i m_clip_box;
};
}
#endif

View file

@ -1,706 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// class renderer_markers
//
//----------------------------------------------------------------------------
#ifndef AGG_RENDERER_MARKERS_INCLUDED
#define AGG_RENDERER_MARKERS_INCLUDED
#include "agg_basics.h"
#include "agg_renderer_primitives.h"
namespace agg
{
//---------------------------------------------------------------marker_e
enum marker_e
{
marker_square,
marker_diamond,
marker_circle,
marker_crossed_circle,
marker_semiellipse_left,
marker_semiellipse_right,
marker_semiellipse_up,
marker_semiellipse_down,
marker_triangle_left,
marker_triangle_right,
marker_triangle_up,
marker_triangle_down,
marker_four_rays,
marker_cross,
marker_x,
marker_dash,
marker_dot,
marker_pixel,
end_of_markers
};
//--------------------------------------------------------renderer_markers
template<class BaseRenderer> class renderer_markers :
public renderer_primitives<BaseRenderer>
{
public:
typedef renderer_primitives<BaseRenderer> base_type;
typedef BaseRenderer base_ren_type;
typedef typename base_ren_type::color_type color_type;
//--------------------------------------------------------------------
renderer_markers(base_ren_type& rbuf) :
base_type(rbuf)
{}
//--------------------------------------------------------------------
bool visible(int x, int y, int r) const
{
rect_i rc(x-r, y-r, x+y, y+r);
return rc.clip(base_type::ren().bounding_clip_box());
}
//--------------------------------------------------------------------
void square(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r) base_type::outlined_rectangle(x-r, y-r, x+r, y+r);
else base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
//--------------------------------------------------------------------
void diamond(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
int dy = -r;
int dx = 0;
do
{
base_type::ren().blend_pixel(x - dx, y + dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x + dx, y + dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x - dx, y - dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x + dx, y - dy, base_type::line_color(), cover_full);
if(dx)
{
base_type::ren().blend_hline(x-dx+1, y+dy, x+dx-1, base_type::fill_color(), cover_full);
base_type::ren().blend_hline(x-dx+1, y-dy, x+dx-1, base_type::fill_color(), cover_full);
}
++dy;
++dx;
}
while(dy <= 0);
}
else
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
}
//--------------------------------------------------------------------
void circle(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r) base_type::outlined_ellipse(x, y, r, r);
else base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
//--------------------------------------------------------------------
void crossed_circle(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
base_type::outlined_ellipse(x, y, r, r);
int r6 = r + (r >> 1);
if(r <= 2) r6++;
r >>= 1;
base_type::ren().blend_hline(x-r6, y, x-r, base_type::line_color(), cover_full);
base_type::ren().blend_hline(x+r, y, x+r6, base_type::line_color(), cover_full);
base_type::ren().blend_vline(x, y-r6, y-r, base_type::line_color(), cover_full);
base_type::ren().blend_vline(x, y+r, y+r6, base_type::line_color(), cover_full);
}
else
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
}
//------------------------------------------------------------------------
void semiellipse_left(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
int r8 = r * 4 / 5;
int dy = -r;
int dx = 0;
ellipse_bresenham_interpolator ei(r * 3 / 5, r+r8);
do
{
dx += ei.dx();
dy += ei.dy();
base_type::ren().blend_pixel(x + dy, y + dx, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x + dy, y - dx, base_type::line_color(), cover_full);
if(ei.dy() && dx)
{
base_type::ren().blend_vline(x+dy, y-dx+1, y+dx-1, base_type::fill_color(), cover_full);
}
++ei;
}
while(dy < r8);
base_type::ren().blend_vline(x+dy, y-dx, y+dx, base_type::line_color(), cover_full);
}
else
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
}
//--------------------------------------------------------------------
void semiellipse_right(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
int r8 = r * 4 / 5;
int dy = -r;
int dx = 0;
ellipse_bresenham_interpolator ei(r * 3 / 5, r+r8);
do
{
dx += ei.dx();
dy += ei.dy();
base_type::ren().blend_pixel(x - dy, y + dx, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x - dy, y - dx, base_type::line_color(), cover_full);
if(ei.dy() && dx)
{
base_type::ren().blend_vline(x-dy, y-dx+1, y+dx-1, base_type::fill_color(), cover_full);
}
++ei;
}
while(dy < r8);
base_type::ren().blend_vline(x-dy, y-dx, y+dx, base_type::line_color(), cover_full);
}
else
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
}
//--------------------------------------------------------------------
void semiellipse_up(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
int r8 = r * 4 / 5;
int dy = -r;
int dx = 0;
ellipse_bresenham_interpolator ei(r * 3 / 5, r+r8);
do
{
dx += ei.dx();
dy += ei.dy();
base_type::ren().blend_pixel(x + dx, y - dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x - dx, y - dy, base_type::line_color(), cover_full);
if(ei.dy() && dx)
{
base_type::ren().blend_hline(x-dx+1, y-dy, x+dx-1, base_type::fill_color(), cover_full);
}
++ei;
}
while(dy < r8);
base_type::ren().blend_hline(x-dx, y-dy-1, x+dx, base_type::line_color(), cover_full);
}
else
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
}
//--------------------------------------------------------------------
void semiellipse_down(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
int r8 = r * 4 / 5;
int dy = -r;
int dx = 0;
ellipse_bresenham_interpolator ei(r * 3 / 5, r+r8);
do
{
dx += ei.dx();
dy += ei.dy();
base_type::ren().blend_pixel(x + dx, y + dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x - dx, y + dy, base_type::line_color(), cover_full);
if(ei.dy() && dx)
{
base_type::ren().blend_hline(x-dx+1, y+dy, x+dx-1, base_type::fill_color(), cover_full);
}
++ei;
}
while(dy < r8);
base_type::ren().blend_hline(x-dx, y+dy+1, x+dx, base_type::line_color(), cover_full);
}
else
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
}
//--------------------------------------------------------------------
void triangle_left(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
int dy = -r;
int dx = 0;
int flip = 0;
int r6 = r * 3 / 5;
do
{
base_type::ren().blend_pixel(x + dy, y - dx, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x + dy, y + dx, base_type::line_color(), cover_full);
if(dx)
{
base_type::ren().blend_vline(x+dy, y-dx+1, y+dx-1, base_type::fill_color(), cover_full);
}
++dy;
dx += flip;
flip ^= 1;
}
while(dy < r6);
base_type::ren().blend_vline(x+dy, y-dx, y+dx, base_type::line_color(), cover_full);
}
else
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
}
//--------------------------------------------------------------------
void triangle_right(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
int dy = -r;
int dx = 0;
int flip = 0;
int r6 = r * 3 / 5;
do
{
base_type::ren().blend_pixel(x - dy, y - dx, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x - dy, y + dx, base_type::line_color(), cover_full);
if(dx)
{
base_type::ren().blend_vline(x-dy, y-dx+1, y+dx-1, base_type::fill_color(), cover_full);
}
++dy;
dx += flip;
flip ^= 1;
}
while(dy < r6);
base_type::ren().blend_vline(x-dy, y-dx, y+dx, base_type::line_color(), cover_full);
}
else
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
}
//--------------------------------------------------------------------
void triangle_up(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
int dy = -r;
int dx = 0;
int flip = 0;
int r6 = r * 3 / 5;
do
{
base_type::ren().blend_pixel(x - dx, y - dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x + dx, y - dy, base_type::line_color(), cover_full);
if(dx)
{
base_type::ren().blend_hline(x-dx+1, y-dy, x+dx-1, base_type::fill_color(), cover_full);
}
++dy;
dx += flip;
flip ^= 1;
}
while(dy < r6);
base_type::ren().blend_hline(x-dx, y-dy, x+dx, base_type::line_color(), cover_full);
}
else
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
}
//--------------------------------------------------------------------
void triangle_down(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
int dy = -r;
int dx = 0;
int flip = 0;
int r6 = r * 3 / 5;
do
{
base_type::ren().blend_pixel(x - dx, y + dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x + dx, y + dy, base_type::line_color(), cover_full);
if(dx)
{
base_type::ren().blend_hline(x-dx+1, y+dy, x+dx-1, base_type::fill_color(), cover_full);
}
++dy;
dx += flip;
flip ^= 1;
}
while(dy < r6);
base_type::ren().blend_hline(x-dx, y+dy, x+dx, base_type::line_color(), cover_full);
}
else
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
}
//--------------------------------------------------------------------
void four_rays(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
int dy = -r;
int dx = 0;
int flip = 0;
int r3 = -(r / 3);
do
{
base_type::ren().blend_pixel(x - dx, y + dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x + dx, y + dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x - dx, y - dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x + dx, y - dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x + dy, y - dx, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x + dy, y + dx, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x - dy, y - dx, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x - dy, y + dx, base_type::line_color(), cover_full);
if(dx)
{
base_type::ren().blend_hline(x-dx+1, y+dy, x+dx-1, base_type::fill_color(), cover_full);
base_type::ren().blend_hline(x-dx+1, y-dy, x+dx-1, base_type::fill_color(), cover_full);
base_type::ren().blend_vline(x+dy, y-dx+1, y+dx-1, base_type::fill_color(), cover_full);
base_type::ren().blend_vline(x-dy, y-dx+1, y+dx-1, base_type::fill_color(), cover_full);
}
++dy;
dx += flip;
flip ^= 1;
}
while(dy <= r3);
base_type::solid_rectangle(x+r3+1, y+r3+1, x-r3-1, y-r3-1);
}
else
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
}
//--------------------------------------------------------------------
void cross(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
base_type::ren().blend_vline(x, y-r, y+r, base_type::line_color(), cover_full);
base_type::ren().blend_hline(x-r, y, x+r, base_type::line_color(), cover_full);
}
else
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
}
//--------------------------------------------------------------------
void xing(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
int dy = -r * 7 / 10;
do
{
base_type::ren().blend_pixel(x + dy, y + dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x - dy, y + dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x + dy, y - dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x - dy, y - dy, base_type::line_color(), cover_full);
++dy;
}
while(dy < 0);
}
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
//--------------------------------------------------------------------
void dash(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r) base_type::ren().blend_hline(x-r, y, x+r, base_type::line_color(), cover_full);
else base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
//--------------------------------------------------------------------
void dot(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r) base_type::solid_ellipse(x, y, r, r);
else base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
//--------------------------------------------------------------------
void pixel(int x, int y, int)
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
//--------------------------------------------------------------------
void marker(int x, int y, int r, marker_e type)
{
switch(type)
{
case marker_square: square(x, y, r); break;
case marker_diamond: diamond(x, y, r); break;
case marker_circle: circle(x, y, r); break;
case marker_crossed_circle: crossed_circle(x, y, r); break;
case marker_semiellipse_left: semiellipse_left(x, y, r); break;
case marker_semiellipse_right: semiellipse_right(x, y, r); break;
case marker_semiellipse_up: semiellipse_up(x, y, r); break;
case marker_semiellipse_down: semiellipse_down(x, y, r); break;
case marker_triangle_left: triangle_left(x, y, r); break;
case marker_triangle_right: triangle_right(x, y, r); break;
case marker_triangle_up: triangle_up(x, y, r); break;
case marker_triangle_down: triangle_down(x, y, r); break;
case marker_four_rays: four_rays(x, y, r); break;
case marker_cross: cross(x, y, r); break;
case marker_x: xing(x, y, r); break;
case marker_dash: dash(x, y, r); break;
case marker_dot: dot(x, y, r); break;
case marker_pixel: pixel(x, y, r); break;
}
}
//--------------------------------------------------------------------
template<class T>
void markers(int n, const T* x, const T* y, T r, marker_e type)
{
if(n <= 0) return;
if(r == 0)
{
do
{
base_type::ren().blend_pixel(int(*x), int(*y), base_type::fill_color(), cover_full);
++x;
++y;
}
while(--n);
return;
}
switch(type)
{
case marker_square: do { square (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_diamond: do { diamond (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_circle: do { circle (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_crossed_circle: do { crossed_circle (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_semiellipse_left: do { semiellipse_left (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_semiellipse_right: do { semiellipse_right(int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_semiellipse_up: do { semiellipse_up (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_semiellipse_down: do { semiellipse_down (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_triangle_left: do { triangle_left (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_triangle_right: do { triangle_right (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_triangle_up: do { triangle_up (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_triangle_down: do { triangle_down (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_four_rays: do { four_rays (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_cross: do { cross (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_x: do { xing (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_dash: do { dash (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_dot: do { dot (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_pixel: do { pixel (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
}
}
//--------------------------------------------------------------------
template<class T>
void markers(int n, const T* x, const T* y, const T* r, marker_e type)
{
if(n <= 0) return;
switch(type)
{
case marker_square: do { square (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_diamond: do { diamond (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_circle: do { circle (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_crossed_circle: do { crossed_circle (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_semiellipse_left: do { semiellipse_left (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_semiellipse_right: do { semiellipse_right(int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_semiellipse_up: do { semiellipse_up (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_semiellipse_down: do { semiellipse_down (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_triangle_left: do { triangle_left (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_triangle_right: do { triangle_right (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_triangle_up: do { triangle_up (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_triangle_down: do { triangle_down (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_four_rays: do { four_rays (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_cross: do { cross (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_x: do { xing (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_dash: do { dash (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_dot: do { dot (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_pixel: do { pixel (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
}
}
//--------------------------------------------------------------------
template<class T>
void markers(int n, const T* x, const T* y, const T* r, const color_type* fc, marker_e type)
{
if(n <= 0) return;
switch(type)
{
case marker_square: do { base_type::fill_color(*fc); square (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_diamond: do { base_type::fill_color(*fc); diamond (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_circle: do { base_type::fill_color(*fc); circle (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_crossed_circle: do { base_type::fill_color(*fc); crossed_circle (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_semiellipse_left: do { base_type::fill_color(*fc); semiellipse_left (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_semiellipse_right: do { base_type::fill_color(*fc); semiellipse_right(int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_semiellipse_up: do { base_type::fill_color(*fc); semiellipse_up (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_semiellipse_down: do { base_type::fill_color(*fc); semiellipse_down (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_triangle_left: do { base_type::fill_color(*fc); triangle_left (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_triangle_right: do { base_type::fill_color(*fc); triangle_right (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_triangle_up: do { base_type::fill_color(*fc); triangle_up (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_triangle_down: do { base_type::fill_color(*fc); triangle_down (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_four_rays: do { base_type::fill_color(*fc); four_rays (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_cross: do { base_type::fill_color(*fc); cross (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_x: do { base_type::fill_color(*fc); xing (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_dash: do { base_type::fill_color(*fc); dash (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_dot: do { base_type::fill_color(*fc); dot (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_pixel: do { base_type::fill_color(*fc); pixel (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
}
}
//--------------------------------------------------------------------
template<class T>
void markers(int n, const T* x, const T* y, const T* r, const color_type* fc, const color_type* lc, marker_e type)
{
if(n <= 0) return;
switch(type)
{
case marker_square: do { base_type::fill_color(*fc); base_type::line_color(*lc); square (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_diamond: do { base_type::fill_color(*fc); base_type::line_color(*lc); diamond (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_circle: do { base_type::fill_color(*fc); base_type::line_color(*lc); circle (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_crossed_circle: do { base_type::fill_color(*fc); base_type::line_color(*lc); crossed_circle (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_semiellipse_left: do { base_type::fill_color(*fc); base_type::line_color(*lc); semiellipse_left (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_semiellipse_right: do { base_type::fill_color(*fc); base_type::line_color(*lc); semiellipse_right(int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_semiellipse_up: do { base_type::fill_color(*fc); base_type::line_color(*lc); semiellipse_up (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_semiellipse_down: do { base_type::fill_color(*fc); base_type::line_color(*lc); semiellipse_down (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_triangle_left: do { base_type::fill_color(*fc); base_type::line_color(*lc); triangle_left (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_triangle_right: do { base_type::fill_color(*fc); base_type::line_color(*lc); triangle_right (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_triangle_up: do { base_type::fill_color(*fc); base_type::line_color(*lc); triangle_up (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_triangle_down: do { base_type::fill_color(*fc); base_type::line_color(*lc); triangle_down (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_four_rays: do { base_type::fill_color(*fc); base_type::line_color(*lc); four_rays (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_cross: do { base_type::fill_color(*fc); base_type::line_color(*lc); cross (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_x: do { base_type::fill_color(*fc); base_type::line_color(*lc); xing (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_dash: do { base_type::fill_color(*fc); base_type::line_color(*lc); dash (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_dot: do { base_type::fill_color(*fc); base_type::line_color(*lc); dot (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_pixel: do { base_type::fill_color(*fc); base_type::line_color(*lc); pixel (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
}
}
};
}
#endif

View file

@ -1,349 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// class renderer_mclip
//
//----------------------------------------------------------------------------
#ifndef AGG_RENDERER_MCLIP_INCLUDED
#define AGG_RENDERER_MCLIP_INCLUDED
#include "agg_basics.h"
#include "agg_array.h"
#include "agg_renderer_base.h"
namespace agg
{
//----------------------------------------------------------renderer_mclip
template<class PixelFormat> class renderer_mclip
{
public:
typedef PixelFormat pixfmt_type;
typedef typename pixfmt_type::color_type color_type;
typedef typename pixfmt_type::row_data row_data;
typedef renderer_base<pixfmt_type> base_ren_type;
//--------------------------------------------------------------------
explicit renderer_mclip(pixfmt_type& pixf) :
m_ren(pixf),
m_curr_cb(0),
m_bounds(m_ren.xmin(), m_ren.ymin(), m_ren.xmax(), m_ren.ymax())
{}
void attach(pixfmt_type& pixf)
{
m_ren.attach(pixf);
reset_clipping(true);
}
//--------------------------------------------------------------------
const pixfmt_type& ren() const { return m_ren.ren(); }
pixfmt_type& ren() { return m_ren.ren(); }
//--------------------------------------------------------------------
unsigned width() const { return m_ren.width(); }
unsigned height() const { return m_ren.height(); }
//--------------------------------------------------------------------
const rect_i& clip_box() const { return m_ren.clip_box(); }
int xmin() const { return m_ren.xmin(); }
int ymin() const { return m_ren.ymin(); }
int xmax() const { return m_ren.xmax(); }
int ymax() const { return m_ren.ymax(); }
//--------------------------------------------------------------------
const rect_i& bounding_clip_box() const { return m_bounds; }
int bounding_xmin() const { return m_bounds.x1; }
int bounding_ymin() const { return m_bounds.y1; }
int bounding_xmax() const { return m_bounds.x2; }
int bounding_ymax() const { return m_bounds.y2; }
//--------------------------------------------------------------------
void first_clip_box()
{
m_curr_cb = 0;
if(m_clip.size())
{
const rect_i& cb = m_clip[0];
m_ren.clip_box_naked(cb.x1, cb.y1, cb.x2, cb.y2);
}
}
//--------------------------------------------------------------------
bool next_clip_box()
{
if(++m_curr_cb < m_clip.size())
{
const rect_i& cb = m_clip[m_curr_cb];
m_ren.clip_box_naked(cb.x1, cb.y1, cb.x2, cb.y2);
return true;
}
return false;
}
//--------------------------------------------------------------------
void reset_clipping(bool visibility)
{
m_ren.reset_clipping(visibility);
m_clip.remove_all();
m_curr_cb = 0;
m_bounds = m_ren.clip_box();
}
//--------------------------------------------------------------------
void add_clip_box(int x1, int y1, int x2, int y2)
{
rect_i cb(x1, y1, x2, y2);
cb.normalize();
if(cb.clip(rect_i(0, 0, width() - 1, height() - 1)))
{
m_clip.add(cb);
if(cb.x1 < m_bounds.x1) m_bounds.x1 = cb.x1;
if(cb.y1 < m_bounds.y1) m_bounds.y1 = cb.y1;
if(cb.x2 > m_bounds.x2) m_bounds.x2 = cb.x2;
if(cb.y2 > m_bounds.y2) m_bounds.y2 = cb.y2;
}
}
//--------------------------------------------------------------------
void clear(const color_type& c)
{
m_ren.clear(c);
}
//--------------------------------------------------------------------
void copy_pixel(int x, int y, const color_type& c)
{
first_clip_box();
do
{
if(m_ren.inbox(x, y))
{
m_ren.ren().copy_pixel(x, y, c);
break;
}
}
while(next_clip_box());
}
//--------------------------------------------------------------------
void blend_pixel(int x, int y, const color_type& c, cover_type cover)
{
first_clip_box();
do
{
if(m_ren.inbox(x, y))
{
m_ren.ren().blend_pixel(x, y, c, cover);
break;
}
}
while(next_clip_box());
}
//--------------------------------------------------------------------
color_type pixel(int x, int y) const
{
first_clip_box();
do
{
if(m_ren.inbox(x, y))
{
return m_ren.ren().pixel(x, y);
}
}
while(next_clip_box());
return color_type::no_color();
}
//--------------------------------------------------------------------
void copy_hline(int x1, int y, int x2, const color_type& c)
{
first_clip_box();
do
{
m_ren.copy_hline(x1, y, x2, c);
}
while(next_clip_box());
}
//--------------------------------------------------------------------
void copy_vline(int x, int y1, int y2, const color_type& c)
{
first_clip_box();
do
{
m_ren.copy_vline(x, y1, y2, c);
}
while(next_clip_box());
}
//--------------------------------------------------------------------
void blend_hline(int x1, int y, int x2,
const color_type& c, cover_type cover)
{
first_clip_box();
do
{
m_ren.blend_hline(x1, y, x2, c, cover);
}
while(next_clip_box());
}
//--------------------------------------------------------------------
void blend_vline(int x, int y1, int y2,
const color_type& c, cover_type cover)
{
first_clip_box();
do
{
m_ren.blend_vline(x, y1, y2, c, cover);
}
while(next_clip_box());
}
//--------------------------------------------------------------------
void copy_bar(int x1, int y1, int x2, int y2, const color_type& c)
{
first_clip_box();
do
{
m_ren.copy_bar(x1, y1, x2, y2, c);
}
while(next_clip_box());
}
//--------------------------------------------------------------------
void blend_bar(int x1, int y1, int x2, int y2,
const color_type& c, cover_type cover)
{
first_clip_box();
do
{
m_ren.blend_bar(x1, y1, x2, y2, c, cover);
}
while(next_clip_box());
}
//--------------------------------------------------------------------
void blend_solid_hspan(int x, int y, int len,
const color_type& c, const cover_type* covers)
{
first_clip_box();
do
{
m_ren.blend_solid_hspan(x, y, len, c, covers);
}
while(next_clip_box());
}
//--------------------------------------------------------------------
void blend_solid_vspan(int x, int y, int len,
const color_type& c, const cover_type* covers)
{
first_clip_box();
do
{
m_ren.blend_solid_vspan(x, y, len, c, covers);
}
while(next_clip_box());
}
//--------------------------------------------------------------------
void copy_color_hspan(int x, int y, int len, const color_type* colors)
{
first_clip_box();
do
{
m_ren.copy_color_hspan(x, y, len, colors);
}
while(next_clip_box());
}
//--------------------------------------------------------------------
void blend_color_hspan(int x, int y, int len,
const color_type* colors,
const cover_type* covers,
cover_type cover = cover_full)
{
first_clip_box();
do
{
m_ren.blend_color_hspan(x, y, len, colors, covers, cover);
}
while(next_clip_box());
}
//--------------------------------------------------------------------
void blend_color_vspan(int x, int y, int len,
const color_type* colors,
const cover_type* covers,
cover_type cover = cover_full)
{
first_clip_box();
do
{
m_ren.blend_color_vspan(x, y, len, colors, covers, cover);
}
while(next_clip_box());
}
//--------------------------------------------------------------------
void copy_from(const rendering_buffer& from,
const rect_i* rc=0,
int x_to=0,
int y_to=0)
{
first_clip_box();
do
{
m_ren.copy_from(from, rc, x_to, y_to);
}
while(next_clip_box());
}
//--------------------------------------------------------------------
template<class SrcPixelFormatRenderer>
void blend_from(const SrcPixelFormatRenderer& src,
const rect_i* rect_src_ptr = 0,
int dx = 0,
int dy = 0,
cover_type cover = cover_full)
{
first_clip_box();
do
{
m_ren.blend_from(src, rect_src_ptr, dx, dy, cover);
}
while(next_clip_box());
}
private:
renderer_mclip(const renderer_mclip<PixelFormat>&);
const renderer_mclip<PixelFormat>&
operator = (const renderer_mclip<PixelFormat>&);
base_ren_type m_ren;
pod_bvector<rect_i, 4> m_clip;
unsigned m_curr_cb;
rect_i m_bounds;
};
}
#endif

View file

@ -1,224 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// class renderer_primitives
//
//----------------------------------------------------------------------------
#ifndef AGG_RENDERER_PRIMITIVES_INCLUDED
#define AGG_RENDERER_PRIMITIVES_INCLUDED
#include "agg_basics.h"
#include "agg_renderer_base.h"
#include "agg_dda_line.h"
#include "agg_ellipse_bresenham.h"
namespace agg
{
//-----------------------------------------------------renderer_primitives
template<class BaseRenderer> class renderer_primitives
{
public:
typedef BaseRenderer base_ren_type;
typedef typename base_ren_type::color_type color_type;
//--------------------------------------------------------------------
explicit renderer_primitives(base_ren_type& ren) :
m_ren(&ren),
m_fill_color(),
m_line_color(),
m_curr_x(0),
m_curr_y(0)
{}
void attach(base_ren_type& ren) { m_ren = &ren; }
//--------------------------------------------------------------------
static int coord(double c)
{
return iround(c * line_bresenham_interpolator::subpixel_scale);
}
//--------------------------------------------------------------------
void fill_color(const color_type& c) { m_fill_color = c; }
void line_color(const color_type& c) { m_line_color = c; }
const color_type& fill_color() const { return m_fill_color; }
const color_type& line_color() const { return m_line_color; }
//--------------------------------------------------------------------
void rectangle(int x1, int y1, int x2, int y2)
{
m_ren->blend_hline(x1, y1, x2-1, m_line_color, cover_full);
m_ren->blend_vline(x2, y1, y2-1, m_line_color, cover_full);
m_ren->blend_hline(x1+1, y2, x2, m_line_color, cover_full);
m_ren->blend_vline(x1, y1+1, y2, m_line_color, cover_full);
}
//--------------------------------------------------------------------
void solid_rectangle(int x1, int y1, int x2, int y2)
{
m_ren->blend_bar(x1, y1, x2, y2, m_fill_color, cover_full);
}
//--------------------------------------------------------------------
void outlined_rectangle(int x1, int y1, int x2, int y2)
{
rectangle(x1, y1, x2, y2);
m_ren->blend_bar(x1+1, y1+1, x2-1, y2-1, m_fill_color, cover_full);
}
//--------------------------------------------------------------------
void ellipse(int x, int y, int rx, int ry)
{
ellipse_bresenham_interpolator ei(rx, ry);
int dx = 0;
int dy = -ry;
do
{
dx += ei.dx();
dy += ei.dy();
m_ren->blend_pixel(x + dx, y + dy, m_line_color, cover_full);
m_ren->blend_pixel(x + dx, y - dy, m_line_color, cover_full);
m_ren->blend_pixel(x - dx, y - dy, m_line_color, cover_full);
m_ren->blend_pixel(x - dx, y + dy, m_line_color, cover_full);
++ei;
}
while(dy < 0);
}
//--------------------------------------------------------------------
void solid_ellipse(int x, int y, int rx, int ry)
{
ellipse_bresenham_interpolator ei(rx, ry);
int dx = 0;
int dy = -ry;
int dy0 = dy;
int dx0 = dx;
do
{
dx += ei.dx();
dy += ei.dy();
if(dy != dy0)
{
m_ren->blend_hline(x-dx0, y+dy0, x+dx0, m_fill_color, cover_full);
m_ren->blend_hline(x-dx0, y-dy0, x+dx0, m_fill_color, cover_full);
}
dx0 = dx;
dy0 = dy;
++ei;
}
while(dy < 0);
m_ren->blend_hline(x-dx0, y+dy0, x+dx0, m_fill_color, cover_full);
}
//--------------------------------------------------------------------
void outlined_ellipse(int x, int y, int rx, int ry)
{
ellipse_bresenham_interpolator ei(rx, ry);
int dx = 0;
int dy = -ry;
do
{
dx += ei.dx();
dy += ei.dy();
m_ren->blend_pixel(x + dx, y + dy, m_line_color, cover_full);
m_ren->blend_pixel(x + dx, y - dy, m_line_color, cover_full);
m_ren->blend_pixel(x - dx, y - dy, m_line_color, cover_full);
m_ren->blend_pixel(x - dx, y + dy, m_line_color, cover_full);
if(ei.dy() && dx)
{
m_ren->blend_hline(x-dx+1, y+dy, x+dx-1, m_fill_color, cover_full);
m_ren->blend_hline(x-dx+1, y-dy, x+dx-1, m_fill_color, cover_full);
}
++ei;
}
while(dy < 0);
}
//--------------------------------------------------------------------
void line(int x1, int y1, int x2, int y2, bool last=false)
{
line_bresenham_interpolator li(x1, y1, x2, y2);
unsigned len = li.len();
if(len == 0)
{
if(last)
{
m_ren->blend_pixel(li.line_lr(x1), li.line_lr(y1), m_line_color, cover_full);
}
return;
}
if(last) ++len;
if(li.is_ver())
{
do
{
m_ren->blend_pixel(li.x2(), li.y1(), m_line_color, cover_full);
li.vstep();
}
while(--len);
}
else
{
do
{
m_ren->blend_pixel(li.x1(), li.y2(), m_line_color, cover_full);
li.hstep();
}
while(--len);
}
}
//--------------------------------------------------------------------
void move_to(int x, int y)
{
m_curr_x = x;
m_curr_y = y;
}
//--------------------------------------------------------------------
void line_to(int x, int y, bool last=false)
{
line(m_curr_x, m_curr_y, x, y, last);
m_curr_x = x;
m_curr_y = y;
}
//--------------------------------------------------------------------
const base_ren_type& ren() const { return *m_ren; }
base_ren_type& ren() { return *m_ren; }
//--------------------------------------------------------------------
const rendering_buffer& rbuf() const { return m_ren->rbuf(); }
rendering_buffer& rbuf() { return m_ren->rbuf(); }
private:
base_ren_type* m_ren;
color_type m_fill_color;
color_type m_line_color;
int m_curr_x;
int m_curr_y;
};
}
#endif

View file

@ -1,264 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_RENDERER_RASTER_TEXT_INCLUDED
#define AGG_RENDERER_RASTER_TEXT_INCLUDED
#include "agg_basics.h"
namespace agg
{
//==============================================renderer_raster_htext_solid
template<class BaseRenderer, class GlyphGenerator>
class renderer_raster_htext_solid
{
public:
typedef BaseRenderer ren_type;
typedef GlyphGenerator glyph_gen_type;
typedef typename glyph_gen_type::glyph_rect glyph_rect;
typedef typename ren_type::color_type color_type;
renderer_raster_htext_solid(ren_type& ren, glyph_gen_type& glyph) :
m_ren(&ren),
m_glyph(&glyph)
{}
void attach(ren_type& ren) { m_ren = &ren; }
//--------------------------------------------------------------------
void color(const color_type& c) { m_color = c; }
const color_type& color() const { return m_color; }
//--------------------------------------------------------------------
template<class CharT>
void render_text(double x, double y, const CharT* str, bool flip=false)
{
glyph_rect r;
while(*str)
{
m_glyph->prepare(&r, x, y, *str, flip);
if(r.x2 >= r.x1)
{
int i;
if(flip)
{
for(i = r.y1; i <= r.y2; i++)
{
m_ren->blend_solid_hspan(r.x1, i, (r.x2 - r.x1 + 1),
m_color,
m_glyph->span(r.y2 - i));
}
}
else
{
for(i = r.y1; i <= r.y2; i++)
{
m_ren->blend_solid_hspan(r.x1, i, (r.x2 - r.x1 + 1),
m_color,
m_glyph->span(i - r.y1));
}
}
}
x += r.dx;
y += r.dy;
++str;
}
}
private:
ren_type* m_ren;
glyph_gen_type* m_glyph;
color_type m_color;
};
//=============================================renderer_raster_vtext_solid
template<class BaseRenderer, class GlyphGenerator>
class renderer_raster_vtext_solid
{
public:
typedef BaseRenderer ren_type;
typedef GlyphGenerator glyph_gen_type;
typedef typename glyph_gen_type::glyph_rect glyph_rect;
typedef typename ren_type::color_type color_type;
renderer_raster_vtext_solid(ren_type& ren, glyph_gen_type& glyph) :
m_ren(&ren),
m_glyph(&glyph)
{
}
//--------------------------------------------------------------------
void color(const color_type& c) { m_color = c; }
const color_type& color() const { return m_color; }
//--------------------------------------------------------------------
template<class CharT>
void render_text(double x, double y, const CharT* str, bool flip=false)
{
glyph_rect r;
while(*str)
{
m_glyph->prepare(&r, x, y, *str, !flip);
if(r.x2 >= r.x1)
{
int i;
if(flip)
{
for(i = r.y1; i <= r.y2; i++)
{
m_ren->blend_solid_vspan(i, r.x1, (r.x2 - r.x1 + 1),
m_color,
m_glyph->span(i - r.y1));
}
}
else
{
for(i = r.y1; i <= r.y2; i++)
{
m_ren->blend_solid_vspan(i, r.x1, (r.x2 - r.x1 + 1),
m_color,
m_glyph->span(r.y2 - i));
}
}
}
x += r.dx;
y += r.dy;
++str;
}
}
private:
ren_type* m_ren;
glyph_gen_type* m_glyph;
color_type m_color;
};
//===================================================renderer_raster_htext
template<class ScanlineRenderer, class GlyphGenerator>
class renderer_raster_htext
{
public:
typedef ScanlineRenderer ren_type;
typedef GlyphGenerator glyph_gen_type;
typedef typename glyph_gen_type::glyph_rect glyph_rect;
class scanline_single_span
{
public:
typedef agg::cover_type cover_type;
//----------------------------------------------------------------
struct const_span
{
int x;
unsigned len;
const cover_type* covers;
const_span() {}
const_span(int x_, unsigned len_, const cover_type* covers_) :
x(x_), len(len_), covers(covers_)
{}
};
typedef const const_span* const_iterator;
//----------------------------------------------------------------
scanline_single_span(int x, int y, unsigned len,
const cover_type* covers) :
m_y(y),
m_span(x, len, covers)
{}
//----------------------------------------------------------------
int y() const { return m_y; }
unsigned num_spans() const { return 1; }
const_iterator begin() const { return &m_span; }
private:
//----------------------------------------------------------------
int m_y;
const_span m_span;
};
//--------------------------------------------------------------------
renderer_raster_htext(ren_type& ren, glyph_gen_type& glyph) :
m_ren(&ren),
m_glyph(&glyph)
{
}
//--------------------------------------------------------------------
template<class CharT>
void render_text(double x, double y, const CharT* str, bool flip=false)
{
glyph_rect r;
while(*str)
{
m_glyph->prepare(&r, x, y, *str, flip);
if(r.x2 >= r.x1)
{
m_ren->prepare();
int i;
if(flip)
{
for(i = r.y1; i <= r.y2; i++)
{
m_ren->render(
scanline_single_span(r.x1,
i,
(r.x2 - r.x1 + 1),
m_glyph->span(r.y2 - i)));
}
}
else
{
for(i = r.y1; i <= r.y2; i++)
{
m_ren->render(
scanline_single_span(r.x1,
i,
(r.x2 - r.x1 + 1),
m_glyph->span(i - r.y1)));
}
}
}
x += r.dx;
y += r.dy;
++str;
}
}
private:
ren_type* m_ren;
glyph_gen_type* m_glyph;
};
}
#endif

View file

@ -1,852 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_RENDERER_SCANLINE_INCLUDED
#define AGG_RENDERER_SCANLINE_INCLUDED
#include "agg_basics.h"
#include "agg_renderer_base.h"
namespace agg
{
//================================================render_scanline_aa_solid
template<class Scanline, class BaseRenderer, class ColorT>
void render_scanline_aa_solid(const Scanline& sl,
BaseRenderer& ren,
const ColorT& color)
{
int y = sl.y();
unsigned num_spans = sl.num_spans();
typename Scanline::const_iterator span = sl.begin();
for(;;)
{
int x = span->x;
if(span->len > 0)
{
ren.blend_solid_hspan(x, y, (unsigned)span->len,
color,
span->covers);
}
else
{
ren.blend_hline(x, y, (unsigned)(x - span->len - 1),
color,
*(span->covers));
}
if(--num_spans == 0) break;
++span;
}
}
//===============================================render_scanlines_aa_solid
template<class Rasterizer, class Scanline,
class BaseRenderer, class ColorT>
void render_scanlines_aa_solid(Rasterizer& ras, Scanline& sl,
BaseRenderer& ren, const ColorT& color)
{
if(ras.rewind_scanlines())
{
// Explicitly convert "color" to the BaseRenderer color type.
// For example, it can be called with color type "rgba", while
// "rgba8" is needed. Otherwise it will be implicitly
// converted in the loop many times.
//----------------------
typename BaseRenderer::color_type ren_color(color);
sl.reset(ras.min_x(), ras.max_x());
while(ras.sweep_scanline(sl))
{
//render_scanline_aa_solid(sl, ren, ren_color);
// This code is equivalent to the above call (copy/paste).
// It's just a "manual" optimization for old compilers,
// like Microsoft Visual C++ v6.0
//-------------------------------
int y = sl.y();
unsigned num_spans = sl.num_spans();
typename Scanline::const_iterator span = sl.begin();
for(;;)
{
int x = span->x;
if(span->len > 0)
{
ren.blend_solid_hspan(x, y, (unsigned)span->len,
ren_color,
span->covers);
}
else
{
ren.blend_hline(x, y, (unsigned)(x - span->len - 1),
ren_color,
*(span->covers));
}
if(--num_spans == 0) break;
++span;
}
}
}
}
//==============================================renderer_scanline_aa_solid
template<class BaseRenderer> class renderer_scanline_aa_solid
{
public:
typedef BaseRenderer base_ren_type;
typedef typename base_ren_type::color_type color_type;
//--------------------------------------------------------------------
renderer_scanline_aa_solid() : m_ren(0) {}
explicit renderer_scanline_aa_solid(base_ren_type& ren) : m_ren(&ren) {}
void attach(base_ren_type& ren)
{
m_ren = &ren;
}
//--------------------------------------------------------------------
void color(const color_type& c) { m_color = c; }
const color_type& color() const { return m_color; }
//--------------------------------------------------------------------
void prepare() {}
//--------------------------------------------------------------------
template<class Scanline> void render(const Scanline& sl)
{
render_scanline_aa_solid(sl, *m_ren, m_color);
}
private:
base_ren_type* m_ren;
color_type m_color;
};
//======================================================render_scanline_aa
template<class Scanline, class BaseRenderer,
class SpanAllocator, class SpanGenerator>
void render_scanline_aa(const Scanline& sl, BaseRenderer& ren,
SpanAllocator& alloc, SpanGenerator& span_gen)
{
int y = sl.y();
unsigned num_spans = sl.num_spans();
typename Scanline::const_iterator span = sl.begin();
for(;;)
{
int x = span->x;
int len = span->len;
const typename Scanline::cover_type* covers = span->covers;
if(len < 0) len = -len;
typename BaseRenderer::color_type* colors = alloc.allocate(len);
span_gen.generate(colors, x, y, len);
ren.blend_color_hspan(x, y, len, colors,
(span->len < 0) ? 0 : covers, *covers);
if(--num_spans == 0) break;
++span;
}
}
//=====================================================render_scanlines_aa
template<class Rasterizer, class Scanline, class BaseRenderer,
class SpanAllocator, class SpanGenerator>
void render_scanlines_aa(Rasterizer& ras, Scanline& sl, BaseRenderer& ren,
SpanAllocator& alloc, SpanGenerator& span_gen)
{
if(ras.rewind_scanlines())
{
sl.reset(ras.min_x(), ras.max_x());
span_gen.prepare();
while(ras.sweep_scanline(sl))
{
render_scanline_aa(sl, ren, alloc, span_gen);
}
}
}
//====================================================renderer_scanline_aa
template<class BaseRenderer, class SpanAllocator, class SpanGenerator>
class renderer_scanline_aa
{
public:
typedef BaseRenderer base_ren_type;
typedef SpanAllocator alloc_type;
typedef SpanGenerator span_gen_type;
//--------------------------------------------------------------------
renderer_scanline_aa() : m_ren(0), m_alloc(0), m_span_gen(0) {}
renderer_scanline_aa(base_ren_type& ren,
alloc_type& alloc,
span_gen_type& span_gen) :
m_ren(&ren),
m_alloc(&alloc),
m_span_gen(&span_gen)
{}
void attach(base_ren_type& ren,
alloc_type& alloc,
span_gen_type& span_gen)
{
m_ren = &ren;
m_alloc = &alloc;
m_span_gen = &span_gen;
}
//--------------------------------------------------------------------
void prepare() { m_span_gen->prepare(); }
//--------------------------------------------------------------------
template<class Scanline> void render(const Scanline& sl)
{
render_scanline_aa(sl, *m_ren, *m_alloc, *m_span_gen);
}
private:
base_ren_type* m_ren;
alloc_type* m_alloc;
span_gen_type* m_span_gen;
};
//===============================================render_scanline_bin_solid
template<class Scanline, class BaseRenderer, class ColorT>
void render_scanline_bin_solid(const Scanline& sl,
BaseRenderer& ren,
const ColorT& color)
{
unsigned num_spans = sl.num_spans();
typename Scanline::const_iterator span = sl.begin();
for(;;)
{
ren.blend_hline(span->x,
sl.y(),
span->x - 1 + ((span->len < 0) ?
-span->len :
span->len),
color,
cover_full);
if(--num_spans == 0) break;
++span;
}
}
//==============================================render_scanlines_bin_solid
template<class Rasterizer, class Scanline,
class BaseRenderer, class ColorT>
void render_scanlines_bin_solid(Rasterizer& ras, Scanline& sl,
BaseRenderer& ren, const ColorT& color)
{
if(ras.rewind_scanlines())
{
// Explicitly convert "color" to the BaseRenderer color type.
// For example, it can be called with color type "rgba", while
// "rgba8" is needed. Otherwise it will be implicitly
// converted in the loop many times.
//----------------------
typename BaseRenderer::color_type ren_color(color);
sl.reset(ras.min_x(), ras.max_x());
while(ras.sweep_scanline(sl))
{
//render_scanline_bin_solid(sl, ren, ren_color);
// This code is equivalent to the above call (copy/paste).
// It's just a "manual" optimization for old compilers,
// like Microsoft Visual C++ v6.0
//-------------------------------
unsigned num_spans = sl.num_spans();
typename Scanline::const_iterator span = sl.begin();
for(;;)
{
ren.blend_hline(span->x,
sl.y(),
span->x - 1 + ((span->len < 0) ?
-span->len :
span->len),
ren_color,
cover_full);
if(--num_spans == 0) break;
++span;
}
}
}
}
//=============================================renderer_scanline_bin_solid
template<class BaseRenderer> class renderer_scanline_bin_solid
{
public:
typedef BaseRenderer base_ren_type;
typedef typename base_ren_type::color_type color_type;
//--------------------------------------------------------------------
renderer_scanline_bin_solid() : m_ren(0) {}
explicit renderer_scanline_bin_solid(base_ren_type& ren) : m_ren(&ren) {}
void attach(base_ren_type& ren)
{
m_ren = &ren;
}
//--------------------------------------------------------------------
void color(const color_type& c) { m_color = c; }
const color_type& color() const { return m_color; }
//--------------------------------------------------------------------
void prepare() {}
//--------------------------------------------------------------------
template<class Scanline> void render(const Scanline& sl)
{
render_scanline_bin_solid(sl, *m_ren, m_color);
}
private:
base_ren_type* m_ren;
color_type m_color;
};
//======================================================render_scanline_bin
template<class Scanline, class BaseRenderer,
class SpanAllocator, class SpanGenerator>
void render_scanline_bin(const Scanline& sl, BaseRenderer& ren,
SpanAllocator& alloc, SpanGenerator& span_gen)
{
int y = sl.y();
unsigned num_spans = sl.num_spans();
typename Scanline::const_iterator span = sl.begin();
for(;;)
{
int x = span->x;
int len = span->len;
if(len < 0) len = -len;
typename BaseRenderer::color_type* colors = alloc.allocate(len);
span_gen.generate(colors, x, y, len);
ren.blend_color_hspan(x, y, len, colors, 0, cover_full);
if(--num_spans == 0) break;
++span;
}
}
//=====================================================render_scanlines_bin
template<class Rasterizer, class Scanline, class BaseRenderer,
class SpanAllocator, class SpanGenerator>
void render_scanlines_bin(Rasterizer& ras, Scanline& sl, BaseRenderer& ren,
SpanAllocator& alloc, SpanGenerator& span_gen)
{
if(ras.rewind_scanlines())
{
sl.reset(ras.min_x(), ras.max_x());
span_gen.prepare();
while(ras.sweep_scanline(sl))
{
render_scanline_bin(sl, ren, alloc, span_gen);
}
}
}
//====================================================renderer_scanline_bin
template<class BaseRenderer, class SpanAllocator, class SpanGenerator>
class renderer_scanline_bin
{
public:
typedef BaseRenderer base_ren_type;
typedef SpanAllocator alloc_type;
typedef SpanGenerator span_gen_type;
//--------------------------------------------------------------------
renderer_scanline_bin() : m_ren(0), m_alloc(0), m_span_gen(0) {}
renderer_scanline_bin(base_ren_type& ren,
alloc_type& alloc,
span_gen_type& span_gen) :
m_ren(&ren),
m_alloc(&alloc),
m_span_gen(&span_gen)
{}
void attach(base_ren_type& ren,
alloc_type& alloc,
span_gen_type& span_gen)
{
m_ren = &ren;
m_alloc = &alloc;
m_span_gen = &span_gen;
}
//--------------------------------------------------------------------
void prepare() { m_span_gen->prepare(); }
//--------------------------------------------------------------------
template<class Scanline> void render(const Scanline& sl)
{
render_scanline_bin(sl, *m_ren, *m_alloc, *m_span_gen);
}
private:
base_ren_type* m_ren;
alloc_type* m_alloc;
span_gen_type* m_span_gen;
};
//========================================================render_scanlines
template<class Rasterizer, class Scanline, class Renderer>
void render_scanlines(Rasterizer& ras, Scanline& sl, Renderer& ren)
{
if(ras.rewind_scanlines())
{
sl.reset(ras.min_x(), ras.max_x());
ren.prepare();
while(ras.sweep_scanline(sl))
{
ren.render(sl);
}
}
}
//========================================================render_all_paths
template<class Rasterizer, class Scanline, class Renderer,
class VertexSource, class ColorStorage, class PathId>
void render_all_paths(Rasterizer& ras,
Scanline& sl,
Renderer& r,
VertexSource& vs,
const ColorStorage& as,
const PathId& path_id,
unsigned num_paths)
{
for(unsigned i = 0; i < num_paths; i++)
{
ras.reset();
ras.add_path(vs, path_id[i]);
r.color(as[i]);
render_scanlines(ras, sl, r);
}
}
//=============================================render_scanlines_compound
template<class Rasterizer,
class ScanlineAA,
class ScanlineBin,
class BaseRenderer,
class SpanAllocator,
class StyleHandler>
void render_scanlines_compound(Rasterizer& ras,
ScanlineAA& sl_aa,
ScanlineBin& sl_bin,
BaseRenderer& ren,
SpanAllocator& alloc,
StyleHandler& sh)
{
if(ras.rewind_scanlines())
{
int min_x = ras.min_x();
int len = ras.max_x() - min_x + 2;
sl_aa.reset(min_x, ras.max_x());
sl_bin.reset(min_x, ras.max_x());
typedef typename BaseRenderer::color_type color_type;
color_type* color_span = alloc.allocate(len * 2);
color_type* mix_buffer = color_span + len;
unsigned num_spans;
unsigned num_styles;
unsigned style;
bool solid;
while((num_styles = ras.sweep_styles()) > 0)
{
typename ScanlineAA::const_iterator span_aa;
if(num_styles == 1)
{
// Optimization for a single style. Happens often
//-------------------------
if(ras.sweep_scanline(sl_aa, 0))
{
style = ras.style(0);
if(sh.is_solid(style))
{
// Just solid fill
//-----------------------
render_scanline_aa_solid(sl_aa, ren, sh.color(style));
}
else
{
// Arbitrary span generator
//-----------------------
span_aa = sl_aa.begin();
num_spans = sl_aa.num_spans();
for(;;)
{
len = span_aa->len;
sh.generate_span(color_span,
span_aa->x,
sl_aa.y(),
len,
style);
ren.blend_color_hspan(span_aa->x,
sl_aa.y(),
span_aa->len,
color_span,
span_aa->covers);
if(--num_spans == 0) break;
++span_aa;
}
}
}
}
else
{
if(ras.sweep_scanline(sl_bin, -1))
{
// Clear the spans of the mix_buffer
//--------------------
typename ScanlineBin::const_iterator span_bin = sl_bin.begin();
num_spans = sl_bin.num_spans();
for(;;)
{
memset(mix_buffer + span_bin->x - min_x,
0,
span_bin->len * sizeof(color_type));
if(--num_spans == 0) break;
++span_bin;
}
unsigned i;
for(i = 0; i < num_styles; i++)
{
style = ras.style(i);
solid = sh.is_solid(style);
if(ras.sweep_scanline(sl_aa, i))
{
color_type* colors;
color_type* cspan;
typename ScanlineAA::cover_type* covers;
span_aa = sl_aa.begin();
num_spans = sl_aa.num_spans();
if(solid)
{
// Just solid fill
//-----------------------
for(;;)
{
color_type c = sh.color(style);
len = span_aa->len;
colors = mix_buffer + span_aa->x - min_x;
covers = span_aa->covers;
do
{
if(*covers == cover_full)
{
*colors = c;
}
else
{
colors->add(c, *covers);
}
++colors;
++covers;
}
while(--len);
if(--num_spans == 0) break;
++span_aa;
}
}
else
{
// Arbitrary span generator
//-----------------------
for(;;)
{
len = span_aa->len;
colors = mix_buffer + span_aa->x - min_x;
cspan = color_span;
sh.generate_span(cspan,
span_aa->x,
sl_aa.y(),
len,
style);
covers = span_aa->covers;
do
{
if(*covers == cover_full)
{
*colors = *cspan;
}
else
{
colors->add(*cspan, *covers);
}
++cspan;
++colors;
++covers;
}
while(--len);
if(--num_spans == 0) break;
++span_aa;
}
}
}
}
// Emit the blended result as a color hspan
//-------------------------
span_bin = sl_bin.begin();
num_spans = sl_bin.num_spans();
for(;;)
{
ren.blend_color_hspan(span_bin->x,
sl_bin.y(),
span_bin->len,
mix_buffer + span_bin->x - min_x,
0,
cover_full);
if(--num_spans == 0) break;
++span_bin;
}
} // if(ras.sweep_scanline(sl_bin, -1))
} // if(num_styles == 1) ... else
} // while((num_styles = ras.sweep_styles()) > 0)
} // if(ras.rewind_scanlines())
}
//=======================================render_scanlines_compound_layered
template<class Rasterizer,
class ScanlineAA,
class BaseRenderer,
class SpanAllocator,
class StyleHandler>
void render_scanlines_compound_layered(Rasterizer& ras,
ScanlineAA& sl_aa,
BaseRenderer& ren,
SpanAllocator& alloc,
StyleHandler& sh)
{
if(ras.rewind_scanlines())
{
int min_x = ras.min_x();
int len = ras.max_x() - min_x + 2;
sl_aa.reset(min_x, ras.max_x());
typedef typename BaseRenderer::color_type color_type;
color_type* color_span = alloc.allocate(len * 2);
color_type* mix_buffer = color_span + len;
cover_type* cover_buffer = ras.allocate_cover_buffer(len);
unsigned num_spans;
unsigned num_styles;
unsigned style;
bool solid;
while((num_styles = ras.sweep_styles()) > 0)
{
typename ScanlineAA::const_iterator span_aa;
if(num_styles == 1)
{
// Optimization for a single style. Happens often
//-------------------------
if(ras.sweep_scanline(sl_aa, 0))
{
style = ras.style(0);
if(sh.is_solid(style))
{
// Just solid fill
//-----------------------
render_scanline_aa_solid(sl_aa, ren, sh.color(style));
}
else
{
// Arbitrary span generator
//-----------------------
span_aa = sl_aa.begin();
num_spans = sl_aa.num_spans();
for(;;)
{
len = span_aa->len;
sh.generate_span(color_span,
span_aa->x,
sl_aa.y(),
len,
style);
ren.blend_color_hspan(span_aa->x,
sl_aa.y(),
span_aa->len,
color_span,
span_aa->covers);
if(--num_spans == 0) break;
++span_aa;
}
}
}
}
else
{
int sl_start = ras.scanline_start();
unsigned sl_len = ras.scanline_length();
if(sl_len)
{
memset(mix_buffer + sl_start - min_x,
0,
sl_len * sizeof(color_type));
memset(cover_buffer + sl_start - min_x,
0,
sl_len * sizeof(cover_type));
int sl_y = 0x7FFFFFFF;
unsigned i;
for(i = 0; i < num_styles; i++)
{
style = ras.style(i);
solid = sh.is_solid(style);
if(ras.sweep_scanline(sl_aa, i))
{
unsigned cover;
color_type* colors;
color_type* cspan;
cover_type* src_covers;
cover_type* dst_covers;
span_aa = sl_aa.begin();
num_spans = sl_aa.num_spans();
sl_y = sl_aa.y();
if(solid)
{
// Just solid fill
//-----------------------
for(;;)
{
color_type c = sh.color(style);
len = span_aa->len;
colors = mix_buffer + span_aa->x - min_x;
src_covers = span_aa->covers;
dst_covers = cover_buffer + span_aa->x - min_x;
do
{
cover = *src_covers;
if(*dst_covers + cover > cover_full)
{
cover = cover_full - *dst_covers;
}
if(cover)
{
colors->add(c, cover);
*dst_covers += cover;
}
++colors;
++src_covers;
++dst_covers;
}
while(--len);
if(--num_spans == 0) break;
++span_aa;
}
}
else
{
// Arbitrary span generator
//-----------------------
for(;;)
{
len = span_aa->len;
colors = mix_buffer + span_aa->x - min_x;
cspan = color_span;
sh.generate_span(cspan,
span_aa->x,
sl_aa.y(),
len,
style);
src_covers = span_aa->covers;
dst_covers = cover_buffer + span_aa->x - min_x;
do
{
cover = *src_covers;
if(*dst_covers + cover > cover_full)
{
cover = cover_full - *dst_covers;
}
if(cover)
{
colors->add(*cspan, cover);
*dst_covers += cover;
}
++cspan;
++colors;
++src_covers;
++dst_covers;
}
while(--len);
if(--num_spans == 0) break;
++span_aa;
}
}
}
}
ren.blend_color_hspan(sl_start,
sl_y,
sl_len,
mix_buffer + sl_start - min_x,
0,
cover_full);
} //if(sl_len)
} //if(num_styles == 1) ... else
} //while((num_styles = ras.sweep_styles()) > 0)
} //if(ras.rewind_scanlines())
}
}
#endif

View file

@ -1,300 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// class rendering_buffer
//
//----------------------------------------------------------------------------
#ifndef AGG_RENDERING_BUFFER_INCLUDED
#define AGG_RENDERING_BUFFER_INCLUDED
#include "agg_array.h"
namespace agg
{
//===========================================================row_accessor
template<class T> class row_accessor
{
public:
typedef const_row_info<T> row_data;
//-------------------------------------------------------------------
row_accessor() :
m_buf(0),
m_start(0),
m_width(0),
m_height(0),
m_stride(0)
{
}
//--------------------------------------------------------------------
row_accessor(T* buf, unsigned width, unsigned height, int stride) :
m_buf(0),
m_start(0),
m_width(0),
m_height(0),
m_stride(0)
{
attach(buf, width, height, stride);
}
//--------------------------------------------------------------------
void attach(T* buf, unsigned width, unsigned height, int stride)
{
m_buf = m_start = buf;
m_width = width;
m_height = height;
m_stride = stride;
if(stride < 0)
{
m_start = m_buf - int(height - 1) * stride;
}
}
//--------------------------------------------------------------------
AGG_INLINE T* buf() { return m_buf; }
AGG_INLINE const T* buf() const { return m_buf; }
AGG_INLINE unsigned width() const { return m_width; }
AGG_INLINE unsigned height() const { return m_height; }
AGG_INLINE int stride() const { return m_stride; }
AGG_INLINE unsigned stride_abs() const
{
return (m_stride < 0) ? unsigned(-m_stride) : unsigned(m_stride);
}
//--------------------------------------------------------------------
AGG_INLINE T* row_ptr(int, int y, unsigned)
{
return m_start + y * m_stride;
}
AGG_INLINE T* row_ptr(int y) { return m_start + y * m_stride; }
AGG_INLINE const T* row_ptr(int y) const { return m_start + y * m_stride; }
AGG_INLINE row_data row (int y) const
{
return row_data(0, m_width-1, row_ptr(y));
}
//--------------------------------------------------------------------
template<class RenBuf>
void copy_from(const RenBuf& src)
{
unsigned h = height();
if(src.height() < h) h = src.height();
unsigned l = stride_abs();
if(src.stride_abs() < l) l = src.stride_abs();
l *= sizeof(T);
unsigned y;
unsigned w = width();
for (y = 0; y < h; y++)
{
memcpy(row_ptr(0, y, w), src.row_ptr(y), l);
}
}
//--------------------------------------------------------------------
void clear(T value)
{
unsigned y;
unsigned w = width();
unsigned stride = stride_abs();
for(y = 0; y < height(); y++)
{
T* p = row_ptr(0, y, w);
unsigned x;
for(x = 0; x < stride; x++)
{
*p++ = value;
}
}
}
private:
//--------------------------------------------------------------------
T* m_buf; // Pointer to renrdering buffer
T* m_start; // Pointer to first pixel depending on stride
unsigned m_width; // Width in pixels
unsigned m_height; // Height in pixels
int m_stride; // Number of bytes per row. Can be < 0
};
//==========================================================row_ptr_cache
template<class T> class row_ptr_cache
{
public:
typedef const_row_info<T> row_data;
//-------------------------------------------------------------------
row_ptr_cache() :
m_buf(0),
m_rows(),
m_width(0),
m_height(0),
m_stride(0)
{
}
//--------------------------------------------------------------------
row_ptr_cache(T* buf, unsigned width, unsigned height, int stride) :
m_buf(0),
m_rows(),
m_width(0),
m_height(0),
m_stride(0)
{
attach(buf, width, height, stride);
}
//--------------------------------------------------------------------
void attach(T* buf, unsigned width, unsigned height, int stride)
{
m_buf = buf;
m_width = width;
m_height = height;
m_stride = stride;
if(height > m_rows.size())
{
m_rows.resize(height);
}
T* row_ptr = m_buf;
if(stride < 0)
{
row_ptr = m_buf - int(height - 1) * stride;
}
T** rows = &m_rows[0];
while(height--)
{
*rows++ = row_ptr;
row_ptr += stride;
}
}
//--------------------------------------------------------------------
AGG_INLINE T* buf() { return m_buf; }
AGG_INLINE const T* buf() const { return m_buf; }
AGG_INLINE unsigned width() const { return m_width; }
AGG_INLINE unsigned height() const { return m_height; }
AGG_INLINE int stride() const { return m_stride; }
AGG_INLINE unsigned stride_abs() const
{
return (m_stride < 0) ? unsigned(-m_stride) : unsigned(m_stride);
}
//--------------------------------------------------------------------
AGG_INLINE T* row_ptr(int, int y, unsigned)
{
return m_rows[y];
}
AGG_INLINE T* row_ptr(int y) { return m_rows[y]; }
AGG_INLINE const T* row_ptr(int y) const { return m_rows[y]; }
AGG_INLINE row_data row (int y) const
{
return row_data(0, m_width-1, m_rows[y]);
}
//--------------------------------------------------------------------
T const* const* rows() const { return &m_rows[0]; }
//--------------------------------------------------------------------
template<class RenBuf>
void copy_from(const RenBuf& src)
{
unsigned h = height();
if(src.height() < h) h = src.height();
unsigned l = stride_abs();
if(src.stride_abs() < l) l = src.stride_abs();
l *= sizeof(T);
unsigned y;
unsigned w = width();
for (y = 0; y < h; y++)
{
memcpy(row_ptr(0, y, w), src.row_ptr(y), l);
}
}
//--------------------------------------------------------------------
void clear(T value)
{
unsigned y;
unsigned w = width();
unsigned stride = stride_abs();
for(y = 0; y < height(); y++)
{
T* p = row_ptr(0, y, w);
unsigned x;
for(x = 0; x < stride; x++)
{
*p++ = value;
}
}
}
private:
//--------------------------------------------------------------------
T* m_buf; // Pointer to renrdering buffer
pod_array<T*> m_rows; // Pointers to each row of the buffer
unsigned m_width; // Width in pixels
unsigned m_height; // Height in pixels
int m_stride; // Number of bytes per row. Can be < 0
};
//========================================================rendering_buffer
//
// The definition of the main type for accessing the rows in the frame
// buffer. It provides functionality to navigate to the rows in a
// rectangular matrix, from top to bottom or from bottom to top depending
// on stride.
//
// row_accessor is cheap to create/destroy, but performs one multiplication
// when calling row_ptr().
//
// row_ptr_cache creates an array of pointers to rows, so, the access
// via row_ptr() may be faster. But it requires memory allocation
// when creating. For example, on typical Intel Pentium hardware
// row_ptr_cache speeds span_image_filter_rgb_nn up to 10%
//
// It's used only in short hand typedefs like pixfmt_rgba32 and can be
// redefined in agg_config.h
// In real applications you can use both, depending on your needs
//------------------------------------------------------------------------
#ifdef AGG_RENDERING_BUFFER
typedef AGG_RENDERING_BUFFER rendering_buffer;
#else
// typedef row_ptr_cache<int8u> rendering_buffer;
typedef row_accessor<int8u> rendering_buffer;
#endif
}
#endif

View file

@ -1,137 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// class rendering_buffer_dynarow
//
//----------------------------------------------------------------------------
#ifndef AGG_RENDERING_BUFFER_DYNAROW_INCLUDED
#define AGG_RENDERING_BUFFER_DYNAROW_INCLUDED
#include "agg_array.h"
namespace agg
{
//===============================================rendering_buffer_dynarow
// Rendering buffer class with dynamic allocation of the rows.
// The rows are allocated as needed when requesting for span_ptr().
// The class automatically calculates min_x and max_x for each row.
// Generally it's more efficient to use this class as a temporary buffer
// for rendering a few lines and then to blend it with another buffer.
//
class rendering_buffer_dynarow
{
public:
typedef row_info<int8u> row_data;
//-------------------------------------------------------------------
~rendering_buffer_dynarow()
{
init(0,0,0);
}
//-------------------------------------------------------------------
rendering_buffer_dynarow() :
m_rows(),
m_width(0),
m_height(0),
m_byte_width(0)
{
}
// Allocate and clear the buffer
//--------------------------------------------------------------------
rendering_buffer_dynarow(unsigned width, unsigned height,
unsigned byte_width) :
m_rows(height),
m_width(width),
m_height(height),
m_byte_width(byte_width)
{
memset(&m_rows[0], 0, sizeof(row_data) * height);
}
// Allocate and clear the buffer
//--------------------------------------------------------------------
void init(unsigned width, unsigned height, unsigned byte_width)
{
unsigned i;
for(i = 0; i < m_height; ++i)
{
pod_allocator<int8u>::deallocate((int8u*)m_rows[i].ptr, m_byte_width);
}
if(width && height)
{
m_width = width;
m_height = height;
m_byte_width = byte_width;
m_rows.resize(height);
memset(&m_rows[0], 0, sizeof(row_data) * height);
}
}
//--------------------------------------------------------------------
unsigned width() const { return m_width; }
unsigned height() const { return m_height; }
unsigned byte_width() const { return m_byte_width; }
// The main function used for rendering. Returns pointer to the
// pre-allocated span. Memory for the row is allocated as needed.
//--------------------------------------------------------------------
int8u* row_ptr(int x, int y, unsigned len)
{
row_data* r = &m_rows[y];
int x2 = x + len - 1;
if(r->ptr)
{
if(x < r->x1) { r->x1 = x; }
if(x2 > r->x2) { r->x2 = x2; }
}
else
{
int8u* p = pod_allocator<int8u>::allocate(m_byte_width);
r->ptr = p;
r->x1 = x;
r->x2 = x2;
memset(p, 0, m_byte_width);
}
return (int8u*)r->ptr;
}
//--------------------------------------------------------------------
const int8u* row_ptr(int y) const { return m_rows[y].ptr; }
int8u* row_ptr(int y) { return row_ptr(0, y, m_width); }
row_data row (int y) const { return m_rows[y]; }
private:
//--------------------------------------------------------------------
// Prohibit copying
rendering_buffer_dynarow(const rendering_buffer_dynarow&);
const rendering_buffer_dynarow& operator = (const rendering_buffer_dynarow&);
private:
//--------------------------------------------------------------------
pod_array<row_data> m_rows; // Pointers to each row of the buffer
unsigned m_width; // Width in pixels
unsigned m_height; // Height in pixels
unsigned m_byte_width; // Width in bytes
};
}
#endif

View file

@ -1,72 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Rounded rectangle vertex generator
//
//----------------------------------------------------------------------------
#ifndef AGG_ROUNDED_RECT_INCLUDED
#define AGG_ROUNDED_RECT_INCLUDED
#include "agg_basics.h"
#include "agg_arc.h"
namespace agg
{
//------------------------------------------------------------rounded_rect
//
// See Implemantation agg_rounded_rect.cpp
//
class rounded_rect
{
public:
rounded_rect() {}
rounded_rect(double x1, double y1, double x2, double y2, double r);
void rect(double x1, double y1, double x2, double y2);
void radius(double r);
void radius(double rx, double ry);
void radius(double rx_bottom, double ry_bottom, double rx_top, double ry_top);
void radius(double rx1, double ry1, double rx2, double ry2,
double rx3, double ry3, double rx4, double ry4);
void normalize_radius();
void approximation_scale(double s) { m_arc.approximation_scale(s); }
double approximation_scale() const { return m_arc.approximation_scale(); }
void rewind(unsigned);
unsigned vertex(double* x, double* y);
private:
double m_x1;
double m_y1;
double m_x2;
double m_y2;
double m_rx1;
double m_ry1;
double m_rx2;
double m_ry2;
double m_rx3;
double m_ry3;
double m_rx4;
double m_ry4;
unsigned m_status;
arc m_arc;
};
}
#endif

View file

@ -1,264 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Class scanline_bin - binary scanline.
//
//----------------------------------------------------------------------------
//
// Adaptation for 32-bit screen coordinates (scanline32_bin) has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
#ifndef AGG_SCANLINE_BIN_INCLUDED
#define AGG_SCANLINE_BIN_INCLUDED
#include "agg_array.h"
namespace agg
{
//=============================================================scanline_bin
//
// This is binary scaline container which supports the interface
// used in the rasterizer::render(). See description of agg_scanline_u8
// for details.
//
//------------------------------------------------------------------------
class scanline_bin
{
public:
typedef int32 coord_type;
struct span
{
int16 x;
int16 len;
};
typedef const span* const_iterator;
//--------------------------------------------------------------------
scanline_bin() :
m_last_x(0x7FFFFFF0),
m_spans(),
m_cur_span(0)
{
}
//--------------------------------------------------------------------
void reset(int min_x, int max_x)
{
unsigned max_len = max_x - min_x + 3;
if(max_len > m_spans.size())
{
m_spans.resize(max_len);
}
m_last_x = 0x7FFFFFF0;
m_cur_span = &m_spans[0];
}
//--------------------------------------------------------------------
void add_cell(int x, unsigned)
{
if(x == m_last_x+1)
{
m_cur_span->len++;
}
else
{
++m_cur_span;
m_cur_span->x = (int16)x;
m_cur_span->len = 1;
}
m_last_x = x;
}
//--------------------------------------------------------------------
void add_span(int x, unsigned len, unsigned)
{
if(x == m_last_x+1)
{
m_cur_span->len = (int16)(m_cur_span->len + len);
}
else
{
++m_cur_span;
m_cur_span->x = (int16)x;
m_cur_span->len = (int16)len;
}
m_last_x = x + len - 1;
}
//--------------------------------------------------------------------
void add_cells(int x, unsigned len, const void*)
{
add_span(x, len, 0);
}
//--------------------------------------------------------------------
void finalize(int y)
{
m_y = y;
}
//--------------------------------------------------------------------
void reset_spans()
{
m_last_x = 0x7FFFFFF0;
m_cur_span = &m_spans[0];
}
//--------------------------------------------------------------------
int y() const { return m_y; }
unsigned num_spans() const { return unsigned(m_cur_span - &m_spans[0]); }
const_iterator begin() const { return &m_spans[1]; }
private:
scanline_bin(const scanline_bin&);
const scanline_bin operator = (const scanline_bin&);
int m_last_x;
int m_y;
pod_array<span> m_spans;
span* m_cur_span;
};
//===========================================================scanline32_bin
class scanline32_bin
{
public:
typedef int32 coord_type;
//--------------------------------------------------------------------
struct span
{
span() {}
span(coord_type x_, coord_type len_) : x(x_), len(len_) {}
coord_type x;
coord_type len;
};
typedef pod_bvector<span, 4> span_array_type;
//--------------------------------------------------------------------
class const_iterator
{
public:
const_iterator(const span_array_type& spans) :
m_spans(spans),
m_span_idx(0)
{}
const span& operator*() const { return m_spans[m_span_idx]; }
const span* operator->() const { return &m_spans[m_span_idx]; }
void operator ++ () { ++m_span_idx; }
private:
const span_array_type& m_spans;
unsigned m_span_idx;
};
//--------------------------------------------------------------------
scanline32_bin() : m_max_len(0), m_last_x(0x7FFFFFF0) {}
//--------------------------------------------------------------------
void reset(int min_x, int max_x)
{
m_last_x = 0x7FFFFFF0;
m_spans.remove_all();
}
//--------------------------------------------------------------------
void add_cell(int x, unsigned)
{
if(x == m_last_x+1)
{
m_spans.last().len++;
}
else
{
m_spans.add(span(coord_type(x), 1));
}
m_last_x = x;
}
//--------------------------------------------------------------------
void add_span(int x, unsigned len, unsigned)
{
if(x == m_last_x+1)
{
m_spans.last().len += coord_type(len);
}
else
{
m_spans.add(span(coord_type(x), coord_type(len)));
}
m_last_x = x + len - 1;
}
//--------------------------------------------------------------------
void add_cells(int x, unsigned len, const void*)
{
add_span(x, len, 0);
}
//--------------------------------------------------------------------
void finalize(int y)
{
m_y = y;
}
//--------------------------------------------------------------------
void reset_spans()
{
m_last_x = 0x7FFFFFF0;
m_spans.remove_all();
}
//--------------------------------------------------------------------
int y() const { return m_y; }
unsigned num_spans() const { return m_spans.size(); }
const_iterator begin() const { return const_iterator(m_spans); }
private:
scanline32_bin(const scanline32_bin&);
const scanline32_bin operator = (const scanline32_bin&);
unsigned m_max_len;
int m_last_x;
int m_y;
span_array_type m_spans;
};
}
#endif

View file

@ -1,329 +0,0 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Class scanline_p - a general purpose scanline container with packed spans.
//
//----------------------------------------------------------------------------
//
// Adaptation for 32-bit screen coordinates (scanline32_p) has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
#ifndef AGG_SCANLINE_P_INCLUDED
#define AGG_SCANLINE_P_INCLUDED
#include "agg_array.h"
namespace agg
{
//=============================================================scanline_p8
//
// This is a general purpose scaline container which supports the interface
// used in the rasterizer::render(). See description of scanline_u8
// for details.
//
//------------------------------------------------------------------------
class scanline_p8
{
public:
typedef scanline_p8 self_type;
typedef int8u cover_type;
typedef int16 coord_type;
//--------------------------------------------------------------------
struct span
{
coord_type x;
coord_type len; // If negative, it's a solid span, covers is valid
const cover_type* covers;
};
typedef span* iterator;
typedef const span* const_iterator;
scanline_p8() :
m_last_x(0x7FFFFFF0),
m_covers(),
m_cover_ptr(0),
m_spans(),
m_cur_span(0)
{
}
//--------------------------------------------------------------------
void reset(int min_x, int max_x)
{
unsigned max_len = max_x - min_x + 3;
if(max_len > m_spans.size())
{
m_spans.resize(max_len);
m_covers.resize(max_len);
}
m_last_x = 0x7FFFFFF0;
m_cover_ptr = &m_covers[0];
m_cur_span = &m_spans[0];
m_cur_span->len = 0;
}
//--------------------------------------------------------------------
void add_cell(int x, unsigned cover)
{
*m_cover_ptr = (cover_type)cover;
if(x == m_last_x+1 && m_cur_span->len > 0)
{
m_cur_span->len++;
}
else
{
m_cur_span++;
m_cur_span->covers = m_cover_ptr;
m_cur_span->x = (int16)x;
m_cur_span->len = 1;
}
m_last_x = x;
m_cover_ptr++;
}
//--------------------------------------------------------------------
void add_cells(int x, unsigned len, const cover_type* covers)
{
memcpy(m_cover_ptr, covers, len * sizeof(cover_type));
if(x == m_last_x+1 && m_cur_span->len > 0)
{
m_cur_span->len += (int16)len;
}
else
{
m_cur_span++;
m_cur_span->covers = m_cover_ptr;
m_cur_span->x = (int16)x;
m_cur_span->len = (int16)len;
}
m_cover_ptr += len;
m_last_x = x + len - 1;
}
//--------------------------------------------------------------------
void add_span(int x, unsigned len, unsigned cover)
{
if(x == m_last_x+1 &&
m_cur_span->len < 0 &&
cover == *m_cur_span->covers)
{
m_cur_span->len -= (int16)len;
}
else
{
*m_cover_ptr = (cover_type)cover;
m_cur_span++;
m_cur_span->covers = m_cover_ptr++;
m_cur_span->x = (int16)x;
m_cur_span->len = (int16)(-int(len));
}
m_last_x = x + len - 1;
}
//--------------------------------------------------------------------
void finalize(int y)
{
m_y = y;
}
//--------------------------------------------------------------------
void reset_spans()
{
m_last_x = 0x7FFFFFF0;
m_cover_ptr = &m_covers[0];
m_cur_span = &m_spans[0];
m_cur_span->len = 0;
}
//--------------------------------------------------------------------
int y() const { return m_y; }
unsigned num_spans() const { return unsigned(m_cur_span - &m_spans[0]); }
const_iterator begin() const { return &m_spans[1]; }
private:
scanline_p8(const self_type&);
const self_type& operator = (const self_type&);
int m_last_x;
int m_y;
pod_array<cover_type> m_covers;
cover_type* m_cover_ptr;
pod_array<span> m_spans;
span* m_cur_span;
};
//==========================================================scanline32_p8
class scanline32_p8
{
public:
typedef scanline32_p8 self_type;
typedef int8u cover_type;
typedef int32 coord_type;
struct span
{
span() {}
span(coord_type x_, coord_type len_, const cover_type* covers_) :
x(x_), len(len_), covers(covers_) {}
coord_type x;
coord_type len; // If negative, it's a solid span, covers is valid
const cover_type* covers;
};
typedef pod_bvector<span, 4> span_array_type;
//--------------------------------------------------------------------
class const_iterator
{
public:
const_iterator(const span_array_type& spans) :
m_spans(spans),
m_span_idx(0)
{}
const span& operator*() const { return m_spans[m_span_idx]; }
const span* operator->() const { return &m_spans[m_span_idx]; }
void operator ++ () { ++m_span_idx; }
private:
const span_array_type& m_spans;
unsigned m_span_idx;
};
//--------------------------------------------------------------------
scanline32_p8() :
m_max_len(0),
m_last_x(0x7FFFFFF0),
m_covers(),
m_cover_ptr(0)
{
}
//--------------------------------------------------------------------
void reset(int min_x, int max_x)
{
unsigned max_len = max_x - min_x + 3;
if(max_len > m_covers.size())
{
m_covers.resize(max_len);
}
m_last_x = 0x7FFFFFF0;
m_cover_ptr = &m_covers[0];
m_spans.remove_all();
}
//--------------------------------------------------------------------
void add_cell(int x, unsigned cover)
{
*m_cover_ptr = cover_type(cover);
if(x == m_last_x+1 && m_spans.size() && m_spans.last().len > 0)
{
m_spans.last().len++;
}
else
{
m_spans.add(span(coord_type(x), 1, m_cover_ptr));
}
m_last_x = x;
m_cover_ptr++;
}
//--------------------------------------------------------------------
void add_cells(int x, unsigned len, const cover_type* covers)
{
memcpy(m_cover_ptr, covers, len * sizeof(cover_type));
if(x == m_last_x+1 && m_spans.size() && m_spans.last().len > 0)
{
m_spans.last().len += coord_type(len);
}
else
{
m_spans.add(span(coord_type(x), coord_type(len), m_cover_ptr));
}
m_cover_ptr += len;
m_last_x = x + len - 1;
}
//--------------------------------------------------------------------
void add_span(int x, unsigned len, unsigned cover)
{
if(x == m_last_x+1 &&
m_spans.size() &&
m_spans.last().len < 0 &&
cover == *m_spans.last().covers)
{
m_spans.last().len -= coord_type(len);
}
else
{
*m_cover_ptr = cover_type(cover);
m_spans.add(span(coord_type(x), -coord_type(len), m_cover_ptr++));
}
m_last_x = x + len - 1;
}
//--------------------------------------------------------------------
void finalize(int y)
{
m_y = y;
}
//--------------------------------------------------------------------
void reset_spans()
{
m_last_x = 0x7FFFFFF0;
m_cover_ptr = &m_covers[0];
m_spans.remove_all();
}
//--------------------------------------------------------------------
int y() const { return m_y; }
unsigned num_spans() const { return m_spans.size(); }
const_iterator begin() const { return const_iterator(m_spans); }
private:
scanline32_p8(const self_type&);
const self_type& operator = (const self_type&);
unsigned m_max_len;
int m_last_x;
int m_y;
pod_array<cover_type> m_covers;
cover_type* m_cover_ptr;
span_array_type m_spans;
};
}
#endif

Some files were not shown because too many files have changed in this diff Show more