2017-08-14 11:14:48 -06:00
Satellite images are returned by Python AWIPS as grids, and can be rendered with Cartopy pcolormesh the same as gridded forecast models in other python-awips examples.
```python
%matplotlib inline
from awips.dataaccess import DataAccessLayer
import cartopy.crs as ccrs
import cartopy.feature as cfeat
import matplotlib.pyplot as plt
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
import numpy as np
import datetime
DataAccessLayer.changeEDEXHost("edex-cloud.unidata.ucar.edu")
request = DataAccessLayer.newDataRequest()
request.setDatatype("satellite")
```
### Available Satellite Sectors and Products
```python
availableSectors = DataAccessLayer.getAvailableLocationNames(request)
availableSectors.sort()
print("\nAvailable sectors and products\n")
for sect in availableSectors:
request.setLocationNames(sect)
availableProducts = DataAccessLayer.getAvailableParameters(request)
availableProducts.sort()
print(sect + ":")
for prod in availableProducts:
print(" - "+prod)
```
Available sectors and products
* Alaska National:
- Imager 11 micron IR
- Imager 6.7-6.5 micron IR (WV)
- Imager Visible
- Percent of Normal TPW
- Rain fall rate
- Sounder Based Derived Precipitable Water (PW)
* Alaska Regional:
- Imager 11 micron IR
- Imager 3.9 micron IR
- Imager 6.7-6.5 micron IR (WV)
- Imager Visible
* East CONUS:
- Imager 11 micron IR
2017-12-08 11:36:23 -07:00
- Imager 13 micron IR
2017-08-14 11:14:48 -06:00
- Imager 3.9 micron IR
- Imager 6.7-6.5 micron IR (WV)
- Imager Visible
- Low cloud base imagery
* GOES-East:
- Imager 11 micron IR
- Imager 13 micron IR
- Imager 3.5-4.0 micron IR (Fog)
- Imager 6.7-6.5 micron IR (WV)
- Imager Visible
* GOES-East-West:
- Imager 11 micron IR
- Imager 13 micron IR
- Imager 3.5-4.0 micron IR (Fog)
- Imager 6.7-6.5 micron IR (WV)
- Imager Visible
* GOES-Sounder:
- CAPE
- Sounder Based Derived Lifted Index (LI)
- Sounder Based Derived Precipitable Water (PW)
- Sounder Based Derived Surface Skin Temp (SFC Skin)
- Sounder Based Total Column Ozone
* GOES-West:
- Imager 11 micron IR
- Imager 13 micron IR
- Imager 3.5-4.0 micron IR (Fog)
- Imager 6.7-6.5 micron IR (WV)
- Imager Visible
* Global:
- Imager 11 micron IR
- Imager 6.7-6.5 micron IR (WV)
* Hawaii National:
- Gridded Cloud Amount
- Gridded Cloud Top Pressure or Height
- Imager 11 micron IR
- Imager 6.7-6.5 micron IR (WV)
- Imager Visible
- Percent of Normal TPW
- Rain fall rate
- Sounder 11.03 micron imagery
- Sounder 14.06 micron imagery
- Sounder 3.98 micron imagery
- Sounder 4.45 micron imagery
- Sounder 6.51 micron imagery
- Sounder 7.02 micron imagery
- Sounder 7.43 micron imagery
- Sounder Based Derived Lifted Index (LI)
- Sounder Based Derived Precipitable Water (PW)
- Sounder Based Derived Surface Skin Temp (SFC Skin)
- Sounder Visible imagery
* Hawaii Regional:
- Imager 11 micron IR
2017-12-08 11:36:23 -07:00
- Imager 13 micron IR
2017-08-14 11:14:48 -06:00
- Imager 3.9 micron IR
- Imager 6.7-6.5 micron IR (WV)
- Imager Visible
* Mollweide:
- Imager 11 micron IR
- Imager 6.7-6.5 micron IR (WV)
* NEXRCOMP:
- DHR
- DVL
- EET
- HHC
- N0R
- N1P
- NTP
* NH Composite - Meteosat-GOES E-GOES W-GMS:
- Imager 11 micron IR
- Imager 6.7-6.5 micron IR (WV)
- Imager Visible
* Northern Hemisphere Composite:
- Imager 11 micron IR
- Imager 6.7-6.5 micron IR (WV)
- Imager Visible
* Puerto Rico National:
- Imager 11 micron IR
- Imager 6.7-6.5 micron IR (WV)
- Imager Visible
- Percent of Normal TPW
- Rain fall rate
- Sounder Based Derived Precipitable Water (PW)
* Puerto Rico Regional:
- Imager 11 micron IR
2017-12-08 11:36:23 -07:00
- Imager 13 micron IR
2017-08-14 11:14:48 -06:00
- Imager 3.9 micron IR
- Imager 6.7-6.5 micron IR (WV)
- Imager Visible
* Supernational:
- Gridded Cloud Amount
- Gridded Cloud Top Pressure or Height
- Imager 11 micron IR
- Imager 6.7-6.5 micron IR (WV)
- Imager Visible
- Percent of Normal TPW
- Rain fall rate
- Sounder Based Derived Lifted Index (LI)
- Sounder Based Derived Precipitable Water (PW)
- Sounder Based Derived Surface Skin Temp (SFC Skin)
* West CONUS:
- Imager 11 micron IR
2017-12-08 11:36:23 -07:00
- Imager 13 micron IR
2017-08-14 11:14:48 -06:00
- Imager 3.9 micron IR
- Imager 6.7-6.5 micron IR (WV)
- Imager Visible
- Low cloud base imagery
- Sounder 11.03 micron imagery
- Sounder 14.06 micron imagery
- Sounder 3.98 micron imagery
- Sounder 4.45 micron imagery
- Sounder 6.51 micron imagery
- Sounder 7.02 micron imagery
- Sounder 7.43 micron imagery
- Sounder Visible imagery
### Plot Global Water Vapor Composite
```python
request.setLocationNames("Global")
availableProducts = DataAccessLayer.getAvailableParameters(request)
availableProducts.sort()
request.setParameters(availableProducts[0])
utc = datetime.datetime.utcnow()
times = DataAccessLayer.getAvailableTimes(request)
hourdiff = utc - datetime.datetime.strptime(str(times[-1]),'%Y-%m-%d %H:%M:%S')
hours,days = hourdiff.seconds/3600,hourdiff.days
minute = str((hourdiff.seconds - (3600 * hours)) / 60)
offsetStr = ''
if hours > 0:
offsetStr += str(hours) + "hr "
offsetStr += str(minute) + "m ago"
if days > 1:
offsetStr = str(days) + " days ago"
print("Found "+ str(len(times)) +" available times")
print(" "+str(times[0]) + "\n to\n " + str(times[-1]))
print("Using "+str(times[-1]) + " ("+offsetStr+")")
```
> Found 96 available times
> 2017-01-23 00:00:00
> to
> 2017-02-03 21:00:00
> Using 2017-02-03 21:00:00 (2hr 3m ago)
```python
response = DataAccessLayer.getGridData(request, [times[-1]])
grid = response[0]
data = grid.getRawData()
lons,lats = grid.getLatLonCoords()
bbox = [lons.min(), lons.max(), lats.min(), lats.max()]
print("grid size " + str(data.shape))
print("grid extent " + str(list(bbox)))
```
> grid size (1024, 2048)
> grid extent [-179.91191, 179.99982, -89.977936, 89.890022]
```python
def make_map(bbox, projection=ccrs.PlateCarree()):
fig, ax = plt.subplots(figsize=(18,14),
subplot_kw=dict(projection=projection))
ax.set_extent(bbox)
ax.coastlines(resolution='50m')
gl = ax.gridlines(draw_labels=True)
gl.xlabels_top = gl.ylabels_right = False
gl.xformatter = LONGITUDE_FORMATTER
gl.yformatter = LATITUDE_FORMATTER
return fig, ax
fig, ax = make_map(bbox=bbox)
# State boundaries
states = cfeat.NaturalEarthFeature(category='cultural',
name='admin_1_states_provinces_lines',
scale='50m', facecolor='none')
ax.add_feature(states, linestyle=':')
cs = ax.pcolormesh(lons, lats, data, cmap='Greys_r')
cbar = fig.colorbar(cs, shrink=0.9, orientation='horizontal')
cbar.set_label(str(grid.getLocationName())+" " \
+str(grid.getParameter())+" " \
+str(grid.getDataTime().getRefTime()))
plt.tight_layout()
```
