125 lines
5.1 KiB
Python
125 lines
5.1 KiB
Python
|
##
|
||
|
# This software was developed and / or modified by Raytheon Company,
|
||
|
# pursuant to Contract DG133W-05-CQ-1067 with the US Government.
|
||
|
#
|
||
|
# U.S. EXPORT CONTROLLED TECHNICAL DATA
|
||
|
# This software product contains export-restricted data whose
|
||
|
# export/transfer/disclosure is restricted by U.S. law. Dissemination
|
||
|
# to non-U.S. persons whether in the United States or abroad requires
|
||
|
# an export license or other authorization.
|
||
|
#
|
||
|
# Contractor Name: Raytheon Company
|
||
|
# Contractor Address: 6825 Pine Street, Suite 340
|
||
|
# Mail Stop B8
|
||
|
# Omaha, NE 68106
|
||
|
# 402.291.0100
|
||
|
#
|
||
|
# See the AWIPS II Master Rights File ("Master Rights File.pdf") for
|
||
|
# further licensing information.
|
||
|
##
|
||
|
|
||
|
|
||
|
import unittest
|
||
|
import numpy as np
|
||
|
import Divergence
|
||
|
|
||
|
## Unit test for Divergence function.
|
||
|
class TestDivergence(unittest.TestCase):
|
||
|
"""Unit tests for the divergence function."""
|
||
|
|
||
|
def testOuterEdge(self):
|
||
|
"""Make sure Divergence.execute() fills the outer edge with
|
||
|
the "invalid" placeholder value (1e37)."""
|
||
|
|
||
|
U = np.ones((4,4), dtype=np.float32)
|
||
|
V = np.ones_like(U);
|
||
|
Wind = (U,V)
|
||
|
dx = np.ones_like(U)
|
||
|
dy = np.ones_like(U)
|
||
|
dvgnc = Divergence.execute(Wind,dx,dy)
|
||
|
self.assertEquals((4,4), dvgnc.shape, "dvgnc.shape")
|
||
|
self.assertEquals(np.float32, dvgnc.dtype, "dvgnc.dtype")
|
||
|
correctAnswer = np.array([[1e37, 1e37, 1e37, 1e37],
|
||
|
[1e37, 0, 0, 1e37],
|
||
|
[1e37, 0, 0, 1e37],
|
||
|
[1e37, 1e37, 1e37, 1e37]], dtype=np.float32)
|
||
|
self.failUnless(np.all(correctAnswer==dvgnc), repr(dvgnc))
|
||
|
|
||
|
def testMiddleMath(self):
|
||
|
"""Confirm that the inner cells are calculated correctly."""
|
||
|
U = np.array([[1,1,1,1,1],
|
||
|
[1,1,5,1,1],
|
||
|
[1,1,1,1,1],
|
||
|
[1,1,1,1,1],
|
||
|
[1,1,1,1,1]], dtype=np.float32)
|
||
|
V = np.array([[1,1,1,1,1],
|
||
|
[1,1,5,1,1],
|
||
|
[1,1,1,1,1],
|
||
|
[1,1,1,1,1],
|
||
|
[1,1,1,1,1]], dtype=np.float32)
|
||
|
Wind = (U,V)
|
||
|
dx = np.ones_like(U);
|
||
|
dy = np.ones_like(U);
|
||
|
dvgnc = Divergence.execute(Wind,dx,dy)
|
||
|
correctAnswer = np.array([[1e37, 1e37, 1e37, 1e37, 1e37],
|
||
|
[1e37, 2, 0, -2, 1e37],
|
||
|
[1e37, 0, -2, 0, 1e37],
|
||
|
[1e37, 0, 0, 0, 1e37],
|
||
|
[1e37, 1e37, 1e37, 1e37, 1e37]], dtype=np.float32)
|
||
|
self.failUnless(np.all(correctAnswer==dvgnc), "Divergence is incorrect.\n" + repr(dvgnc))
|
||
|
|
||
|
def testScalarDxDy(self):
|
||
|
"""Confirm that the inner cells are calculated correctly
|
||
|
when dx and dy are scalars instead of arrays."""
|
||
|
U = np.array([[1,1,1,1,1],
|
||
|
[1,1,5,1,1],
|
||
|
[1,1,1,1,1],
|
||
|
[1,1,1,1,1],
|
||
|
[1,1,1,1,1]], dtype=np.float32)
|
||
|
V = np.array([[1,1,1,1,1],
|
||
|
[1,1,5,1,1],
|
||
|
[1,1,1,1,1],
|
||
|
[1,1,1,1,1],
|
||
|
[1,1,1,1,1]], dtype=np.float32)
|
||
|
Wind = (U,V)
|
||
|
dx = 1
|
||
|
dy = 1
|
||
|
dvgnc = Divergence.execute(Wind,dx,dy)
|
||
|
correctAnswer = np.array([[1e37, 1e37, 1e37, 1e37, 1e37],
|
||
|
[1e37, 2, 0, -2, 1e37],
|
||
|
[1e37, 0, -2, 0, 1e37],
|
||
|
[1e37, 0, 0, 0, 1e37],
|
||
|
[1e37, 1e37, 1e37, 1e37, 1e37]], dtype=np.float32)
|
||
|
self.failUnless(np.all(correctAnswer==dvgnc), "Divergence is incorrect.\n" + repr(dvgnc))
|
||
|
|
||
|
def testWithQ(self):
|
||
|
"""Confirm that the inner cells are calculated correctly when quan is provided."""
|
||
|
U = np.array([[1,1,1,1,1],
|
||
|
[1,1,5,1,1],
|
||
|
[1,1,1,1,1],
|
||
|
[1,1,1,1,1],
|
||
|
[1,1,1,1,1]], dtype=np.float32)
|
||
|
V = np.array([[1,1,1,1,1],
|
||
|
[1,1,5,1,1],
|
||
|
[1,1,1,1,1],
|
||
|
[1,1,1,1,1],
|
||
|
[1,1,1,1,1]], dtype=np.float32)
|
||
|
Wind = (U,V)
|
||
|
dx = np.ones_like(U);
|
||
|
dy = np.ones_like(U);
|
||
|
Q = np.array([[1,1,1,1,1],
|
||
|
[1,1,1,1,1],
|
||
|
[1,1,1,1,1],
|
||
|
[1,1,4,1,1],
|
||
|
[1,1,1,1,1]])
|
||
|
dvgnc = Divergence.execute(Wind,dx,dy,Q)
|
||
|
correctAnswer = np.array([[1e37, 1e37, 1e37, 1e37, 1e37],
|
||
|
[1e37, 2, 0, -2, 1e37],
|
||
|
[1e37, 0, -0.5, 0, 1e37],
|
||
|
[1e37, 1.5, 0, -1.5, 1e37],
|
||
|
[1e37, 1e37, 1e37, 1e37, 1e37]], dtype=np.float32)
|
||
|
self.failUnless(np.all(correctAnswer==dvgnc), "Divergence is incorrect.\n" + repr(dvgnc))
|
||
|
|
||
|
|
||
|
if "__main__" == __name__:
|
||
|
unittest.main()
|